JPH09105614A - Apparatus and method for evaluation of surface shape - Google Patents

Apparatus and method for evaluation of surface shape

Info

Publication number
JPH09105614A
JPH09105614A JP7262972A JP26297295A JPH09105614A JP H09105614 A JPH09105614 A JP H09105614A JP 7262972 A JP7262972 A JP 7262972A JP 26297295 A JP26297295 A JP 26297295A JP H09105614 A JPH09105614 A JP H09105614A
Authority
JP
Japan
Prior art keywords
illumination light
welding bead
scanning
shape
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7262972A
Other languages
Japanese (ja)
Inventor
Munetoshi Zen
宗利 善
Hideo Miura
英生 三浦
Masaaki Nakakado
公明 中門
Takayuki Shimodaira
貴之 下平
Tsugio Udagawa
次男 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP7262972A priority Critical patent/JPH09105614A/en
Publication of JPH09105614A publication Critical patent/JPH09105614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly measure a welding bead part for various products without cutting the welding bead part and to judge whether the quality of a welding bead shape is good or no good with good accuracy. SOLUTION: The surface-shape evaluation apparatus is provided with a light source 12a which can be moved in the X-axis direction, a light source 12b which can be moved in the Y-axis direction, a line sensor 13a which is arranged in the X-axis direction, and a line sensor 13b which is arranged in the Y-axis direction. The shape in the three-dimensional direction on the surface of a weldingbead is detected by a detector 4 which can be moved in the Z-axis direction. The output of every line sensor inside the detector 4 is sent to an analytical device 8 via a signal line L and a measurement and computing control device 7. The analytical device 8 measures the shape in the three-dimensional direction on the surface of the welding bead, it finds a stress concentration factor and a fatigue notch factor at a bead stop end part, it evaluates the life of the welding bead, and it outputs an analyzed result to a printer 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、すみ肉溶接ビード
や突き合わせ溶接ビード等の各種溶接ビードの表面形状
を測定し、溶接ビードの良否を判断する表面形状評価装
置および表面形状評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape evaluation apparatus and a surface shape evaluation method for determining the quality of a weld bead by measuring the surface shape of various weld beads such as a fillet weld bead and a butt weld bead.

【0002】[0002]

【従来の技術】建設機械構造物の分野では、近年の工事
規模の拡大、運搬車両の大型化などに伴って油圧ショベ
ルを初めとする各種建設機械が大型化および大容量化す
る傾向にある。それに伴って、操作性や機能性の向上
や、このところクローズアップされている環境に関する
諸問題とともに、軽量化および信頼性の向上に対する要
求がますます高まりつつある。
2. Description of the Related Art In the field of construction machinery structures, various construction machines such as hydraulic excavators tend to increase in size and capacity as a result of recent expansion of construction scale and increase in size of transportation vehicles. Along with this, along with improvements in operability and functionality, as well as various environmental problems that have recently been highlighted, demands for lighter weight and higher reliability are increasing.

【0003】油圧ショベルは、前部フロントアタッチメ
ント(以下、フロント部と略する)、上部旋回体、およ
び下部走行体(足回り)によって構成されており、フロ
ント部は、バケット、アーム、ブーム、各種リンクおよ
び各油圧シリンダから成り、それぞれピン結合されてい
る。バケット、アームおよびブームは薄板溶接構造とさ
れ、アームおよびブームはほぼ完全なボックス構造とさ
れている。ブームのボックス構造は、機種によって異な
るものの、三つのボックスを裏当金付きの突き合わせ溶
接とした溶接継手で固定し、かつ補強のために隔壁をす
み肉溶接している。また、操作性および軽量化のために
先端に行くほど板厚を薄くする施工方法を取っている。
A hydraulic excavator is composed of a front front attachment (hereinafter abbreviated as a front part), an upper revolving structure, and a lower traveling structure (underbody), and the front part has a bucket, an arm, a boom, and various types. It consists of a link and each hydraulic cylinder, and they are pin-connected. The bucket, arm and boom have a thin plate welded structure, and the arm and boom have a nearly complete box structure. Although the box structure of the boom differs depending on the model, three boxes are fixed by a butt-welded weld joint with a backing metal, and the bulkheads are fillet-welded for reinforcement. Also, for ease of operation and weight reduction, a construction method is adopted in which the plate thickness is made thinner toward the tip.

【0004】溶接構造物の設計に際して、施工方法と板
厚を考慮に入れて疲労強度を評価するには、施工方法別
および板厚別のS−N線図が必要となる。しかし、それ
ぞれの条件でのS−N線図を求めるためには、かなりの
労力と時間を要する。したがって、疲労試験を行わなく
ても既存の実験結果から疲労強度の評価を行えることが
望ましい。
In designing a welded structure, in order to evaluate the fatigue strength in consideration of the construction method and the plate thickness, it is necessary to use the SN diagram for each construction method and each plate thickness. However, it takes a considerable amount of labor and time to obtain the SN diagram under each condition. Therefore, it is desirable to be able to evaluate the fatigue strength from existing experimental results without performing a fatigue test.

【0005】溶接継手の疲労強度は溶接ビードの幾何学
形状に支配され、溶接ビードの幾何学形状を表すフラン
ク角、ビード高さ、脚長および溶接止端半径等の各パラ
メータを求めることが重要であり、これら各パラメータ
を求めることで、応力集中係数および切欠係数を有限要
素法計算や実験式により演算できる。また、応力集中係
数に公称応力を乗じた結果と材料のS−N線図を利用す
れば、溶接部の寿命を予測演算できる。すなわち、溶接
ビード形状の測定結果を用いて応力集中係数および切欠
係数を算出することで、溶接部の疲労強度の予測評価を
行える。
The fatigue strength of a welded joint is governed by the geometric shape of the weld bead, and it is important to find each parameter such as the flank angle, the bead height, the leg length, and the weld toe radius that represents the geometric shape of the weld bead. The stress concentration factor and the notch factor can be calculated by the finite element method calculation or the empirical formula by obtaining these respective parameters. Further, by using the result of multiplying the stress concentration factor by the nominal stress and the SN diagram of the material, the life of the welded portion can be predicted and calculated. That is, by calculating the stress concentration factor and the notch factor using the measurement results of the weld bead shape, the fatigue strength of the welded portion can be predicted and evaluated.

【0006】従来は溶接ビードの形状を測定する際、レ
プリカキットで溶接ビードの複製を取るか、溶接部を溶
接線(溶接箇所の長手方向)に対して直角に切断し、そ
の切断面を万能投影機で約10倍に拡大トレースし、こ
のトレースから定規と分度器を用いて、フランク角、ビ
ード高さ、脚長および溶接止端半径を測定していた。
Conventionally, when measuring the shape of a weld bead, the weld bead is duplicated with a replica kit or the weld is cut at a right angle to the weld line (longitudinal direction of the welded portion), and the cut surface is universally cut. The trace was enlarged about 10 times with a projector, and the flank angle, the bead height, the leg length and the weld toe radius were measured from this trace using a ruler and a protractor.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
溶接ビード測定方法は、溶接部の複製を取るための前準
備や後処理にかなりの労力と時間を要するという問題が
あった。また、処理の仕方によっては複製物に歪みが生
じて実際とは異なる形状になったり、拡大した切断面の
測定は一般に定規を使って行うことから個人差が出るお
それ等が大きく、精度を上げることができない。さら
に、溶接部を切り出して測定する方法は、製品から切り
出せる場合は希であることから、予め製品と同一条件で
試験片に溶接を行って、その試験片を切断して評価する
ことが多く、結果が得られるまでに労力と時間がかか
り、その評価も、製品を直接評価できるわけではなく、
試験片を用いた仮の評価しかできなかった。
However, the conventional welding bead measuring method has a problem that it requires a considerable amount of labor and time for pre-preparation and post-treatment for making a copy of the welded portion. In addition, depending on the processing method, the copy may be distorted and its shape may differ from the actual shape, and the measurement of the enlarged cut surface is generally performed using a ruler, so there is a large risk of individual differences, etc., increasing accuracy. I can't. Further, the method of cutting out the welded portion and measuring it is rare when it can be cut out from the product, so in many cases the test piece is welded in advance under the same conditions as the product and the test piece is cut and evaluated. , It takes effort and time to obtain the result, and the evaluation cannot directly evaluate the product,
Only temporary evaluation using the test piece was possible.

【0008】本発明の目的は、各種製品の溶接ビード部
分を切断せずに直接測定でき、かつ溶接ビード形状の良
否を精度よく判別できる表面形状評価装置および評価方
法を提供することにある。
An object of the present invention is to provide a surface shape evaluation apparatus and an evaluation method which can directly measure the weld bead portion of various products without cutting and can accurately determine the quality of the weld bead shape.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

−溶接ビードの寿命評価試験の原理− 以下では、図14のすみ肉溶接継手の寿命評価試験を行
う例について説明する。図14の主板51と副板52は
すみ肉溶接により固定されている。図14では、すみ肉
溶接ビード53のフランク角をθ、ビード高さをh、す
み肉溶接ビードのビード止端半径(ビード端部の曲率半
径)をR、主板の板厚をt、ビート幅をBとしている。
-Principle of Life Evaluation Test of Weld Beads-Hereinafter, an example of performing the life evaluation test of the fillet welded joint of FIG. 14 will be described. The main plate 51 and the sub plate 52 of FIG. 14 are fixed by fillet welding. In FIG. 14, the flank angle of the fillet weld bead 53 is θ, the bead height is h, the bead toe radius (curvature radius of the bead end) of the fillet weld bead is R, the plate thickness of the main plate is t, and the beat width is Is B.

【0010】今、主板51に公称応力範囲Δσの応力が
かかると、ビード止端部54に応力集中が起こり、ビー
ド止端部に最大の局部応力σlocが作用する。このた
め、ビード止端部における応力集中係数と切欠係数を求
めることが溶接部の寿命評価を行うために特に重要であ
り、応力集中係数Ktと切欠係数Kfはそれぞれ
(1),(2)式で表される。
Now, when stress is applied to the main plate 51 in the nominal stress range Δσ, stress concentration occurs at the bead toe 54, and the maximum local stress σloc acts on the bead toe. Therefore, it is particularly important to obtain the stress concentration coefficient and the notch coefficient at the toe of the bead in order to evaluate the life of the welded portion, and the stress concentration coefficient Kt and the notch coefficient Kf are expressed by equations (1) and (2), respectively. It is represented by.

【数1】 (Equation 1)

【0011】また、(3)式のように、応力集中係数K
tにビード止端部の公称応力範囲Δσを乗じることによ
り、ビード止端部における局部応力σlocが求まる。
Further, as shown in the equation (3), the stress concentration coefficient K
By multiplying t by the nominal stress range Δσ at the bead toe, the local stress σloc at the bead toe is determined.

【数2】σloc=Δσ×Kt …(3)## EQU2 ## σloc = Δσ × Kt (3)

【0012】(3)式で求めた局部応力σlocと図15
に示す溶接材料のS−N線図とにより、溶接部の寿命評
価を行える。なお、応力集中係数Ktと切欠係数Kfを
算出するためには、溶接ビード形状に関連するフランク
角θ、ビード高さh、ビード幅Bおよびビード止端半径
Rの測定が不可欠である。そこで、本発明は、以下の構
成によりフランク角θやビード高さh等を簡易かつ正確
に測定できるようにしている。
The local stress σloc obtained by the equation (3) and FIG.
With the S-N diagram of the welding material shown in (1), the life of the welded portion can be evaluated. In order to calculate the stress concentration coefficient Kt and the notch coefficient Kf, it is essential to measure the flank angle θ, the bead height h, the bead width B, and the bead toe radius R related to the weld bead shape. Therefore, the present invention enables the flank angle θ, the bead height h, and the like to be easily and accurately measured by the following configuration.

【0013】−本発明の構成− 発明の一実施の形態を示す図1,2,9,12に対応づ
けて本発明を説明すると、本発明は、溶接ビード表面に
所定のビーム口径の照明光を照射可能な照明光源12
a,12bと、照明光を溶接ビード表面の所定方向に沿
って走査させる第1の走査手段11a,11bと、溶接
ビード表面から所定の角度範囲の方向に反射された照明
光を受光する受光手段13a,13bと、受光手段13
a,13bにより受光された照明光に基づいて溶接ビー
ド表面の二次元形状を評価する表面評価手段8と、を備
えることにより、上記目的は達成される。請求項1に記
載の発明では、照明光を溶接ビード表面の所定方向に沿
って走査させ、溶接ビード表面で反射された照明光のう
ち、所定の角度範囲の方向に反射された照明光を受光手
段13a,13bにより受光する。溶接ビード表面に凹
凸や溶接不良箇所が存在すると、照明光の反射方向が不
規則になるため、表面評価手段8は照明光の反射方向に
より、溶接ビード表面の二次元形状を測定および評価す
る。
-Structure of the Invention-The invention will be described with reference to FIGS. 1, 2, 9 and 12 showing an embodiment of the invention. According to the invention, the illumination light having a predetermined beam diameter is formed on the surface of the welding bead. Illumination light source 12 that can illuminate
a, 12b, first scanning means 11a, 11b for scanning illumination light along a predetermined direction of the welding bead surface, and light receiving means for receiving illumination light reflected from the welding bead surface in a direction of a predetermined angle range. 13a, 13b and light receiving means 13
The above object is achieved by including the surface evaluation means 8 for evaluating the two-dimensional shape of the surface of the weld bead based on the illumination light received by a and 13b. In the invention according to claim 1, the illumination light is scanned along a predetermined direction of the welding bead surface, and the illumination light reflected in the direction of the predetermined angle range is received among the illumination light reflected by the welding bead surface. The light is received by the means 13a and 13b. If there are irregularities or defective welding points on the surface of the weld bead, the reflection direction of the illumination light becomes irregular. Therefore, the surface evaluation means 8 measures and evaluates the two-dimensional shape of the surface of the weld bead according to the reflection direction of the illumination light.

【0014】請求項2に記載の発明は、照明光を溶接ビ
ード表面の所定方向とは異なる方向に走査させる第2の
走査手段6aを備え、第1および第2の走査手段11
a,11b,6aにより照明光を走査させたときに受光
手段13a,13bにより受光される照明光に基づい
て、溶接ビード表面の三次元形状を評価するように表面
評価手段8を構成するものである。請求項2に記載の発
明では、照明光を溶接ビード表面の所定方向とは異なる
方向に走査させて溶接ビード表面の三次元形状を評価す
る。
According to the second aspect of the present invention, there is provided the second scanning means 6a for scanning the illumination light in a direction different from the predetermined direction of the surface of the welding bead, and the first and second scanning means 11 are provided.
The surface evaluation means 8 is configured to evaluate the three-dimensional shape of the welding bead surface based on the illumination light received by the light receiving means 13a, 13b when the illumination light is scanned by a, 11b, 6a. is there. According to the second aspect of the present invention, the illumination light is scanned in a direction different from the predetermined direction of the welding bead surface to evaluate the three-dimensional shape of the welding bead surface.

【0015】請求項3に記載の発明は、照明光源12
a,12bから溶接ビード表面に向けて所定のビーム口
径の照明光を照射し、照明光を溶接ビード表面の第1の
方向に沿って走査させて溶接ビード表面から所定の角度
範囲の方向に反射された照明光を受光手段13a,13
bにより受光し、照明光を溶接ビード表面の第2の方向
に沿って所定量ずつ走査させて各走査位置で第1の方向
への走査を行い、受光手段13a,13bによる受光結
果に基づいて溶接ビード表面の三次元形状を評価するも
のである。請求項3に記載の発明では、照明光を溶接ビ
ード表面の第2の方向に沿って所定量ずつ走査させ、そ
れぞれの第2の方向における走査位置ごとに、照明光を
溶接ビード表面の第1の方向に沿って走査させて、溶接
ビード表面で反射された照明光を受光手段13a,13
bにより受光し、その受光結果により溶接ビードの三次
元形状を評価する。
The third aspect of the present invention is an illumination light source 12
Illumination light having a predetermined beam diameter is emitted from a and 12b toward the welding bead surface, and the illumination light is scanned along the first direction of the welding bead surface and reflected from the welding bead surface in a predetermined angular range direction. The illuminated light is received by the light receiving means 13a, 13
b, the illumination light is scanned by a predetermined amount along the second direction on the surface of the welding bead, and scanning is performed in the first direction at each scanning position. Based on the results of light reception by the light receiving means 13a, 13b. This is to evaluate the three-dimensional shape of the weld bead surface. In the invention according to claim 3, the illumination light is scanned by a predetermined amount along the second direction of the welding bead surface, and the illumination light is scanned by the first position on the welding bead surface for each scanning position in the second direction. And the illumination light reflected on the surface of the welding bead is received by the light receiving means 13a, 13a.
The light is received by b, and the three-dimensional shape of the welding bead is evaluated based on the light reception result.

【0016】請求項4に記載の発明は、溶接ビード表面
に所定のビーム口径の照明光を照射可能な照明光源12
a,12bと、照明光を第1の方向に走査させて溶接ビ
ード表面での照明光の照射位置を変更する第1の走査手
段11aと、照明光を第2の方向に走査させて溶接ビー
ド表面での照明光の照射位置を変更する第2の走査手段
11bと、少なくとも第1の方向に並べて配置された複
数の光電変換素子から成り、溶接ビード表面で反射され
た照明光の少なくとも一部を受光して電気信号に変換す
る第1の撮像装置13aと、少なくとも第2の方向に並
べて配置された複数の光電変換素子から成り、溶接ビー
ド表面で反射された照明光の少なくとも一部を受光して
電気信号に変換する第2の撮像装置13bと、第1およ
び第2の撮像装置13a,13bから出力された電気信
号に基づいて溶接ビード表面の二次元形状を評価する表
面評価手段8と、を備えることにより、上記目的は達成
される。請求項4に記載の発明では、例えば図2に示す
ように、照明光を第1および第2の方向に走査させ、溶
接ビード表面で反射された照明光を、異なる二方向に光
電変換素子が配置されている第1および第2の撮像装置
13a,13bで受光して溶接ビードの二次元形状を評
価する。
According to a fourth aspect of the invention, the illumination light source 12 is capable of irradiating the welding bead surface with illumination light having a predetermined beam diameter.
a, 12b, a first scanning means 11a for scanning the illumination light in the first direction to change the irradiation position of the illumination light on the surface of the welding bead, and a welding bead by scanning the illumination light in the second direction. At least a part of the illumination light reflected by the welding bead surface, which includes the second scanning means 11b for changing the irradiation position of the illumination light on the surface and a plurality of photoelectric conversion elements arranged side by side in at least the first direction. The first imaging device 13a that receives the light and converts it into an electric signal, and the plurality of photoelectric conversion elements that are arranged side by side in at least the second direction, and receives at least a part of the illumination light reflected by the welding bead surface. A second image pickup device 13b for converting into an electric signal, and a surface evaluation means 8 for evaluating the two-dimensional shape of the welding bead surface based on the electric signal output from the first and second image pickup devices 13a, 13b. , By providing the above object is achieved. In the invention described in claim 4, for example, as shown in FIG. 2, the illumination light is scanned in the first and second directions, and the illumination light reflected by the welding bead surface is converted into two different directions by photoelectric conversion elements. The two-dimensional shape of the welding bead is evaluated by receiving light by the first and second imaging devices 13a and 13b arranged.

【0017】請求項5に記載の発明は、照明光を第3の
方向に走査させて溶接ビード表面での照明光の照射位置
を変更する第3の走査手段6aを備え、第1、第2およ
び第3の方向に照明光を走査させたときに第1および第
2の撮像装置13a,13bにより受光される照明光に
基づいて、溶接ビード表面の三次元形状を評価するよう
に表面評価手段8を構成するものである。請求項5に記
載の発明では、溶接ビードの三次元形状を評価できるよ
うに、さらに第3の方向に照明光を走査させる。
According to a fifth aspect of the present invention, there is provided a third scanning means 6a for scanning the illumination light in the third direction to change the irradiation position of the illumination light on the surface of the welding bead. And a surface evaluation unit for evaluating the three-dimensional shape of the welding bead surface based on the illumination light received by the first and second imaging devices 13a and 13b when the illumination light is scanned in the third direction. 8 is configured. In the invention according to claim 5, the illumination light is further scanned in the third direction so that the three-dimensional shape of the weld bead can be evaluated.

【0018】請求項6に記載の発明は、溶接ビード表面
に所定のビーム口径の照明光を照射可能な照明光源12
と、照明光を溶接ビード表面の所定方向に沿って走査さ
せる第1の走査手段11と、曲線状または曲面状に配置
された複数の光電変換素子から成り、溶接ビード表面か
ら所定の角度範囲の方向に反射された照明光を受光して
電気信号に変換する撮像装置13と、撮像装置13から
出力された電気信号に基づいて溶接ビード表面の二次元
形状を評価する表面評価手段8と、を備えるものであ
る。請求項6に記載の発明では、例えば図9に示すよう
に、照明光を溶接ビード表面の所定方向に沿って走査さ
せ、溶接ビード表面で反射された照明光を、曲線状また
は曲面状に配置された複数の光電変換素子13で受光し
て溶接ビードの二次元形状を評価する。
According to a sixth aspect of the invention, the illumination light source 12 is capable of irradiating the welding bead surface with illumination light having a predetermined beam diameter.
And a first scanning means 11 for scanning illumination light along a predetermined direction of the welding bead surface, and a plurality of photoelectric conversion elements arranged in a curved shape or a curved surface, in a predetermined angle range from the welding bead surface. An imaging device 13 that receives the illumination light reflected in the direction and converts it into an electric signal, and a surface evaluation means 8 that evaluates the two-dimensional shape of the welding bead surface based on the electric signal output from the imaging device 13. Be prepared. In the invention according to claim 6, for example, as shown in FIG. 9, the illumination light is scanned along a predetermined direction of the surface of the welding bead, and the illumination light reflected by the surface of the welding bead is arranged in a curved or curved shape. The two-dimensional shape of the welding bead is evaluated by receiving light by the plurality of photoelectric conversion elements 13 thus formed.

【0019】請求項7に記載の発明は、溶接ビード表面
に所定のビーム口径の照明光を照射可能な照明光源12
と、照明光を所定方向に走査させて溶接ビード表面での
照明光の照射位置を変更する第1の走査手段11と、所
定方向に沿って直線状または平面状に配置された複数の
光電変換素子から成り、溶接ビード表面から所定の角度
範囲の方向に反射された照明光を受光して電気信号に変
換する撮像装置13と、撮像装置13から出力された電
気信号に基づいて溶接ビード表面の形状を評価する表面
評価手段8と、を備えるものである。請求項7に記載の
発明では、例えば図12に示すように、照明光を所定方
向に走査させ、溶接ビード表面で反射された照明光を、
所定方向に沿って直線状または平面状に配置された複数
の光電変換素子で受光して溶接ビードの二次元形状を評
価する。
According to a seventh aspect of the present invention, an illumination light source 12 capable of irradiating the surface of the welding bead with illumination light having a predetermined beam diameter.
A first scanning means 11 for changing the irradiation position of the illumination light on the surface of the welding bead by scanning the illumination light in a prescribed direction; and a plurality of photoelectric conversions arranged linearly or in a plane along the prescribed direction. An image pickup device 13 formed of an element, which receives illumination light reflected from the welding bead surface in a direction of a predetermined angle range and converts it into an electric signal; and a welding bead surface of the welding bead surface based on the electric signal output from the image pickup device 13. And a surface evaluation means 8 for evaluating the shape. In the invention according to claim 7, for example, as shown in FIG. 12, the illumination light is scanned in a predetermined direction, and the illumination light reflected by the welding bead surface is
The two-dimensional shape of the welding bead is evaluated by receiving light with a plurality of photoelectric conversion elements arranged linearly or in a plane along a predetermined direction.

【0020】請求項8に記載の発明は、照明光を溶接ビ
ード表面の所定方向とは異なる方向に沿って走査させる
第2の走査手段6aを備え、第1および第2の走査手段
11,6aの走査により照明光を走査させたときに撮像
装置13により受光される照明光に基づいて、溶接ビー
ド表面の三次元方向の形状を評価するように表面評価手
段8を構成するものである。請求項8に記載の発明で
は、請求項6または7の発明において、溶接ビードの三
次元形状を評価できるように、さらに所定方向とは異な
る方向に沿って照明光を走査させる。請求項9に記載の
発明は、溶接ビードの溶接止端部における応力集中係数
および切欠係数を演算するように表面評価手段8を構成
するものである。請求項9,11に記載の発明では、溶
接止端部における応力集中係数および切欠係数を演算す
るため、これら演算結果より溶接止端部における局部応
力を演算でき、局部応力を演算することで、溶接ビード
の良否を判断可能となる。請求項10に記載の発明は、
演算された応力集中係数および切欠係数を表示可能な表
示装置8を備えるものである。請求項10に記載の発明
では、演算した応力集中係数および切欠係数を表示装置
8に表示し、演算結果をさまざな目的で利用可能とす
る。請求項11に記載の発明は、演算された応力集中係
数および切欠係数に基づいて溶接ビードの良否を評価す
るように表面評価手段8を構成するものである。請求項
12に記載の発明は、主に小型化のために照明光源12
を半導体レーザで構成したものである。
The invention according to claim 8 is provided with a second scanning means 6a for scanning the illumination light along a direction different from the predetermined direction of the surface of the welding bead, and the first and second scanning means 11, 6a. The surface evaluation means 8 is configured to evaluate the shape of the surface of the welding bead in the three-dimensional direction based on the illumination light received by the image pickup device 13 when the illumination light is scanned by the scanning. According to the invention of claim 8, in the invention of claim 6 or 7, the illumination light is further scanned along a direction different from the predetermined direction so that the three-dimensional shape of the weld bead can be evaluated. According to a ninth aspect of the present invention, the surface evaluation means 8 is configured to calculate the stress concentration coefficient and the notch coefficient at the weld toe of the weld bead. In the invention described in claims 9 and 11, since the stress concentration coefficient and the notch coefficient at the weld toe portion are calculated, the local stress at the weld toe portion can be calculated from these calculation results, and by calculating the local stress, It is possible to judge the quality of the weld bead. The invention described in claim 10 is
A display device 8 capable of displaying the calculated stress concentration coefficient and notch coefficient is provided. According to the tenth aspect of the present invention, the calculated stress concentration coefficient and notch coefficient are displayed on the display device 8, and the calculation results can be used for various purposes. According to the eleventh aspect of the present invention, the surface evaluation means 8 is configured to evaluate the quality of the weld bead based on the calculated stress concentration coefficient and notch coefficient. The invention described in claim 12 is mainly for the purpose of downsizing, and the illumination light source 12
Is composed of a semiconductor laser.

【0021】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために本発明の一実施の形態の図を用いたが、これによ
り本発明が一実施の形態に限定されるものではない。
Incidentally, in the section of means for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of one embodiment of the present invention are used to make the present invention easy to understand. Is not limited to the one embodiment.

【0022】[0022]

【発明の実施の形態】以下、図1〜13を用いて本発明
の第1および第2の実施の形態について説明する。 −第1の実施の形態− 図1は本発明による表面形状評価装置の第1の実施の形
態の概略構成を示す図であり、主板1と副板2との間の
すみ肉部に形成されたすみ肉溶接ビード3の表面形状を
測定および評価する例を示している。図1において、符
号4はすみ肉溶接ビード3の二次元方向(図示のXY方
向)の表面形状を測定する検出器である。
DETAILED DESCRIPTION OF THE INVENTION First and second embodiments of the present invention will be described below with reference to FIGS. First Embodiment FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a surface shape evaluation device according to the present invention, which is formed in a fillet portion between a main plate 1 and a sub plate 2. The example which measures and evaluates the surface shape of the fillet weld bead 3 is shown. In FIG. 1, reference numeral 4 is a detector for measuring the surface shape of the fillet weld bead 3 in the two-dimensional directions (the XY directions in the drawing).

【0023】図2は検出器4内部の具体的構成を示す図
である。図示のように、光源ガイド部11aに沿ってX
軸方向に移動可能な光源12aと、光源ガイド部11b
に沿ってY軸方向に移動可能な光源12bと、光源ガイ
ド部12a,12bの内側領域内のX軸方向に複数の光
電変換素子を配置したラインセンサ13aと、ラインセ
ンサ13aに一端が接続されY軸方向に複数の光電変換
素子を配置したラインセンサ13bとで構成される。こ
のように、XY二次元方向に光源12a,12bを移動
可能とし、かつ二次元方向にラインセンサ13a,13
bを配置する理由は、測定対象である溶接ビード3の表
面が平面とは限らないことを考慮に入れ、表面形状を精
度よく測定するためである。
FIG. 2 is a diagram showing a specific internal structure of the detector 4. As shown, X along the light source guide 11a
A light source 12a that is movable in the axial direction and a light source guide portion 11b
A light source 12b movable in the Y-axis direction along the line sensor 13a, a line sensor 13a having a plurality of photoelectric conversion elements arranged in the X-axis direction in the inner region of the light source guide portions 12a and 12b, and one end of which is connected to the line sensor 13a. The line sensor 13b includes a plurality of photoelectric conversion elements arranged in the Y-axis direction. In this way, the light sources 12a and 12b can be moved in the XY two-dimensional directions, and the line sensors 13a and 13b can be moved in the two-dimensional directions.
The reason for arranging b is to accurately measure the surface shape in consideration of the fact that the surface of the welding bead 3 to be measured is not necessarily a flat surface.

【0024】図1に戻って、検出器4の後端部には、検
出器4を図示のZ軸方向に移動させる駆動部材5が一体
に取り付けられている。駆動部材5は、検出器4が不用
意に移動するのを防止するため、マグネットスタンド6
のZ軸方向に延びる係合部材6aに係合されている。
Returning to FIG. 1, a drive member 5 for moving the detector 4 in the illustrated Z-axis direction is integrally attached to the rear end of the detector 4. The drive member 5 is provided with a magnet stand 6 to prevent the detector 4 from moving carelessly.
Is engaged with an engaging member 6a extending in the Z-axis direction.

【0025】検出器4内部の光源12a,12bおよび
駆動部材5を制御することで、溶接ビード3の三次元方
向の表面形状が測定され、その測定結果は信号線Lおよ
び測定演算制御装置7を介して解析装置8に送られる。
解析装置8は、溶接ビード形状に関する各種データ、例
えばフランク角、ビード高さ、脚長および溶接止端半
径、応力集中係数Ktおよび切欠係数Kf等を算出して
溶接ビード形状の良否を判定し、その判定結果をプリン
タ9により出力する。また、解析装置8にはディスプレ
イが設けられており、解析結果が表示される。
By controlling the light sources 12a and 12b and the driving member 5 inside the detector 4, the surface shape of the welding bead 3 in the three-dimensional direction is measured, and the measurement result is measured by the signal line L and the measurement calculation control device 7. It is sent to the analysis device 8 via the.
The analysis device 8 calculates various data relating to the weld bead shape, for example, flank angle, bead height, leg length and weld toe radius, stress concentration coefficient Kt, notch coefficient Kf, and the like, and determines the quality of the weld bead shape. The determination result is output by the printer 9. Further, the analysis device 8 is provided with a display, and the analysis result is displayed.

【0026】図3は検出器4の光源12a,12bから
放射される照明光の光路を説明する図であり、図3では
溶接ビード3のフランク角をθで、溶接ビード表面の法
線方向を点線で示している。図3において、法線方向に
対して角度θ傾いた方向(図示の一点鎖線の方向)から
入射された照明光が、入射方向に対して角度2θ傾いた
方向(図示の一点鎖線の方向)に反射される場合、光源
12aのX軸方向の移動量Δxと、反射光のY軸方向の
移動量Δyとの間には(4)式の関係が成り立つ。
FIG. 3 is a view for explaining the optical paths of the illumination light emitted from the light sources 12a and 12b of the detector 4. In FIG. 3, the flank angle of the welding bead 3 is θ and the normal direction of the welding bead surface is It is indicated by a dotted line. In FIG. 3, illumination light incident from a direction inclined by an angle θ with respect to the normal direction (direction indicated by a chain line in the figure) is inclined in a direction inclined by an angle 2θ with respect to an incident direction (direction indicated by a chain line in the figure). When reflected, the relationship of the equation (4) is established between the movement amount Δx of the light source 12a in the X-axis direction and the movement amount Δy of the reflected light in the Y-axis direction.

【数3】Δy/Δx=tanθ …(4) このため、フランク角θは(5)式で表される。## EQU3 ## Δy / Δx = tan θ (4) Therefore, the flank angle θ is expressed by the equation (5).

【数4】θ=tan-1(Δy/Δx) …(5)[Equation 4] θ = tan −1 (Δy / Δx) (5)

【0027】また、溶接ビード表面上の照明光の照射位
置(α,β)は、図3から(6)式のようになる。
Further, the irradiation position (α, β) of the illumination light on the surface of the weld bead is as shown in the equation (6) from FIG.

【数5】α=x、 β=y−l2 …(6) したがって、ラインセンサ上の反射光の受光位置のY軸
座標yと、溶接ビード上の照射位置のY軸座標βとの偏
差l2は、(7)式のようになる。
[Mathematical formula-see original document] α = x, β = y−l 2 (6) Therefore, the deviation between the Y-axis coordinate y of the light receiving position of the reflected light on the line sensor and the Y-axis coordinate β of the irradiation position on the welding bead. l 2 is expressed by equation (7).

【数6】 l2=(L1−x)・tan(90−2θ) …(7)[Equation 6] l 2 = (L 1 −x) · tan (90−2θ) (7)

【0028】また、図3の光源12aのX軸座標xとラ
インセンサ13b上の反射光の受光位置のY軸座標yと
は図4に示す関係があり、この図はプリンタ9に出力さ
れる。図4により溶接ビード3の表面形状を検出でき
る。
The X-axis coordinate x of the light source 12a in FIG. 3 and the Y-axis coordinate y of the light receiving position of the reflected light on the line sensor 13b have the relationship shown in FIG. 4, and this diagram is output to the printer 9. . According to FIG. 4, the surface shape of the welding bead 3 can be detected.

【0029】図5は溶接ビード3のフランク角θが45
度未満の場合の照明光の光路を示す図である。図5
(a)では、光源12aのX軸方向の座標位置をx0
ラインセンサ13a上の反射光のX軸方向の受光位置を
1、照明光の開き角を2θとしている。光源12aの
位置と溶接ビード表面の照明光の照射位置とのY軸方向
の偏差l3は(8)式のようになる。
In FIG. 5, the flank angle θ of the weld bead 3 is 45.
It is a figure which shows the optical path of the illumination light in the case of less than degrees. FIG.
In (a), the coordinate position of the light source 12a in the X-axis direction is x 0 ,
The light receiving position of the reflected light on the line sensor 13a in the X-axis direction is x 1 , and the opening angle of the illumination light is 2θ. The deviation l 3 in the Y-axis direction between the position of the light source 12a and the irradiation position of the illumination light on the surface of the welding bead is given by the formula (8).

【数7】l3=(x1−x0)/tan2θ …(8)## EQU7 ## l 3 = (x 1 −x 0 ) / tan 2θ (8)

【0030】また、光源12aをX軸方向に所定量a移
動させたときのラインセンサ13a上の反射光の移動距
離bは、図5(b)に示すように(9)式のようにな
る。
Further, the moving distance b of the reflected light on the line sensor 13a when the light source 12a is moved by a predetermined amount a in the X-axis direction is expressed by the equation (9) as shown in FIG. 5B. .

【数8】 b=a+l1=a+a・tanθ・tan2θ …(9) (9)式より、光源12aの位置aおよびラインセンサ
13aの受光位置bを検出することで、フランク角θが
求まることがわかる。
From Equation 8] b = a + l 1 = a + a · tanθ · tan2θ ... (9) (9) formula, by detecting the light receiving position b of the position a and the line sensor 13a of the light source 12a, that flank angle θ is obtained Recognize.

【0031】一方、図6は溶接ビード3のフランク角が
45度以上の場合の照明光の光路を示す図である。この
場合、光源12aからの照明光の開き角はπ−2θで表
され、光源12bからの照明光の開き角は2θで表され
る。また、光源12aからの照明光の反射光をラインセ
ンサ13bによって受光するための開き角の上限角度γ
は、図6(b)に示すように、溶接ビード3で反射され
た照明光が溶接ビード表面(図示の矢印方向)に沿って
進む場合に求められ、(10)式の関係が成り立つ。な
お、座標(x0,y0)は照明光の照射位置を示し、L0
はビード幅を示す。
On the other hand, FIG. 6 is a view showing the optical path of the illumination light when the flank angle of the welding bead 3 is 45 degrees or more. In this case, the opening angle of the illumination light from the light source 12a is represented by π−2θ, and the opening angle of the illumination light from the light source 12b is represented by 2θ. Further, the upper limit angle γ of the opening angle for receiving the reflected light of the illumination light from the light source 12a by the line sensor 13b.
6B is obtained when the illumination light reflected by the welding bead 3 travels along the surface of the welding bead (in the direction of the arrow in the figure), and the relationship of the equation (10) is established. The coordinates (x 0 , y 0 ) indicate the irradiation position of the illumination light, and L 0
Indicates the bead width.

【数9】 y0・tan(π−2γ)=L0−x0 …(10) (10)式を変形すると、開き角の上限角度γは(1
1)式により求められる。
Y 0 · tan (π−2γ) = L 0 −x 0 (10) When the equation (10) is transformed, the upper limit angle γ of the opening angle becomes (1
It is calculated by the equation (1).

【数10】 (Equation 10)

【0032】以上に説明した各式の演算を行うことによ
り、フランク角やビード高さなど、溶接ビード3の寿命
評価を行うために必要となる各種パラメータを求めるこ
とができ、溶接ビードの形状を正確に把握可能となる。
By performing the calculation of each equation described above, various parameters necessary for evaluating the life of the welding bead 3, such as the flank angle and the bead height, can be obtained, and the shape of the welding bead can be determined. It becomes possible to accurately grasp.

【0033】図7は第1の実施の形態における溶接ビー
ド3の表面形状の評価試験処理を示すフローチャートで
あり、図7に基づいて第1の実施の形態の動作を説明す
る。図7のステップS1では、Z軸座標がゼロの位置に
検出器4を位置合わせする。ステップS2では、図2に
示す光源12aをX軸方向に走査し、溶接ビード3から
の反射光をラインセンサ13a,13bにより受光して
光電変換を行い、その結果を信号線Lおよび測定演算制
御装置7を介して解析装置8に送る。ステップS3で
は、図2に示す光源12bをY軸方向に走査し、ステッ
プS2と同様に溶接ビード3からの反射光を電気信号に
変換して解析装置8に送る。
FIG. 7 is a flow chart showing the evaluation test process of the surface shape of the welding bead 3 in the first embodiment, and the operation of the first embodiment will be described with reference to FIG. In step S1 of FIG. 7, the detector 4 is aligned with the position where the Z-axis coordinate is zero. In step S2, the light source 12a shown in FIG. 2 is scanned in the X-axis direction, the reflected light from the welding bead 3 is received by the line sensors 13a and 13b, and photoelectric conversion is performed. The result is signal line L and measurement calculation control. It is sent to the analysis device 8 via the device 7. In step S3, the light source 12b shown in FIG. 2 is scanned in the Y-axis direction, the reflected light from the welding bead 3 is converted into an electric signal and sent to the analysis device 8 as in step S2.

【0034】ステップS4では、ステップS2,S3の
処理結果に基づいて解析装置8により溶接ビード3の表
面形状を測定する。具体的には、(6)式に基づいて溶
接ビード3上の照明光の照射位置を求め、(5)式に基
づいて溶接ビード3のフランク角θを求める。また、上
述した(7)〜(10)式の演算を行って、溶接ビード
3のビード高さ、脚長および溶接止端半径等を求め、そ
の結果をプリンタ9または解析装置8のディスプレイに
出力する。
In step S4, the analyzer 8 measures the surface shape of the welding bead 3 based on the processing results of steps S2 and S3. Specifically, the irradiation position of the illumination light on the welding bead 3 is obtained based on the equation (6), and the flank angle θ of the welding bead 3 is obtained based on the equation (5). Further, the above equations (7) to (10) are calculated to obtain the bead height, leg length, weld toe radius, etc. of the weld bead 3, and the result is output to the printer 9 or the display of the analyzer 8. .

【0035】ステップS5では、検出器4をZ軸方向に
所定量移動させてステップS2に戻り、再度X軸方向お
よびY軸方向に光源を走査して溶接ビード3からの反射
光を検出する。Z軸の終端まで検出器4を走査した場合
にはステップS6に進み、溶接ビード3の総合評価を行
う。
In step S5, the detector 4 is moved in the Z-axis direction by a predetermined amount, the process returns to step S2, and the light source is again scanned in the X-axis direction and the Y-axis direction to detect the reflected light from the welding bead 3. When the detector 4 is scanned up to the end of the Z axis, the process proceeds to step S6, and the welding bead 3 is comprehensively evaluated.

【0036】図8はステップS6の処理の詳細を説明す
る図であり、図8(a)は溶接ビード3が良品と判断さ
れる場合、図8(b)は不良品と判断される場合を示し
ている。図示のように、光源12aから照射された照明
光が溶接ビード表面で反射されてラインセンサ13aま
たは13bにより受光された場合にはディスプレイに
「OK」の文字等を表示する。例えば、図8(a)の場
合、位置Aまたは位置Bに光源12aが位置する場合に
は双方とも「OK」の文字等が表示される。ところが、
溶接ビード3がオーバーハングや溶け込み不良等の溶接
不良部分を有する場合には、図8(b)のように溶接不
良部分からは照明光が反射されないことから、解析装置
8は不良箇所があると判断してエラー表示を行う。
FIG. 8 is a diagram for explaining the details of the processing in step S6. FIG. 8 (a) shows the case where the welding bead 3 is judged to be a good product, and FIG. 8 (b) shows the case to be a defective product. Shows. As shown in the figure, when the illumination light emitted from the light source 12a is reflected by the surface of the welding bead and is received by the line sensor 13a or 13b, the letters "OK" or the like are displayed on the display. For example, in the case of FIG. 8A, when the light source 12a is located at the position A or the position B, the characters "OK" or the like are displayed on both. However,
When the welding bead 3 has a defective welding portion such as an overhang or a defective penetration, the analyzing device 8 has a defective portion because the illumination light is not reflected from the defective welding portion as shown in FIG. 8B. Judge and display an error.

【0037】−第2の実施の形態− 第2の実施の形態は、検出器の内部構造が第1の実施の
形態と異なるものであり、検出器を除いた構成は第1の
実施の形態と共通するため、以下では検出器の内部構造
を中心に説明する。図9は第2の実施の形態の検出器4
aの内部構造を示す図であり、図1と共通する構成部分
には同一符号を付している。図示のように、第2の実施
の形態の検出器4aは、略4分の1円周の長さの光源ガ
イド部11に沿って1個の光源12を移動可能とし、光
源ガイド部11の内側に、光源ガイド部11と同心の円
周に沿って複数の光電変換素子から成るラインセンサ1
3を配置している。
-Second Embodiment- In the second embodiment, the internal structure of the detector is different from that of the first embodiment, and the configuration excluding the detector is the first embodiment. Since it is common to the above, the following description will be focused on the internal structure of the detector. FIG. 9 shows the detector 4 of the second embodiment.
It is a figure which shows the internal structure of a, and the same code | symbol is attached | subjected to the structural part common to FIG. As shown in the figure, the detector 4a according to the second embodiment allows one light source 12 to move along the light source guide portion 11 having a length of about a quarter circle, and Inside, a line sensor 1 including a plurality of photoelectric conversion elements along a circumference concentric with the light source guide unit 11.
3 are arranged.

【0038】図10は図9に示す光源12から放射され
る照明光の光路を説明する図である。図10では、光源
12からの照明光の入射角度をδ、溶接ビード3上の照
明光の照射位置をP、照明光の反射角度(開き角)を2
η、ラインセンサ上での反射光の受光位置をQ、線分P
Qと光源ガイド部との交点をR、∠POY=α、∠PQ
Oをβ1、∠PR0をβ2、∠POQ=γとしている。
FIG. 10 is a diagram for explaining the optical path of the illumination light emitted from the light source 12 shown in FIG. In FIG. 10, the incident angle of the illumination light from the light source 12 is δ, the irradiation position of the illumination light on the welding bead 3 is P, and the reflection angle (opening angle) of the illumination light is 2
η, the receiving position of the reflected light on the line sensor is Q, and the line segment P
The intersection of Q and the light source guide is R, ∠POY = α, ∠PQ
O is β 1 , ∠PR 0 is β 2 , and ∠POQ = γ.

【0039】図10において、入射角δは(12)式で
表される。
In FIG. 10, the incident angle δ is expressed by the equation (12).

【数11】 δ=π−(π/2−α)−θ=π/2+α−θ …(12) 反射角2ηは、(12)式を用いると(13)式のよう
になる。
Δ = π− (π / 2−α) −θ = π / 2 + α−θ (12) The reflection angle 2η is expressed by the formula (13) using the formula (12).

【数12】 2η=π−2δ=2(θ−α) …(13) 角度β1は(12)式を用いると(14)式のようにな
る。
[Equation 12] 2η = π−2δ = 2 (θ−α) (13) The angle β 1 is given by the equation (14) when the equation (12) is used.

【数13】 β1=π−(γ+2δ)=2(θ−α)−γ …(14)Β 1 = π− (γ + 2δ) = 2 (θ−α) −γ (14)

【0040】また、図10の三角形PQOおよび三角形
PROに正弦定理を適用すると、(15),(16)式
の関係が成り立つ。
When the sine theorem is applied to the triangle PQO and the triangle PRO of FIG. 10, the relationships of equations (15) and (16) are established.

【数14】 sin2σ/L1=sinβ1/γ0 …(15) sin2σ/L2=sinβ2/γ0 …(16) (15),(16)式より、(17)式の関係が得られ
る。
Sin2σ / L 1 = sin β 1 / γ 0 (15) sin2σ / L 2 = sin β 2 / γ 0 (16) From the expressions (15) and (16), the relationship of the expression (17) is obtained. To be

【数15】 L1sinβ1=L2sinβ2 …(17)(15) L 1 sin β 1 = L 2 sin β 2 (17)

【0041】図10の∠QORをΔγとすると、角度β
1とβ2との間には、β2≒β1−Δγの関係が成り立つた
め、(17)式は(18)式のように変形される。
When ∠QOR in FIG. 10 is Δγ, the angle β
Since the relation of β 2 ≈β 1 −Δγ holds between 1 and β 2 , the formula (17) is transformed into the formula (18).

【数16】 L1・sinβ1=L2・sin(β1−Δγ) …(18) (18)式の右辺を変形すると、(19)式のようにな
る。
L 1 · sin β 1 = L 2 · sin (β 1 −Δγ) (18) When the right side of the equation (18) is modified, the equation (19) is obtained.

【数17】 L1・sinβ1=L2(sinβ1・cosΔγ−COSβ1・sinΔγ) =L2(sinβ1−Δγ・cosβ1) …(19) (19)式を変形すると(20)式のようになり、角度
β1は(21)式で表される。
Equation 17] L 1 · sinβ 1 = L 2 (sinβ 1 · cosΔγ-COSβ 1 · sinΔγ) = L 2 (sinβ 1 -Δγ · cosβ 1) ... (19) (19) By transforming equation (20) And the angle β 1 is expressed by equation (21).

【数18】 tanβ1=L2・Δγ/(L2−L1) …(20) β1=tan-1Δγ・L2/(L2−L1) …(21) (21)式のΔγは光源12の走査量から求めることが
できるため、(21)式よりβ1を求めて(14)式に
代入することで、フランク角θを求めることができる。
Tan β 1 = L 2 · Δγ / (L 2 −L 1 ) ... (20) β 1 = tan −1 Δγ · L 2 / (L 2 −L 1 ) ... (21) Since Δγ can be obtained from the scanning amount of the light source 12, the flank angle θ can be obtained by obtaining β 1 from the equation (21) and substituting it in the equation (14).

【0042】図11は第2の実施の形態における溶接ビ
ード3の表面形状の評価試験処理を示すフローチャート
であり、図11に基づいて第2の実施の形態の動作を説
明する。図11のステップS11では、Z軸座標がゼロ
の位置に検出器4aを位置合わせする。ステップS12
では、光源12を光源ガイド部11に沿って走査させ
る。すなわち、図10の角度φが0度から90度の間で
円周方向(π方向)に光源12を走査し、各走査位置で
照明光を溶接ビード3に向けて放射する。ステップS1
3では、溶接ビード3からの反射光をラインセンサ13
により受光し、ラインセンサ13により光電変換した電
気信号を解析装置8に送る。解析装置8では、上記の各
式に基づく演算を行って溶接ビード3の表面形状を解析
し、解析結果をプリンタ9に送って印字する。π方向へ
の走査が終了するとステップS14に進み、Z軸方向に
検出器を所定量移動させ、以後検出器がZ軸方向の終端
位置に達するまでステップS12〜S14の処理を繰り
返す。検出器がZ軸方向の終端位置に達するとステップ
S15に進み、溶接ビード3の総合評価を行って処理を
終了する。
FIG. 11 is a flow chart showing the evaluation test process of the surface shape of the welding bead 3 in the second embodiment, and the operation of the second embodiment will be described with reference to FIG. In step S11 of FIG. 11, the detector 4a is aligned with the position where the Z-axis coordinate is zero. Step S12
Then, the light source 12 is caused to scan along the light source guide portion 11. That is, the light source 12 is scanned in the circumferential direction (π direction) when the angle φ in FIG. 10 is between 0 ° and 90 °, and the illumination light is emitted toward the welding bead 3 at each scanning position. Step S1
3, the reflected light from the welding bead 3 is detected by the line sensor 13
The light signal is received by and the electric signal photoelectrically converted by the line sensor 13 is sent to the analyzer 8. In the analysis device 8, the surface shape of the welding bead 3 is analyzed by performing the calculation based on the above equations, and the analysis result is sent to the printer 9 for printing. When the scanning in the π direction is completed, the process proceeds to step S14, the detector is moved in the Z-axis direction by a predetermined amount, and then the processes of steps S12 to S14 are repeated until the detector reaches the end position in the Z-axis direction. When the detector reaches the end position in the Z-axis direction, the process proceeds to step S15, the welding bead 3 is comprehensively evaluated, and the process ends.

【0043】なお、検出器4aの内部構造は上記第1お
よび第2の実施の形態に限定されるものではなく、種々
の変更が可能である。例えば、図12は主にすみ肉溶接
ビード3の測定評価を目的とする検出器4bの内部構造
を示す図である。図12の検出器4bは、主板1と副板
2とに架け渡される直線状の光源ガイド部11と、光源
ガイド部11に沿って移動可能な光源12と、光源ガイ
ド部11の内側に配置される直線状のラインセンサ13
とで構成される。
The internal structure of the detector 4a is not limited to the first and second embodiments described above, but various modifications can be made. For example, FIG. 12 is a diagram showing the internal structure of the detector 4b mainly for the purpose of measuring and evaluating the fillet weld bead 3. The detector 4b of FIG. 12 is disposed inside the light source guide unit 11, a linear light source guide unit 11 that is bridged between the main plate 1 and the sub plate 2, a light source 12 that is movable along the light source guide unit 11. Linear line sensor 13
It is composed of

【0044】図12の検出器4bでは、光源12を光源
ガイド部11に沿って移動させながら照明光を溶接ビー
ド3に向けて放射し、溶接ビード3で反射された照明光
をラインセンサ13により受光する。図12の検出器4
bは図2よりも構造が単純であり、また光源を2方向に
走査制御する必要もないことから、第1の実施の形態よ
りも高速度に溶接ビード3の表面形状を評価できる。
In the detector 4b of FIG. 12, while moving the light source 12 along the light source guide portion 11, the illumination light is emitted toward the welding bead 3 and the illumination light reflected by the welding bead 3 is emitted by the line sensor 13. Receive light. Detector 4 of FIG.
Since b has a simpler structure than that of FIG. 2 and it is not necessary to scan and control the light source in two directions, the surface shape of the welding bead 3 can be evaluated at a higher speed than in the first embodiment.

【0045】一方、図13は主に突き合わせ溶接ビード
3の測定を目的とした検出器4cの内部構造を示す図で
ある。図13の検出器4cは、第1の実施の形態の検出
器4と同様に2方向に延びる光源ガイド部11a,11
bを有し、各光源ガイド部11a,11bに沿ってそれ
ぞれ光源12a,12bが移動可能とされている。ま
た、光源ガイド部11a,11bの内側には、各光源ガ
イド部11a,11bに平行にラインセンサ13a,1
3bが配置されている。図13の検出器4cを用いた測
定方法は基本的には第1の実施例と同じであり、光源を
それぞれ光源ガイド部に沿って移動させながら照明光を
溶接ビード3に向けて放射し、その反射光をラインセン
サにより受光する。
On the other hand, FIG. 13 is a view showing the internal structure of the detector 4c mainly for the purpose of measuring the butt weld bead 3. The detector 4c shown in FIG. 13 is similar to the detector 4 of the first embodiment in that the light source guide portions 11a and 11 extend in two directions.
b, the light sources 12a and 12b are movable along the respective light source guide portions 11a and 11b. In addition, inside the light source guide parts 11a and 11b, the line sensors 13a and 1b are arranged parallel to the light source guide parts 11a and 11b.
3b is arranged. The measuring method using the detector 4c of FIG. 13 is basically the same as that of the first embodiment, and the illumination light is radiated toward the welding bead 3 while moving the light sources along the light source guide portions, The reflected light is received by the line sensor.

【0046】第1および第2の実施の形態では、すみ肉
溶接ビード3の評価を行う例を説明したが、検出器4ま
たは4aの向きを変えることで図13のような突き合わ
せ溶接ビードの評価を行うこともできる。また、第1の
実施の形態では、互いに直交する方向に2種類のライン
センサ13a,13bを配置したが、異なる2方向(互
いに直交させる必要はない)に2種類のラインセンサを
配置し、かつ異なる2方向に光源を走査させれば第1の
実施の形態と同様の効果が得られる。
While the fillet weld bead 3 is evaluated in the first and second embodiments, the butt weld bead as shown in FIG. 13 is evaluated by changing the direction of the detector 4 or 4a. You can also do Further, in the first embodiment, the two types of line sensors 13a and 13b are arranged in the directions orthogonal to each other, but the two types of line sensors are arranged in two different directions (need not be orthogonal to each other), and If the light source is scanned in two different directions, the same effect as in the first embodiment can be obtained.

【0047】第2の実施の形態では、光源ガイド部の全
長を円周の略4分の1の長さにしているが、4分の1円
周に限定されるものではなく、例えば半周分の長さにし
てもよい。半周分の長さにすれば、図13のような突き
合わせ溶接ビード3の評価を行いやすくなる。
In the second embodiment, the total length of the light source guide portion is set to be approximately one quarter of the circumference, but the length is not limited to one quarter and, for example, half the circumference. May be the length of. If the length is half the circumference, the butt weld bead 3 as shown in FIG. 13 can be easily evaluated.

【0048】第1および第2の実施の形態では、溶接ビ
ード表面で反射された照明光をラインセンサで受光する
例を説明したが、二次元方向に光電変換素子が配列され
たCCD等の撮像装置を用いてもよい。また、光源12
を半導体レーザにすれば、装置全体を小型化できるた
め、都合がよい。また、図1の検出器4の内部構成は図
2,9,12,13に限定されるものではなく、溶接ビ
ード表面に沿って照明光を走査可能とし、かつ溶接ビー
ド表面で反射された照明光のうち、所定範囲の角度方向
に反射された照明光を受光可能な撮像装置を設けた検出
器であれば、本発明の効果を得ることができる。上記各
実施の形態では、光源を光源ガイド部に沿って移動させ
る例を説明したが、光源の位置を固定にする代りに、光
源と溶接ビード表面との間に、光源からの照明光の反射
角度を変更可能なミラーを設け、このミラーを回転させ
て照明光の反射角度を変えて照射位置を変更してもよ
い。また、第2の実施の形態では、光源ガイド部を円環
状に形成したが、楕円、凸曲線、凸曲面、凹曲線および
凹曲面状に形成してもよい。
In the first and second embodiments, an example in which the line sensor receives the illumination light reflected by the surface of the welding bead has been described, but an image of a CCD or the like in which photoelectric conversion elements are arranged in a two-dimensional direction is picked up. A device may be used. Also, the light source 12
If it is a semiconductor laser, the whole device can be downsized, which is convenient. The internal configuration of the detector 4 of FIG. 1 is not limited to that of FIGS. 2, 9, 12, and 13. The illumination light can be scanned along the welding bead surface, and the illumination reflected by the welding bead surface can be used. The effect of the present invention can be obtained as long as it is a detector provided with an imaging device capable of receiving the illumination light reflected in a predetermined range of the angle direction. In each of the above embodiments, an example in which the light source is moved along the light source guide part has been described, but instead of fixing the position of the light source, the reflection of the illumination light from the light source between the light source and the welding bead surface. An irradiation position may be changed by providing a mirror whose angle can be changed and rotating the mirror to change the reflection angle of the illumination light. Further, in the second embodiment, the light source guide portion is formed in an annular shape, but it may be formed in an elliptical shape, a convex curve, a convex curved surface, a concave curved surface, or a concave curved surface.

【0049】このように構成した一実施の形態にあって
は、光源12a,12bが照明光源に、光源ガイド部1
1a,11bが第1の走査手段に、ラインセンサ13
a,13bが受光手段に、解析装置88が表面評価手段
に、ラインセンサ13aが第1の撮像装置に、ラインセ
ンサ13bが第2の撮像装置に、それぞれ対応する。
In the embodiment configured as described above, the light sources 12a and 12b serve as illumination light sources, and the light source guide section 1 is used.
1a and 11b are the first scanning means, and the line sensor 13
a and 13b correspond to the light receiving means, the analysis device 88 corresponds to the surface evaluation means, the line sensor 13a corresponds to the first imaging device, and the line sensor 13b corresponds to the second imaging device.

【0050】[0050]

【発明の効果】以上詳細に説明したように、本発明によ
れば、照明光を溶接ビード表面の所定方向に沿って走査
させ、溶接ビード表面から所定の角度範囲の方向に反射
された照明光を受光して溶接ビード表面の二次元形状を
評価するため、溶接ビードを切断することなく、非接触
で溶接ビード表面の形状を測定できる。したがって、従
来のようにダミーの試験片を検査するのではなく、各種
製品の溶接ビード部分を直接検査できるため、検査精度
が向上する。また、溶接ビード表面に凹凸があったり、
溶接不良箇所があると、照明光の反射角度が変化するこ
とに着目し、照明光の反射方向を検出するようにしたた
め、溶接ビードの表面形状を精度よく測定できる。請求
項2に記載の発明によれば、溶接ビード表面の所定方向
とは異なる方向にも照明光を走査可能としたため、溶接
ビード表面の三次元方向の形状を測定および評価でき
る。請求項4,5に記載の発明によれば、異なる二方向
に光電変換素子を並べて配置するため、溶接ビード表面
で反射された照明光の反射方向を正確に検出できる。ま
た、光電変換素子の配置方向に略平行に照明光を走査さ
せるため、溶接ビードの表面形状を精度よく測定でき
る。請求項6に記載の発明によれば、曲線状または曲面
状に光電変換素子を並べて配置するため、溶接ビード表
面で反射された照明光を漏れなく受光できる。請求項7
に記載の発明によれば、所定方向に沿って直線状または
平面状に光電変換素子を並べて配置して溶接ビード表面
からの反射光を受光するため、一般に市販されているラ
インセンサやCCDをそのまま利用でき、コストを削減
できる。請求項9,11に記載の発明によれば、溶接ビ
ードの溶接止端部における応力集中係数と切欠係数を演
算するため、これら演算結果を用いて溶接ビードの寿命
評価を精度よく行うことができる。請求項10に記載の
発明によれば、応力集中係数と切欠係数を表示可能な表
示装置を設けるため、溶接ビードの特性を視覚的に把握
できる。請求項12に記載の発明によれば、照明光源を
半導体レーザで構成するため、装置全体を小型化でき
る。
As described above in detail, according to the present invention, the illumination light is scanned along the predetermined direction of the welding bead surface, and the illumination light is reflected from the welding bead surface in the direction of the predetermined angle range. Since the light is received to evaluate the two-dimensional shape of the surface of the weld bead, the shape of the surface of the weld bead can be measured in a non-contact manner without cutting the weld bead. Therefore, it is possible to directly inspect the weld bead portion of various products instead of inspecting a dummy test piece as in the conventional case, so that the inspection accuracy is improved. Also, there are irregularities on the welding bead surface,
Focusing on the fact that the reflection angle of the illumination light changes when there is a defective welding point and the reflection direction of the illumination light is detected, the surface shape of the welding bead can be accurately measured. According to the invention described in claim 2, since the illumination light can be scanned in a direction different from the predetermined direction of the surface of the weld bead, the shape of the surface of the weld bead in the three-dimensional direction can be measured and evaluated. According to the invention described in claims 4 and 5, since the photoelectric conversion elements are arranged side by side in two different directions, the reflection direction of the illumination light reflected by the surface of the welding bead can be accurately detected. Further, since the illumination light is scanned substantially parallel to the arrangement direction of the photoelectric conversion elements, the surface shape of the welding bead can be measured accurately. According to the invention described in claim 6, since the photoelectric conversion elements are arranged side by side in a curved shape or a curved surface shape, the illumination light reflected by the surface of the welding bead can be received without leakage. Claim 7
According to the invention described in (1), since the photoelectric conversion elements are arranged side by side in a straight line or in a plane along a predetermined direction and the reflected light from the surface of the welding bead is received, the line sensor or CCD which is generally commercially available is directly used. It can be used and cost can be reduced. According to the invention described in claims 9 and 11, since the stress concentration factor and the notch factor at the weld toe of the weld bead are calculated, the life of the weld bead can be accurately evaluated using these calculation results. . According to the invention described in claim 10, since the display device capable of displaying the stress concentration coefficient and the notch coefficient is provided, the characteristics of the welding bead can be visually grasped. According to the twelfth aspect of the invention, since the illumination light source is composed of the semiconductor laser, the size of the entire apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による表面形状評価装置の第1の実施の
形態の概略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a surface shape evaluation apparatus according to the present invention.

【図2】検出器内部の具体的構成を示す図。FIG. 2 is a diagram showing a specific configuration inside a detector.

【図3】検出器の光源から放射される照明光の光路を説
明する図。
FIG. 3 is a diagram illustrating an optical path of illumination light emitted from a light source of a detector.

【図4】光源12aのX軸座標xとラインセンサ13b
上の反射光の受光位置yとの関係を示す図。
FIG. 4 is an X-axis coordinate x of the light source 12a and a line sensor 13b.
The figure which shows the relationship with the light receiving position y of the upper reflected light.

【図5】溶接ビードのフランク角θが45度未満の場合
の照明光の光路を示す図。
FIG. 5 is a diagram showing an optical path of illumination light when a flank angle θ of a welding bead is less than 45 degrees.

【図6】溶接ビードのフランク角θが45度以上の場合
の照明光の光路を示す図。
FIG. 6 is a diagram showing an optical path of illumination light when a flank angle θ of a welding bead is 45 degrees or more.

【図7】第1の実施の形態における溶接ビードの表面形
状の評価試験処理を示すフローチャート。
FIG. 7 is a flowchart showing an evaluation test process of the surface shape of the welding bead according to the first embodiment.

【図8】ステップS6の処理の詳細を説明する図。FIG. 8 is a diagram for explaining the details of the processing in step S6.

【図9】第2の実施の形態の検出器の内部構造を示す
図。
FIG. 9 is a diagram showing an internal structure of a detector according to a second embodiment.

【図10】図9に示す光源から放射される照明光の光路
を説明する図。
FIG. 10 is a diagram illustrating an optical path of illumination light emitted from the light source shown in FIG.

【図11】第2の実施の形態における溶接ビードの表面
形状の評価試験処理を示すフローチャート。
FIG. 11 is a flowchart showing an evaluation test process of the surface shape of the welding bead according to the second embodiment.

【図12】主にすみ肉溶接ビードの測定評価を目的とす
る検出器の内部構造を示す図。
FIG. 12 is a view showing the internal structure of a detector mainly for the purpose of measuring and evaluating fillet weld beads.

【図13】主に突き合せ肉溶接ビードの測定評価を目的
とする検出器の内部構造を示す図。
FIG. 13 is a view showing the internal structure of a detector mainly for the purpose of measuring and evaluating butt welded beads.

【図14】すみ肉溶接継手の寿命評価試験を行う例を説
明する図。
FIG. 14 is a diagram illustrating an example of performing a life evaluation test of a fillet welded joint.

【図15】溶接材料のS−N線図。FIG. 15 is an SN diagram of the welding material.

【符号の説明】[Explanation of symbols]

1 主板 2 副板 3 溶接ビード 4 検出器 5 駆動部材 6 マグネットスタンド 7 測定演算制御装置 8 解析装置 9 プリンタ 1 Main Plate 2 Sub Plate 3 Weld Bead 4 Detector 5 Driving Member 6 Magnet Stand 7 Measurement / Operation Control Device 8 Analysis Device 9 Printer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下平 貴之 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 宇田川 次男 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Shimodaira 650 Kazunachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd.Tsuchiura factory Ceremony Company Tsuchiura Factory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 溶接ビード表面に所定のビーム口径の照
明光を照射可能な照明光源と、 前記照明光を前記溶接ビード表面の所定方向に沿って走
査させる第1の走査手段と、 前記溶接ビード表面から所定の角度範囲の方向に反射さ
れた前記照明光を受光する受光手段と、 前記受光手段により受光された照明光に基づいて前記溶
接ビード表面の二次元形状を評価する表面評価手段と、
を備えたことを特徴とする表面形状評価装置。
1. An illumination light source capable of irradiating a welding beam surface with illumination light having a predetermined beam diameter, a first scanning means for scanning the illumination light along a predetermined direction of the welding bead surface, and the welding bead. Light receiving means for receiving the illumination light reflected in the direction of a predetermined angle range from the surface, and surface evaluation means for evaluating the two-dimensional shape of the welding bead surface based on the illumination light received by the light receiving means,
A surface shape evaluation device comprising:
【請求項2】 前記照明光を前記溶接ビード表面の前記
所定方向とは異なる方向に走査させる第2の走査手段を
備え、 前記表面評価手段は、前記第1および第2の走査手段に
より前記照明光を走査させたときに前記受光手段により
受光される照明光に基づいて、前記溶接ビード表面の三
次元形状を評価することを特徴とする請求項1に記載さ
れた表面形状評価装置。
2. A second scanning unit for scanning the illumination light in a direction different from the predetermined direction of the surface of the welding bead, wherein the surface evaluation unit uses the first and second scanning units for the illumination. The surface shape evaluation device according to claim 1, wherein the three-dimensional shape of the welding bead surface is evaluated based on the illumination light received by the light receiving means when scanning light.
【請求項3】 照明光源から溶接ビード表面に向けて所
定のビーム口径の照明光を照射し、前記照明光を前記溶
接ビード表面の第1の方向に沿って走査させて前記溶接
ビード表面から所定の角度範囲の方向に反射された前記
照明光を受光手段により受光し、前記照明光を前記溶接
ビード表面の第2の方向に沿って所定量ずつ走査させて
各走査位置で前記第1の方向への走査を行い、前記受光
手段による受光結果に基づいて前記溶接ビード表面の三
次元形状を評価することを特徴とする表面形状評価方
法。
3. An illumination light source irradiating the welding bead surface with illumination light having a predetermined beam diameter, and scanning the illumination light along a first direction of the welding bead surface to cause the welding bead surface to have a predetermined distance. The illumination light reflected in the direction of the angle range is received by the light receiving means, the illumination light is scanned by a predetermined amount along the second direction of the welding bead surface, and the first direction is obtained at each scanning position. Surface shape evaluation method, wherein the three-dimensional shape of the surface of the welding bead is evaluated based on the result of light reception by the light receiving means.
【請求項4】 溶接ビード表面に所定のビーム口径の照
明光を照射可能な照明光源と、 前記照明光を第1の方向に走査させて前記溶接ビード表
面での前記照明光の照射位置を変更する第1の走査手段
と、 前記照明光を第2の方向に走査させて前記溶接ビード表
面での前記照明光の照射位置を変更する第2の走査手段
と、 少なくとも前記第1の方向に並べて配置された複数の光
電変換素子から成り、前記溶接ビード表面で反射された
前記照明光の少なくとも一部を受光して電気信号に変換
する第1の撮像装置と、 少なくとも前記第2の方向に並べて配置された複数の光
電変換素子から成り、前記溶接ビード表面で反射された
前記照明光の少なくとも一部を受光して電気信号に変換
する第2の撮像装置と、 前記第1および第2の撮像装置から出力された電気信号
に基づいて前記溶接ビード表面の二次元形状を評価する
表面評価手段と、を備えたことを特徴とする表面形状評
価装置。
4. An illumination light source capable of irradiating the welding bead surface with illumination light having a predetermined beam diameter, and changing the irradiation position of the illumination light on the welding bead surface by scanning the illumination light in a first direction. First scanning means for scanning, and second scanning means for scanning the illumination light in a second direction to change the irradiation position of the illumination light on the surface of the welding bead, and arranging at least in the first direction. A first image pickup device which is composed of a plurality of photoelectric conversion elements arranged and which receives at least a part of the illumination light reflected by the welding bead surface and converts it into an electric signal; and at least in a line in the second direction. A second image pickup device including a plurality of photoelectric conversion elements arranged, which receives at least a part of the illumination light reflected on the surface of the welding bead and converts it into an electric signal; and the first and second image pickup devices. Out of the device Surface shape evaluation apparatus, characterized in that it and a surface evaluating means for evaluating the two-dimensional shape of the weld bead surface based on the electric signal.
【請求項5】 前記照明光を第3の方向に走査させて前
記溶接ビード表面での前記照明光の照射位置を変更する
第3の走査手段を備え、 前記表面評価手段は、前記第1、第2および第3の方向
に前記照明光を走査させたときに前記第1および第2の
撮像装置により受光される照明光に基づいて、前記溶接
ビード表面の三次元形状を評価することを特徴とする請
求項4に記載された表面形状評価装置。
5. A third scanning means for changing the irradiation position of the illumination light on the surface of the welding bead by scanning the illumination light in a third direction, wherein the surface evaluation means comprises the first, The three-dimensional shape of the welding bead surface is evaluated based on the illumination light received by the first and second imaging devices when the illumination light is scanned in the second and third directions. The surface shape evaluation device according to claim 4.
【請求項6】 溶接ビード表面に所定のビーム口径の照
明光を照射可能な照明光源と、 前記照明光を前記溶接ビード表面の所定方向に沿って走
査させる第1の走査手段と、 曲線状または曲面状に配置された複数の光電変換素子か
ら成り、前記溶接ビード表面から所定の角度範囲の方向
に反射された前記照明光を受光して電気信号に変換する
撮像装置と、 前記撮像装置から出力された前記電気信号に基づいて前
記溶接ビード表面の二次元形状を評価する表面評価手段
と、を備えたことを特徴とする表面形状評価装置。
6. An illumination light source capable of irradiating a welding bead surface with illumination light having a predetermined beam diameter, a first scanning means for scanning the illumination light along a predetermined direction of the welding bead surface, and a curved shape or An imaging device which is composed of a plurality of photoelectric conversion elements arranged in a curved surface, receives the illumination light reflected from the welding bead surface in a direction of a predetermined angle range, and converts the illumination light into an electric signal, and an output from the imaging device A surface shape evaluation device for evaluating a two-dimensional shape of the surface of the welding bead based on the generated electric signal.
【請求項7】 溶接ビード表面に所定のビーム口径の照
明光を照射可能な照明光源と、 前記照明光を所定方向に走査させて前記溶接ビード表面
での前記照明光の照射位置を変更する第1の走査手段
と、 前記所定方向に沿って直線状または平面状に配置された
複数の光電変換素子から成り、前記溶接ビード表面から
所定の角度範囲の方向に反射された前記照明光を受光し
て電気信号に変換する撮像装置と、 前記撮像装置から出力された前記電気信号に基づいて前
記溶接ビード表面の形状を評価する表面評価手段と、を
備えたことを特徴とする表面形状評価装置。
7. An illumination light source capable of irradiating the welding bead surface with illumination light having a predetermined beam diameter, and changing the irradiation position of the illumination light on the welding bead surface by scanning the illumination light in a predetermined direction. 1 scanning means and a plurality of photoelectric conversion elements arranged linearly or in a plane along the predetermined direction, and receives the illumination light reflected from the welding bead surface in the direction of a predetermined angle range. A surface shape evaluation device for evaluating the shape of the welding bead surface based on the electric signal output from the image pickup device.
【請求項8】 前記照明光を前記溶接ビード表面の前記
所定方向とは異なる方向に沿って走査させる第2の走査
手段を備え、 前記表面評価手段は、前記第1および第2の走査手段の
走査により前記照明光を走査させたときに前記撮像装置
により受光される照明光に基づいて、前記溶接ビード表
面の三次元方向の形状を評価することを特徴とする請求
項6または7に記載された表面形状評価装置。
8. A second scanning means for scanning the illumination light along a direction different from the predetermined direction on the surface of the welding bead, wherein the surface evaluation means is provided for the first and second scanning means. The shape of the welding bead surface in the three-dimensional direction is evaluated based on the illumination light received by the imaging device when the illumination light is scanned for scanning. Surface shape evaluation device.
【請求項9】 前記表面評価手段は、前記溶接ビードの
溶接止端部における応力集中係数および切欠係数を演算
することを特徴とする請求項4〜8のいずれか1項に記
載された表面形状評価装置。
9. The surface profile according to claim 4, wherein the surface evaluation means calculates a stress concentration coefficient and a notch coefficient at a weld toe portion of the weld bead. Evaluation device.
【請求項10】 前記演算された応力集中係数および切
欠係数を表示可能な表示装置を備えることを特徴とする
請求項9に記載された表面形状評価装置。
10. The surface shape evaluation apparatus according to claim 9, further comprising a display device capable of displaying the calculated stress concentration coefficient and cutout coefficient.
【請求項11】 前記表面評価手段は、前記演算された
応力集中係数および切欠係数に基づいて前記溶接ビード
の良否を評価することを特徴とする請求項9または10
に記載された表面形状評価装置。
11. The surface evaluation means evaluates the quality of the weld bead based on the calculated stress concentration coefficient and notch coefficient.
The surface shape evaluation device described in 1.
【請求項12】 前記照明光源は半導体レーザで構成さ
れることを特徴とする請求項4〜11のいずれか1項に
記載された表面形状評価装置。
12. The surface shape evaluation device according to claim 4, wherein the illumination light source is composed of a semiconductor laser.
JP7262972A 1995-10-11 1995-10-11 Apparatus and method for evaluation of surface shape Pending JPH09105614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262972A JPH09105614A (en) 1995-10-11 1995-10-11 Apparatus and method for evaluation of surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262972A JPH09105614A (en) 1995-10-11 1995-10-11 Apparatus and method for evaluation of surface shape

Publications (1)

Publication Number Publication Date
JPH09105614A true JPH09105614A (en) 1997-04-22

Family

ID=17383114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262972A Pending JPH09105614A (en) 1995-10-11 1995-10-11 Apparatus and method for evaluation of surface shape

Country Status (1)

Country Link
JP (1) JPH09105614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294093A (en) * 2008-06-05 2009-12-17 Topy Ind Ltd Method and system for inspecting weld part
JP2010256326A (en) * 2009-03-30 2010-11-11 Toyota Motor Corp Device, method and program for inspecting welding bead
JP2013054011A (en) * 2011-09-06 2013-03-21 Nippon Hoso Kyokai <Nhk> Surface normal measurement device, surface normal measurement system, and surface normal measurement program
JP2018171622A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for manufacturing welded light-weight h-shaped steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294093A (en) * 2008-06-05 2009-12-17 Topy Ind Ltd Method and system for inspecting weld part
JP2010256326A (en) * 2009-03-30 2010-11-11 Toyota Motor Corp Device, method and program for inspecting welding bead
JP2013054011A (en) * 2011-09-06 2013-03-21 Nippon Hoso Kyokai <Nhk> Surface normal measurement device, surface normal measurement system, and surface normal measurement program
JP2018171622A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for manufacturing welded light-weight h-shaped steel

Similar Documents

Publication Publication Date Title
CN102077052B (en) Vision system for scan planning of ultrasonic inspection
JP5312033B2 (en) Method and apparatus for evaluating the joint location of a workpiece
US11260471B2 (en) Method and device for monitoring a joining seam during joining by means of a laser beam
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
CN100544576C (en) Solder joint is determined method, solder inspection method and solder material inspecting device
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
US6066845A (en) Laser scanning method and system
JP2009515705A5 (en)
CN102077053A (en) Vision system and method for mapping of ultrasonic data into cad space
KR20200136686A (en) Portable type welding inspection appatatus and inspection method
Dupriez et al. OCT for Efficient High Quality Laser Welding: High‐speed, high‐resolution online seam tracking, monitoring and quality control
JP2008216199A (en) Device and method for inspecting weld bead
JP2002331383A (en) Monitoring device for cutting
US9823224B2 (en) Weld inspection method and system
Niraula et al. Local weld geometry-based characterization of fatigue strength in laser-MAG hybrid welded joints
JPH09105614A (en) Apparatus and method for evaluation of surface shape
US6191857B1 (en) Measuring method and apparatus
CN115335180A (en) Method for OCT weld monitoring, associated laser processing machine and computer program product
JP2001272215A (en) Measuring method of screw, apparatus therefor and determining apparatus for propriety of shape of screw
US7471398B2 (en) Method for measuring contour variations
KR20090048669A (en) Welding bead measuring instrument
JP4402558B2 (en) Aperture synthetic ultrasonic flaw detector and method
US20020159073A1 (en) Range-image-based method and system for automatic sensor planning
JP3920713B2 (en) Optical displacement measuring device
JP4995041B2 (en) Printed solder inspection method and printed solder inspection apparatus