JPH09101119A - Width measuring device for belt-like body - Google Patents

Width measuring device for belt-like body

Info

Publication number
JPH09101119A
JPH09101119A JP25538495A JP25538495A JPH09101119A JP H09101119 A JPH09101119 A JP H09101119A JP 25538495 A JP25538495 A JP 25538495A JP 25538495 A JP25538495 A JP 25538495A JP H09101119 A JPH09101119 A JP H09101119A
Authority
JP
Japan
Prior art keywords
image
optical path
width
image pickup
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25538495A
Other languages
Japanese (ja)
Inventor
Atsuya Hatano
敦也 波多野
Yuichi Noda
雄一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP25538495A priority Critical patent/JPH09101119A/en
Publication of JPH09101119A publication Critical patent/JPH09101119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a width measuring device for belt-like body in which measurement data with high precision can be obtained through one image pickup means even if it is a wide width band-like body, and further the cost thereof is low. SOLUTION: Since the images of both end portions in the width direction of an object to be measured A are optically led to one image sensor 2 through a optical path 1, and an image signal synthesized with the respective images of both end portions in the axis direction is processed as measurement data, measurement data with high precision can be obtained by the one image sensor 2, even if it is a wide width object to be measured A, requiring no plural image pickup means. Since the image of the object to be measured A is simultaneously captured by the image sensor 2 via the optical path 1, the image pickup position of both end portions in the width direction is not allowed to dislocate in the movement direction of the object to be measured A so that the accurate measurement data can be always obtained even if the object to be measured A is moved at a high speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば物品の搬送
に用いるコンベアベルト等の帯状体の幅を測定する帯状
体の幅測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a belt width measuring device for measuring the width of a belt such as a conveyor belt used to convey articles.

【0002】[0002]

【従来の技術】従来、例えば物品搬送用のコンベアに用
いられるコンベアベルトを製造する場合には、材料とな
る合成ゴム等を圧延して帯状に形成した後、幅の均一性
等を検査している。コンベアベルトの幅を測定する場合
には、コンベアベルトの少なくとも幅方向両端部が撮像
されるように固定されたCCDカメラ等の撮像手段に対
してコンベアベルトを長手方向に移動させ、コンベアベ
ルトを連続的に撮像しながら幅の寸法や蛇行量等の測定
を行っている。また、幅の広いコンベアベルトを測定す
る場合には、幅方向全体が入るように撮像すると解像度
が低下して高精度な測定データが得られなくなるため、
例えば特開平5−223528号公報に記載されている
ように、幅方向両端部にそれぞれ1台ずつカメラを設置
し、これら計2台のカメラによって写し出した撮像結果
を複合して測定を行うようにしている。この場合、各カ
メラからの画像信号は各カメラごとに設けた各種処理回
路を介して一つの演算部で複合処理されるようになって
いる。
2. Description of the Related Art Conventionally, for example, when manufacturing a conveyor belt used for a conveyor for conveying articles, a synthetic rubber or the like as a material is rolled into a strip shape, and then the width uniformity is inspected. There is. When measuring the width of the conveyor belt, the conveyor belt is continuously moved by moving the conveyor belt in the longitudinal direction with respect to an image pickup means such as a CCD camera fixed so that at least both widthwise end portions of the conveyor belt are imaged. The size of the width and the amount of meandering are measured while capturing images. Also, when measuring a wide conveyor belt, if the image is taken so that the entire width direction is included, the resolution will decrease and it will not be possible to obtain highly accurate measurement data.
For example, as described in Japanese Unexamined Patent Publication No. 5-223528, one camera is installed at each of both ends in the width direction, and the imaging results projected by these two cameras are combined to perform measurement. ing. In this case, the image signal from each camera is subjected to combined processing by one arithmetic unit via various processing circuits provided for each camera.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
装置では2台のカメラと各カメラごとの処理回路を必要
とするため、装置が高価になるとともに、各カメラの動
作に時間差が生じた場合には、測定対象物の幅方向両端
部の撮像位置がずれて測定誤差を生ずるという問題点が
あった。
However, the above-mentioned apparatus requires two cameras and a processing circuit for each camera, so that the apparatus becomes expensive and a time lag occurs in the operation of each camera. However, there is a problem in that the imaging positions of both ends of the measurement object in the width direction are displaced to cause a measurement error.

【0004】本発明は前記問題点に鑑みてなされたもの
であり、その目的とするところは、幅の広い帯状体であ
っても一つの撮像手段によって高精度な測定データを得
ることができ、しかも装置を安価に構成することのでき
る帯状体の幅測定装置を提供することにある。
The present invention has been made in view of the above problems, and it is an object of the present invention to obtain highly accurate measurement data even with a wide band-shaped body by one image pickup means. Moreover, it is an object of the present invention to provide a width measuring device for a belt-shaped body which can be constructed at low cost.

【0005】[0005]

【課題を解決するための手段】本発明は前記目的を達成
するために、請求項1では、長手方向に移動する帯状体
の幅方向両端部の画像データに基づいて該帯状体の幅を
測定する帯状体の幅測定装置において、測定対象物の幅
方向両端部の各画像を光学的に導いて同一の撮像面に結
像する光路と、前記撮像面に結像した測定対象物の各画
像を同一画像として撮像する撮像手段と、撮像手段によ
って撮像された画像データに基づいて測定対象物の幅を
演算する演算処理部とを備えている。これにより、測定
対象物の幅方向両端部の画像が光路により撮像手段に光
学的に導かれ、幅方向両端部の各画像を同一画像として
撮像した画像データとして処理されることから、幅の広
い測定対象物であっても一つの撮像手段で高精度な測定
データが得られる。また、測定対象物の画像が光路を介
して撮像手段に同時に取り込まれることから、幅方向両
端部の撮像位置が測定対象物の移動方向にずれることが
ない。
In order to achieve the above-mentioned object, the present invention, in claim 1, measures the width of the strip based on image data of both widthwise ends of the strip moving in the longitudinal direction. In the width measuring device for the strip-shaped body, an optical path that optically guides each image of both ends in the width direction of the measurement object to form an image on the same imaging surface, and each image of the measurement object formed on the imaging surface. And an arithmetic processing unit that calculates the width of the measurement target based on the image data captured by the imaging unit. As a result, the images at both ends in the width direction of the measurement object are optically guided to the image pickup means by the optical path, and the images at the both ends in the width direction are processed as the same image image data. Even with the object to be measured, highly accurate measurement data can be obtained with one image pickup means. Further, since the image of the measurement object is simultaneously captured by the image pickup means via the optical path, the image pickup positions at the both ends in the width direction do not shift in the moving direction of the measurement object.

【0006】また、請求項2では、請求項1記載の帯状
体の幅測定装置において、前記光路の一部を光ファイバ
によって形成している。これにより、光ファイバの可撓
性を利用して各撮像位置を自由に変えることが可能とな
る。
According to a second aspect of the present invention, in the band width measuring device according to the first aspect, a part of the optical path is formed by an optical fiber. Thereby, it becomes possible to freely change each imaging position by utilizing the flexibility of the optical fiber.

【0007】[0007]

【発明の実施の形態】図1乃至図3は本発明の一実施形
態を示すもので、図1は幅測定装置の全体構成図、図2
は光路の光学系構成図、図3は撮像結果を示す図であ
る。
1 to 3 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a width measuring device, and FIG.
Is an optical system configuration diagram of an optical path, and FIG. 3 is a diagram showing an imaging result.

【0008】この幅測定装置は、測定対象物Aの幅方向
両端部の画像を光学的に導く光路1と、光路1に導かれ
た像を撮像するイメージセンサ2と、イメージセンサ2
からの画像データを演算処理する演算処理部4とから構
成されている。
This width measuring apparatus includes an optical path 1 for optically guiding the images of both ends of the object A in the width direction, an image sensor 2 for picking up an image guided to the optical path 1, and an image sensor 2.
And an arithmetic processing unit 4 for arithmetically processing the image data from.

【0009】光路1は測定対象物Aの幅方向に延びる第
1光路1aと、第1光路1aの両端から測定対象物Aの
幅方向両端部に向かって下方に延びる一対の第2光路1
bと、第1光路1aの中央から上方に延びる第3光路1
cとからなり、図2に示すように第2光路1b内に対向
して配置された第1及び第2レンズ1d,1eと、各第
2光路1bと第1光路1aとの間に互いに対向して配置
された一対の第1ミラー1fと、第1光路1aと第3光
路1cとの間に互いに反対向きに配置された一対の第2
ミラー1gと、第3光路1c内に配置された第3レンズ
1hとを備えている。即ち、光路1では、測定対象物A
の幅方向両端部の画像がそれぞれ各第2光路1bの第1
及び第2レンズ1d,1eを透過して各第1ミラー1f
で第1光路1a側に90゜反射するとともに、各第2ミ
ラー1gによって第3光路1c側に90゜反射し、第3
レンズ1hを透過して撮像面1iに結像するようになっ
ている。この場合、第3光路1cは図3に示す各第2ミ
ラー1gの反射像(a)(b)を半分ずつ受光するだけの幅に
形成されており、これにより撮像面1iには図3(c) に
示すように測定対象物Aの幅方向両端部の像がそれぞれ
左右に半分ずつ撮し出されるようになっている。
The optical path 1 is a first optical path 1a extending in the width direction of the measuring object A, and a pair of second optical paths 1 extending downward from both ends of the first optical path 1a toward both ends of the measuring object A in the width direction.
b and the third optical path 1 extending upward from the center of the first optical path 1a
2 and the first and second lenses 1d and 1e, which are arranged to face each other in the second optical path 1b as shown in FIG. 2, and face each other between the respective second optical paths 1b and 1a. A pair of first mirrors 1f arranged in parallel with each other, and a pair of second mirrors arranged in opposite directions between the first optical path 1a and the third optical path 1c.
The mirror 1g and the 3rd lens 1h arrange | positioned in the 3rd optical path 1c are provided. That is, in the optical path 1, the measurement object A
The images at both ends in the width direction of the first optical path are the first images of the second optical paths 1b.
And the first mirror 1f through the second lenses 1d and 1e.
At 90 ° toward the first optical path 1a side and at 90 ° toward the third optical path 1c side by each second mirror 1g.
An image is formed on the image pickup surface 1i through the lens 1h. In this case, the third optical path 1c is formed to have a width enough to receive the reflected images (a) and (b) of the respective second mirrors 1g shown in FIG. 3 by half. As shown in c), the images of both ends in the width direction of the measuring object A are photographed in left and right halves, respectively.

【0010】イメージセンサ2は半導体撮像素子を用い
たCCD撮像センサ等、周知の撮像手段からなり、前記
光路1の第3光路1cに接続されている。即ち、イメー
ジセンサ2では前記撮像面1iに結像された画像を取り
込み、これを電気的な信号に変換するようになってい
る。この場合、イメージセンサ2には測定対象物Aの幅
方向両端部を左右半分ずつ合成した画像が取り込まれ
る。
The image sensor 2 comprises a well-known image pickup means such as a CCD image pickup sensor using a semiconductor image pickup element, and is connected to the third optical path 1c of the optical path 1. That is, the image sensor 2 takes in the image formed on the imaging surface 1i and converts it into an electrical signal. In this case, the image sensor 2 captures an image in which both widthwise end portions of the measurement target A are combined into left and right halves.

【0011】フレームメモリ3は画像信号の記憶装置で
あり、イメージセンサ2からの画像信号を一時的に格納
するようになっている。
The frame memory 3 is a storage device for image signals and temporarily stores the image signals from the image sensor 2.

【0012】演算処理部4はフレームメモリ3から読み
込んだ画像データに基づいて測定対象物Aの幅を算出し
たり、画像データをディスプレイ等に表示するようにな
っている。
The arithmetic processing unit 4 is adapted to calculate the width of the measuring object A based on the image data read from the frame memory 3 and display the image data on a display or the like.

【0013】以上のように構成された幅測定装置におい
ては、コンベア等の搬送装置5によって長手方向(図面
に直交する方向)に移動する測定対象物Aの幅方向両端
部を撮像し、その幅寸法や蛇行量等が測定される。即
ち、測定対象物Aの幅方向両端部の画像は光路1を介し
て左右半分ずつ合成され、イメージセンサ2により電気
的な画像信号に変換されてフレームメモリ3に格納した
後、演算処理部4によって測定処理が行われる。そし
て、これら撮像処理及び演算処理を繰り返すことによっ
て測定対象物Aの幅の測定が長手方向に順次行われる。
演算処理部4では測定対象物Aの幅方向両端部に対する
撮像位置間の距離を既知のデータとして予め記憶してお
り、前記合成画像と撮像位置間の距離に基づいて測定対
象物Aの幅寸法を算出することができる。また、前記合
成画像をディスプレイ等に表示することにより、目視等
によって蛇行量を確認することができる。
In the width measuring device constructed as described above, the widthwise both ends of the measuring object A moving in the longitudinal direction (direction orthogonal to the drawing) are imaged by the conveying device 5 such as a conveyor and the width thereof is taken. The dimensions and the amount of meandering are measured. That is, the images at both ends in the width direction of the measuring object A are combined into right and left halves via the optical path 1, converted into electric image signals by the image sensor 2 and stored in the frame memory 3, and then the arithmetic processing unit 4 The measurement process is performed by. Then, the width of the measurement object A is sequentially measured in the longitudinal direction by repeating the imaging process and the calculation process.
The arithmetic processing unit 4 stores in advance the distance between the imaging positions with respect to both ends of the measurement object A in the width direction as known data, and the width dimension of the measurement object A based on the distance between the composite image and the imaging position. Can be calculated. Further, by displaying the composite image on a display or the like, the amount of meandering can be confirmed visually.

【0014】このように、本実施形態に示す幅測定装置
によれば、測定対象物Aの幅方向両端部の画像を光路1
により1台のイメージセンサ2に光学的に導き、幅方向
両端部の各画像を合成した画像信号を測定データとして
処理するようにしたので、幅の広い測定対象物Aであっ
ても1台のイメージセンサ2で高精度な測定データを得
ることができる。従って、従来のように2台の撮像手段
を用いる場合に比べ、装置の簡素化及び低コスト化を図
ることができ、しかもイメージセンサ2及びフレームメ
モリ3が各々1台なので、サンプリング時間を大幅に短
縮することができる。また、測定対象物Aの画像が光路
1を介してイメージセンサ2に同時に取り込まれるの
で、幅方向両端部の撮像位置が測定対象物Aの移動方向
にずれることがなく、測定対象物Aを突然高速で移動さ
せるなど、測定対象物Aの移動速度が一定でない場合で
も常に正確な測定データを得ることができる。
As described above, according to the width measuring apparatus of the present embodiment, the images of the both ends of the measuring object A in the width direction are recorded on the optical path 1.
The optical signal is optically guided to one image sensor 2 by means of, and the image signal obtained by synthesizing the images of both ends in the width direction is processed as the measurement data. The image sensor 2 can obtain highly accurate measurement data. Therefore, compared to the case where two image pickup means are used as in the conventional case, the apparatus can be simplified and the cost can be reduced, and the image sensor 2 and the frame memory 3 are each one, so that the sampling time can be significantly increased. It can be shortened. Further, since the image of the measuring object A is simultaneously captured by the image sensor 2 via the optical path 1, the imaging positions at the both ends in the width direction do not shift in the moving direction of the measuring object A, and the measuring object A suddenly moves. Even if the moving speed of the measuring object A is not constant, such as moving at high speed, accurate measurement data can always be obtained.

【0015】尚、前記第1光路1aを測定対象物Aの幅
方向に伸縮可能に構成することにより、幅寸法の異なる
複数種類の測定対象物Aに対応することもできる。ま
た、前記第1光路1aに相当する部分を光ファイバによ
って形成すれば、光ファイバの可撓性を利用して各撮像
位置を自由に変えることができ、幅寸法の異なる複数種
類の測定対象物Aに対応する場合に有利である。
By constructing the first optical path 1a so that it can expand and contract in the width direction of the measuring object A, it is possible to accommodate a plurality of types of measuring objects A having different width dimensions. Further, if the portion corresponding to the first optical path 1a is formed by an optical fiber, each imaging position can be freely changed by utilizing the flexibility of the optical fiber, and a plurality of types of measurement objects having different width dimensions can be obtained. It is advantageous when it corresponds to A.

【0016】図4乃至図8は光路の変形例を示すもの
で、前記実施形態と同等の構成部分には同一の符号を付
して示す。即ち、図4では第1光路1aを第3光路1c
との分岐点から互い違いにずらして設け、第3光路1c
の一端側と一方の第1光路1aとの間に第2ミラー1g
を配置し、第3光路1cの中間と他方の第1光路1aと
との間には半分が反射面で他の半分が透過面からなるハ
ーフミラー1jを設けている。これにより、第2ミラー
1gで反射した一方の第1光路1aの画像がハーフミラ
ー1jを透過して撮像面1iに結像し、他方の第1光路
1aの画像がハーフミラー1jで反射して撮像面1iに
結像するようになっている。また、図5では一方の第2
光路1bと第3光路1cとを互いに直列に設け、これに
連通する第1光路1aと第3光路1cとの間にハーフミ
ラー1jを設けている。これにより、一方の第2光路1
bの画像がハーフミラー1jを透過して撮像面1iに結
像し、第1光路1aの画像がハーフミラー1jで反射し
て撮像面1iに結像するようになっている。この場合、
撮像面1iには、図6(a) に示す測定対象物Aの幅方向
一端側の像と、図7(a) に示す測定対象物Aの幅方向他
端側の像がそれぞれ撮し出され、これらの像は図8(a)
に示すように互いに重なり合って合成される。即ち、図
6(b) に示す幅方向一端側の像では、測定対象物Aの部
分が暗く、それ以外の部分が明るく撮し出され、図7
(b) に示す幅方向他端側の像では、同じく測定対象物A
の部分が暗く、それ以外の部分が明るく撮し出される。
従って、これらの合成画像では、絞り等で光量を調整す
ることにより、図8(b) に示すように測定対象物Aの重
なり合った部分が暗く、それ以外の部分が明るくなって
見えるようになる。
4 to 8 show modified examples of the optical path, and the same components as those in the above-mentioned embodiment are designated by the same reference numerals. That is, in FIG. 4, the first optical path 1a is replaced by the third optical path 1c.
And the third optical path 1c
The second mirror 1g between one end side of the first optical path 1a and the first optical path 1a.
Is disposed, and a half mirror 1j, half of which is a reflecting surface and the other half of which is a transmitting surface, is provided between the middle of the third optical path 1c and the other first optical path 1a. As a result, the image of the one first optical path 1a reflected by the second mirror 1g is transmitted through the half mirror 1j to form an image on the imaging surface 1i, and the image of the other first optical path 1a is reflected by the half mirror 1j. An image is formed on the imaging surface 1i. In addition, in FIG.
The optical path 1b and the third optical path 1c are provided in series with each other, and the half mirror 1j is provided between the first optical path 1a and the third optical path 1c communicating with the optical path 1b. Thereby, one of the second optical paths 1
The image of b is transmitted through the half mirror 1j to form an image on the imaging surface 1i, and the image of the first optical path 1a is reflected by the half mirror 1j to form an image on the imaging surface 1i. in this case,
An image of one end of the measurement object A in the width direction shown in FIG. 6 (a) and an image of the other end of the measurement object A in the width direction shown in FIG. 7 (a) are captured on the imaging surface 1i. These images are shown in Figure 8 (a).
As shown in FIG. That is, in the image on the one end side in the width direction shown in FIG. 6B, the portion of the measuring object A is dark and the other portion is brightly photographed.
In the image on the other end side in the width direction shown in (b), the measurement target A
The part is dark and the other parts are bright.
Therefore, in these combined images, by adjusting the amount of light with a diaphragm or the like, the overlapping portion of the measuring object A appears dark and the other portions appear bright as shown in FIG. 8 (b). .

【0017】[0017]

【発明の効果】以上説明したように、請求項1によれ
ば、幅の広い測定対象物であっても一つの撮像手段で高
精度な測定データを得ることができるので、複数の撮像
手段を用いる必要がなく、装置の簡素化及び低コスト化
を図ることができるとともに、一つの撮像手段によって
処理することにより、サンプリング時間を大幅に短縮す
ることができる。また、幅方向両端部の撮像位置が測定
対象物の移動方向にずれることがないので、測定対象物
を突然高速で移動させるなど、測定対象物の移動速度が
一定でない場合でも常に正確な測定データを得ることが
できる。
As described above, according to the first aspect of the present invention, it is possible to obtain highly accurate measurement data with a single image pickup means even for a wide measurement object. Since it is not necessary to use it, the apparatus can be simplified and the cost can be reduced, and the sampling time can be significantly shortened by processing by one imaging unit. In addition, since the imaging positions at both ends in the width direction do not shift in the moving direction of the measurement target, accurate measurement data is always obtained even if the moving speed of the measurement target is not constant, such as when the measurement target is suddenly moved at high speed. Can be obtained.

【0018】また、請求項2によれば、請求項1の効果
に加え、各撮像位置を自由に変えることができるので、
幅寸法の異なる複数種類の測定対象物に対応する場合に
有利である。
According to claim 2, in addition to the effect of claim 1, each image pickup position can be freely changed.
This is advantageous when dealing with a plurality of types of measurement objects having different width dimensions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す幅測定装置の全体構
成図
FIG. 1 is an overall configuration diagram of a width measuring device showing an embodiment of the present invention.

【図2】光路の光学系を示す構成図FIG. 2 is a configuration diagram showing an optical system of an optical path.

【図3】撮像結果を示す図FIG. 3 is a diagram showing an imaging result.

【図4】光路の変形例を示す構成図FIG. 4 is a configuration diagram showing a modified example of an optical path.

【図5】光路の変形例を示す構成図FIG. 5 is a configuration diagram showing a modified example of an optical path.

【図6】幅方向一端側の撮像結果及び像の明暗を示す図FIG. 6 is a diagram showing an imaging result and brightness of an image on one end side in the width direction.

【図7】幅方向他端側の撮像結果及び像の明暗を示す図FIG. 7 is a diagram showing the imaging result and the brightness of the image on the other end side in the width direction.

【図8】合成画像及び像の明暗を示す図FIG. 8 is a diagram showing the brightness of a composite image and an image.

【符号の説明】[Explanation of symbols]

1…光路、2…イメージセンサ、4…演算処理部、6…
光路、A…測定対象物。
1 ... Optical path, 2 ... Image sensor, 4 ... Arithmetic processing unit, 6 ...
Optical path, A ... Object to be measured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に移動する帯状体の幅方向両端
部の画像データに基づいて該帯状体の幅を測定する帯状
体の幅測定装置において、 測定対象物の幅方向両端部の各画像を光学的に導いて同
一の撮像面に結像する光路と、 前記撮像面に結像した測定対象物の各画像を同一画像と
して撮像する撮像手段と、 撮像手段によって撮像された画像データに基づいて測定
対象物の幅を演算する演算処理部とを備えたことを特徴
とする帯状体の幅測定装置。
1. A width measuring device for a strip, which measures the width of the strip based on image data of both ends of the strip moving in the longitudinal direction, in the width measuring device of the strip. An optical path that optically guides the light to form an image on the same image pickup surface, an image pickup unit that picks up each image of the measurement object formed on the image pickup surface as the same image, and based on image data picked up by the image pickup unit. An apparatus for measuring the width of a strip, comprising: an arithmetic processing unit for calculating the width of a measurement object.
【請求項2】 前記光路の一部を光ファイバによって形
成したことを特徴とする請求項1記載の帯状体の幅測定
装置。
2. The band width measuring device according to claim 1, wherein a part of the optical path is formed by an optical fiber.
JP25538495A 1995-10-02 1995-10-02 Width measuring device for belt-like body Pending JPH09101119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25538495A JPH09101119A (en) 1995-10-02 1995-10-02 Width measuring device for belt-like body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25538495A JPH09101119A (en) 1995-10-02 1995-10-02 Width measuring device for belt-like body

Publications (1)

Publication Number Publication Date
JPH09101119A true JPH09101119A (en) 1997-04-15

Family

ID=17278016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25538495A Pending JPH09101119A (en) 1995-10-02 1995-10-02 Width measuring device for belt-like body

Country Status (1)

Country Link
JP (1) JPH09101119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
KR101863839B1 (en) * 2017-06-01 2018-06-01 주식회사 한국매크로 Method and apparatus for measuring high-speed and repetition length using image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
WO2012120662A1 (en) * 2011-03-09 2012-09-13 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
CN103415756A (en) * 2011-03-09 2013-11-27 东洋玻璃株式会社 Glass bottle inspection device and telecentric lens unit
KR101863839B1 (en) * 2017-06-01 2018-06-01 주식회사 한국매크로 Method and apparatus for measuring high-speed and repetition length using image

Similar Documents

Publication Publication Date Title
JP5549230B2 (en) Ranging device, ranging module, and imaging device using the same
JP5293131B2 (en) Compound eye distance measuring device for vehicle and compound eye distance measuring method
TWI500901B (en) Measuring apparatus
US20020041704A1 (en) Three-dimensional image capturing device
JP4116887B2 (en) Optical shape measurement method
US6346965B1 (en) High resolution imaging system for simultaneous acquisition of two high aspect ratio object fields
JPH09101119A (en) Width measuring device for belt-like body
JP3595117B2 (en) Array element inspection method and array element inspection apparatus
US6522394B2 (en) Rangefinder device and camera
JP3048107B2 (en) Method and apparatus for measuring object dimensions
JPH0380824A (en) Measuring endoscope device
WO2005036461A1 (en) A method for measuring dimensions by means of a digital camera
JP2770521B2 (en) Focus position detection method
US6177996B1 (en) Sensor unit and distance measurement apparatus
KR102682167B1 (en) Apparatus and method for testing rod-shaped articles of the tobacco processing industry
JP2831388B2 (en) Distance measurement mechanism of passive autofocus system
JP4003274B2 (en) Distance measuring device
KR20000017208A (en) Distance measurement calculating apparatus and distance measurement calculating method using the same
JPH0255912A (en) Range-finding device
JP2971693B2 (en) Distance measuring device
JPH1089925A (en) Device for measuring vehicle shape
JPH0855889A (en) Image connection device
JPH07270129A (en) Detection apparatus of sheet width and meandering amount of sheet material
JPH04203914A (en) Image-sensing device
JPH044523B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A02