JP4116887B2 - Optical shape measurement method - Google Patents

Optical shape measurement method Download PDF

Info

Publication number
JP4116887B2
JP4116887B2 JP2003014533A JP2003014533A JP4116887B2 JP 4116887 B2 JP4116887 B2 JP 4116887B2 JP 2003014533 A JP2003014533 A JP 2003014533A JP 2003014533 A JP2003014533 A JP 2003014533A JP 4116887 B2 JP4116887 B2 JP 4116887B2
Authority
JP
Japan
Prior art keywords
shape
strip
width direction
linear
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003014533A
Other languages
Japanese (ja)
Other versions
JP2004226240A (en
Inventor
昇平 橋口
学 國永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003014533A priority Critical patent/JP4116887B2/en
Publication of JP2004226240A publication Critical patent/JP2004226240A/en
Application granted granted Critical
Publication of JP4116887B2 publication Critical patent/JP4116887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速に走行する帯状体の形状を光学的に測定する方法に関する。
【0002】
【従来の技術】
熱延鋼板などの高速に走行する帯状体の平坦度などの形状測定においては、鋼板の幅方向および長手方向にレーザ変位計を多数台並べ、鋼板の幅方向のC反り、あるいは長手方向における耳波や中伸びといった形状を測定するという方法が知られている(特許文献1)。しかしながら、レーザ変位計を多数台並べるといってもレーザ変位計は高価であり、幅方向の測定点はせいぜい数点である。また、板幅が変更されたり板が蛇行した場合、板の動きに追従する機構も必要である。
【0003】
一方、特許文献2のように、線状レーザ光源と遅延積分型リニアセンサを組み合わせた光切断方式により帯状体の形状を計測する方法においては、高速に走行する帯状体の形状を幅方向および長手方向において密に測定することが可能であり、得られた形状を画像化して、耳波や中伸びなどの形状を視覚的に明瞭な形で表示することができ、レーザ変位計を多数台並べる方法に比べはるかに安価に、少ない部品点数でかつ高精度な形状測定を実現できる。
【0004】
【特許文献1】
特開平5−1912号公報「平坦度測定装置」
【特許文献2】
特許2913903号公報「光学的形状測定方法」
【0005】
【発明が解決しようとする課題】
しかしながら、実際の鋼板の通板条件においては、単純な上下動だけではなく、鋼板の片側に生じる形状が大きい場合、板がねじれ振動を起こして、光切断像もねじれて見えてしまい、形状の悪くないもう片側も擬似的に形状が悪く見えてしまうという問題があった。
本発明はかかる問題点に鑑み、帯状体の形状の悪さに起因するねじれ振動などの高さ変動が生じても、帯状体の形状を全面全長にわたって正確に測定する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、出力が変調された線状レーザ光源を用い、帯状体上にその幅方向に線状のレーザビームを照射して光切断像を形成し、光切断像を前記帯状体上で所定の間隔ずつずらしながら、光電変換素子の配列の水平方向を帯状体の幅方向に向けて配設した遅延積分型のリニアセンサを用いて重ね撮像して、帯状体の厚さ方向の形状を測定する光切断方式の形状測定方法であって、前記線状レーザ光源と前記リニアセンサ複数の対を前記帯状体の長手方向に所定の間隔L離れた位置に配設し、該線状レーザ光源を所定の時間間隔で発光させ、各リニアセンサからの出力に基づいて、所定の間隔L離れた長手方向位置それぞれにおける帯状体の幅方向の高さ変化である形状測定値を求め、同時刻tにそれぞれの対により測定された前記形状測定値について帯状体の幅方向の同じ位置ごとに差分を計算し各幅方向の位置ごとの該差分を時刻tについて積算して、高速に移動する帯状体の上下振動やねじれ振動による高さ変動を除いた真の形状を、帯状体の幅方向と長手方向の全面にわたって密に測定することを特徴とする光学的形状測定方法である。
【0007】
【発明の実施の形態】
以下本発明の実施例に基づいて作用とともに説明する。図1は本発明に用いる装置の全体構成を示している。1は測定対象の鋼板であり、その中に耳波や中伸びなどの形状的欠陥を有している。2は線状レーザ光源であり、そこから射出する扇状に広げられたビーム3が、測定対象である鋼板に照射されると、測定対象の表面形状に沿って光切断像4を形成する。5は逐次積分型のリニアセンサを有するカメラであり、後で詳述する。6は測定対象の搬送速度を測定する測定ロールであり、7は回転速度測定器である。8は信号処理並びに制御装置であり、回転速度測定器7の回転速度の信号から対象物体の移動距離を算出し所定の距離毎に線状レーザ光源2を発光させると同時に、カメラ5に送る制御クロックを制御し、所定のビデオ信号を得る。この信号を高速に処理して連続的に形状値を得ることとなる。9は測定結果の表示装置である。
【0008】
本実施例においては、線状レーザ光源2と特殊カメラ5の対を2組用いてそれぞれの対から得られた形状の差分をとり、これを積分することにより帯状体の高さ変動の影響を排した真の形状を測定する方法について説明するが、これは後で詳述することとし、まずは線状レーザ光源2と特殊カメラ5の対を1組用いて形状を測定する方法について説明する。
【0009】
まず、特殊カメラ5について説明する。図2は特殊カメラの機能と信号処理の構造について説明するための図である。10はカメラの受光部にある二次元半導体撮像素子の中の光電変換電荷積分転送部である。二次元に配列された光電変換素子は、各列毎に垂直方向の電荷転送部を有し、転送される途中でそれぞれの箇所の光電変換素子より電荷を受け取り積分する。11は水平転送読みだし部であり、その出力は通常のリニアアレイと同じ形となる。
【0010】
従来このタイプのセンサは撮像対象の実像が光電変換面上で垂直方向に移動する速度と垂直方向の転送速度を同期させると、等価的に長時間露光したことになり感度およびS/N比を画期的に向上できるため、超高速撮影や低照度撮影用として使用されている。
しかし本発明においては、上記素子を全く違った形で使用している。すなわち、対象物体と垂直転送速度は同期する必要はなく必要なだけ速く転送する。この間に適当な間隔にてレーザを瞬間的に発光させると、光切断像が対応する位置に電荷が蓄積する。装置全体を暗室中に置くか、カメラレンズの前にレーザの光だけを通す干渉フィルターを置くと、レーザが当たっていない部分は電荷が発生しないため、光切断像が重ならない範囲で、いくらでも光切断像の間隔を狭く出来、さらに連続的に切れ目なく光切断像が得られるという、これまでの単なるテレビカメラを使っていたときと比べてはるかに高速な測定を可能にする画期的な方法である。
【0011】
次にリアルタイム信号処理方法の1例について説明する。この信号処理は光切断像の間隔変化分が形状の変化分に比例する事を利用して、実時間処理するためのものである。図2において、12は前置増幅器でありセンサの出力を増幅すると同時にインピーダンスの変換を行う。13は比較器でありアナログ信号を2値化し、光切断像があれば1となる。14はシフトレジスタであり、水平転送クロックによって1ライン分遅延させる。15はラッチであり今回値と前回値を保持する。16は判定器であり今回の値と前回の値の組み合わせが、(1,0)となる時のみ、1を出力しその列に於いて次の光切断像が到達した事を判定する。18は間隔積算カウント値保持用シフトレジスタであり、17は第一制御回路である。第一制御回路17は判定器16の出力が0の間は単に対応する列のレジスタを+1するだけであるが、1になると、+1した後その値を第二制御回路19へ送出する。21は基準間隔値設定器であり、20は変化分積分用レジスタである。基準間隔値は測定対象が平坦な時は光切断像は等間隔の直線となり、その間隔値を保持する。第二制御回路19は第一制御回路17よりきた今回の間隔値から基準値を減算して変化分を求め、それを20の変化分積分値シフトレジスタの値に加算する。従って、このレジスタのそれぞれのデータは測定対象の幅方向における現在の高さを現しており、時々刻々と変化する形状をリアルタイムで表示する事も可能である。22はD/A変換器であり、23は表示器である。
【0012】
以上が線状レーザ光源2と特殊カメラ5の対を1組用いて形状を測定する方法についての説明である。次に、線状レーザ光源2と特殊カメラ5の対を2組用いて形状を測定する方法について説明する。
図3における上のグラフは、線状レーザ光源2と特殊カメラ5の対を1組用いて得られたC反りした板の幅方向断面図であり、板が左側に傾いたとき、右側に傾いたとき、および傾きのないときを抜き出して表示したものである。また、図3における下のグラフは、板の左側、中心部、および右側の高さ変化を長手方向にプロットしたものである。長手方向の板の高さ変化を見る限り、板の中心部と右側においても波が発生しているように見える。ところが実際に目視で板の形状を確認したところ、板の左側においては耳波が発生していたが、中心部から右側においては、波は発生していなかった。このように板の中心部および右側において擬似的に波形状が現れるのは、板左側の耳波により板のねじれが発生し、板の高さ変動が加わるためである。
【0013】
次に、線状レーザ光源2と特殊カメラ5の対を2組、長手方向に間隔Lで近接して配置し、形状を測定する方法について説明する。板の真の形状をy=f(x)、時刻tにおける板の高さ変動をh(t)とすれば、時刻tにおける2組のレーザ−カメラ対による長手方向位置xt−L,xtにおける形状測定値y1,y2は、近似的に以下のように表される。
1(t)=f(xt−L)+h(t) ・・・(1)
2(t)=f(xt)+h(t) ・・・(2)
ここで同時刻に取り込まれた形状の差分y2−y1を計算すると、
2(t)−y1(t)=f(xt)−f(xt−L) ・・・(3)
のように、両方の対で測定された共通的な高さ変動分を差し引くことができる。カメラ間隔Lは小さいのでこれを積分することにより、真の形状f(x)を得ることができる。なお、真の形状がsin関数で近似できる場合には積分してもcos関数になり、位置が位相にしてπ/2ラジアンずれるだけなので、形状として波高さを簡易的に計算する場合には差分を計算するだけでもよい。図4は差分を積分して真の形状を計算する方法を示した図である。すなわち、距離Lだけ離れて配置された2組のレーザ−カメラ対で板の高さ変動が加わった形状を計算し、次に同時刻に得られた形状の差分Δynを計算し、すでに計算で得られている、カメラ間距離Lだけ前のデータynpに差分Δynを加えることにより、真の形状ynを計算する。通常、レーザ変位計などのセンサを距離Lだけ離して配置し、2点間の測定値の差分を積分して形状を測定する方法においては、例えば図4において距離Lだけ離れたy0pとy0の2点間でしか差分・積分処理が行えないが、本発明の方法によればカメラ1台あたりの測定間隔が密にとれるので、y0pとy0の2点間の他にy1p,y2p,・・・とy1,y2,・・・の間においても差分・積分処理を行うことが可能であり、密で精度の高い測定が可能である。
【0014】
図5は本発明の方法により図3の長手方向の形状を計算しなおしたものであり、板のねじれにより発生した板の中心部から右側にかけての擬似的な形状を抑えることができ、左側の形状を正確に計算することができた。また、図6は相対的な板の高さを256階調の輝度に変換し、高いほど白く、低いほど黒くなるように画像表示したものである。図6に示すように、これまでレーザ−カメラ対1組による測定では振動に隠れて見えなかった形状を顕在化させることができ、高精度な形状測定と画像化による形状の明確な表現が可能になった。
【0015】
なお、図1では線状レーザ光源1を、変調可能なレーザ光源と線状ビーム3を形成する光学素子が組み合わされたものとして記述したが、図7のようにレーザ光源24と線状ビームを形成する光学素子27の間に、ハーフミラー25と全反射ミラー26を介して平行な2つのレーザ光線を形成した後、光学素子27で線状ビームを得るようにしてもよい。
【0016】
【発明の効果】
本発明によれば、これまで困難であった高さ変動の加わった高速移動物体の連続的形状測定を初めて可能にした画期的発明であり、例えば鉄鋼業に於けるオンライン形状寸法計測において、従来の方式に比べてはるかに高密度な全面全長計測が可能になり、製品寸法形状の造り込み精度の向上やユーザに対する完全品質保証が実現できることになる。またコスト的に見ても本方式は簡単な装置で実現できるため、例えば熱延等で用いられているレーザ変位計を多数台並べた方式に比較して、はるかに安い設備投資で設置可能である。
【図面の簡単な説明】
【図1】本発明の全体構成を示す図である。
【図2】特殊カメラの機能と信号処理の構造を示す図である。
【図3】板の左側の形状が悪い場合に、板のねじれによって中心部から右側にかけて擬似的な形状が発生することを説明する図である。
【図4】2組のレーザ−カメラ対それぞれで測定した形状の差分を積分することにより真の形状を計算する方法を説明した図である。
【図5】差分を積分することによって図3で説明した擬似的な形状を抑制できたことを説明する図である。
【図6】差分を積分することによって、振動の中に隠れた形状を見出すことができた例を説明する図である。
【図7】本発明の実施例における別の形態での実現方法を示した図である。
【符号の説明】
1:測定対象物体 2:線状レーザ光源、
3:線状レーザビーム 4:光切断像、
5:特殊カメラ 6:速度測定用ロール、
7:回転速度測定器 8:信号処理制御盤、
9:表示装置 10:光電変換電荷積分転送部、
11:水平転送読みだし部 12:前置増幅器、
13:比較器 14:シフトレジスタ、
15:ラッチ 16:判定器、
17:第一制御回路
18:間隔積算カウント値保持用シフトレジスタ、
19:第二制御回路 20:変化分積分用シフトレジスタ、
21:基準間隔値設定器 22:D/A変換器、
23:表示器 24:レーザ光源、
25:ハーフミラー 26:全反射ミラー、
27:線状ビームに広げるための光学素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for optically measuring the shape of a strip that runs at high speed.
[0002]
[Prior art]
In the shape measurement such as the flatness of a strip that runs at high speed, such as hot-rolled steel sheet, a number of laser displacement meters are arranged in the width direction and longitudinal direction of the steel sheet, and the C warp in the width direction of the steel sheet, or the ear in the longitudinal direction. A method of measuring a shape such as a wave or a medium stretch is known (Patent Document 1). However, even if a large number of laser displacement meters are arranged, the laser displacement meters are expensive, and there are at most several measurement points in the width direction. Further, when the plate width is changed or the plate meanders, a mechanism that follows the movement of the plate is also required.
[0003]
On the other hand, as disclosed in Patent Document 2, in the method of measuring the shape of a belt-like body by an optical cutting method that combines a linear laser light source and a delay integration type linear sensor, the shape of the belt-like body running at a high speed is set in the width direction and the longitudinal direction. It is possible to measure densely in the direction, and the obtained shape can be imaged, and shapes such as ear waves and middle stretch can be displayed in a visually clear form, and a large number of laser displacement meters are arranged. Compared with the method, it is possible to realize highly accurate shape measurement with a small number of parts and at a low cost.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-1912 “Flatness Measuring Device”
[Patent Document 2]
Japanese Patent No. 2913903 “Method for Measuring Optical Shape”
[0005]
[Problems to be solved by the invention]
However, in the actual plate passing condition of the steel plate, not only simple vertical movement, but if the shape generated on one side of the steel plate is large, the plate causes torsional vibration, and the light cut image also appears to be twisted. There was a problem that the other side, which was not bad, appeared to have a pseudo shape.
In view of such problems, the present invention has an object to provide a method for accurately measuring the shape of a strip over the entire length even when height fluctuation such as torsional vibration due to the poor shape of the strip occurs. To do.
[0006]
[Means for Solving the Problems]
The present invention, output using the linear laser light which is modulated forms a light section image by irradiating a linear laser beam in the width direction on the strip, the light cut image on the said strip while shifting One not a predetermined interval, by imaging overlapped using a linear sensor delay integration type which is disposed toward the horizontal direction in the width direction of the strip of the array of photoelectric conversion elements, of the strip thickness direction of the a shape measuring method of light section method to measure the shape, is disposed at a position separated a predetermined distance L a plurality of pairs in the longitudinal direction of the band-like body and said linear sensor and the linear laser light source, the A linear laser light source is made to emit light at a predetermined time interval, and a shape measurement value that is a height change in the width direction of the belt at each longitudinal position separated by a predetermined interval L is obtained based on the output from each linear sensor. , wherein the shape measured by each pair at the same time t The difference was calculated for each same position in the width direction of the strip for value, the said difference for each position of each width direction by integrating the time t, the height variation due to vertical vibration and the torsional vibration of the strip which moves at high speed This is an optical shape measuring method characterized in that the true shape excluding the point is densely measured over the entire surface in the width direction and the longitudinal direction of the belt-like body.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, it demonstrates with an effect | action based on the Example of this invention. FIG. 1 shows the overall configuration of an apparatus used in the present invention. Reference numeral 1 denotes a steel plate to be measured, which has a shape defect such as an ear wave or a middle elongation. Reference numeral 2 denotes a linear laser light source. When a beam 3 radiated from the fan is irradiated onto a steel plate as a measurement target, a light cut image 4 is formed along the surface shape of the measurement target. Reference numeral 5 denotes a camera having a sequential integration type linear sensor, which will be described in detail later. Reference numeral 6 denotes a measurement roll for measuring the conveyance speed of the measurement object, and reference numeral 7 denotes a rotational speed measuring device. A signal processing and control device 8 calculates the moving distance of the target object from the rotational speed signal of the rotational speed measuring device 7 and causes the linear laser light source 2 to emit light at a predetermined distance and simultaneously send it to the camera 5. The clock is controlled to obtain a predetermined video signal. This signal is processed at high speed to continuously obtain shape values. Reference numeral 9 denotes a measurement result display device.
[0008]
In the present embodiment, two pairs of the linear laser light source 2 and the special camera 5 are used, the difference in shape obtained from each pair is taken, and this is integrated to reduce the influence of the fluctuation in the height of the strip. A method of measuring the true shape that has been eliminated will be described later. This will be described in detail later. First, a method of measuring the shape using a pair of the linear laser light source 2 and the special camera 5 will be described.
[0009]
First, the special camera 5 will be described. FIG. 2 is a diagram for explaining the function of the special camera and the structure of signal processing. Reference numeral 10 denotes a photoelectric conversion charge integration transfer unit in the two-dimensional semiconductor image pickup device in the light receiving unit of the camera. The two-dimensionally arranged photoelectric conversion elements have a vertical charge transfer section for each column, and receive and integrate charges from the respective photoelectric conversion elements in the middle of the transfer. Reference numeral 11 denotes a horizontal transfer reading unit whose output has the same form as a normal linear array.
[0010]
Conventionally, when this type of sensor synchronizes the speed at which the real image to be imaged moves in the vertical direction on the photoelectric conversion surface and the transfer speed in the vertical direction, it is equivalently exposed for a long time, and the sensitivity and S / N ratio are reduced. Because it can be improved dramatically, it is used for ultra-high-speed shooting and low-light shooting.
However, in the present invention, the above elements are used in completely different forms. That is, it is not necessary to synchronize the target object and the vertical transfer speed, and transfer is performed as fast as necessary. When the laser is instantaneously emitted at an appropriate interval during this period, electric charges are accumulated at the position corresponding to the light section image. If the entire device is placed in a dark room or if an interference filter that passes only the laser beam is placed in front of the camera lens, no charge is generated in the part that is not hit by the laser. A revolutionary method that enables a much faster measurement than when using a simple TV camera so far, where the interval between cut images can be narrowed, and light cut images can be obtained continuously and continuously. It is.
[0011]
Next, an example of the real-time signal processing method will be described. This signal processing is for real-time processing utilizing the fact that the interval change of the light section image is proportional to the shape change. In FIG. 2, a preamplifier 12 amplifies the output of the sensor and simultaneously converts the impedance. A comparator 13 binarizes the analog signal and becomes 1 if there is a light section image. A shift register 14 is delayed by one line by a horizontal transfer clock. A latch 15 holds the current value and the previous value. Reference numeral 16 denotes a determiner, which outputs 1 only when the combination of the current value and the previous value is (1, 0), and determines that the next light section image has arrived in that column. Reference numeral 18 denotes an interval integration count value holding shift register, and reference numeral 17 denotes a first control circuit. The first control circuit 17 simply increments the corresponding column register while the output of the determiner 16 is 0, but when it becomes 1, the value is incremented by 1 and the value is sent to the second control circuit 19. Reference numeral 21 is a reference interval value setter, and 20 is a change integration register. When the measurement target is flat, the reference interval value is a straight line with equal intervals, and the interval value is held. The second control circuit 19 subtracts the reference value from the current interval value from the first control circuit 17 to obtain the change amount, and adds it to the value of the 20 change integral value shift register. Therefore, each data of this register represents the current height in the width direction of the measurement object, and it is possible to display a shape that changes every moment in real time. 22 is a D / A converter and 23 is a display.
[0012]
This completes the description of the method for measuring the shape using a pair of the linear laser light source 2 and the special camera 5. Next, a method for measuring the shape using two pairs of the linear laser light source 2 and the special camera 5 will be described.
The upper graph in FIG. 3 is a cross-sectional view in the width direction of a C-curved plate obtained by using a pair of a linear laser light source 2 and a special camera 5, and when the plate is tilted to the left, the plate is tilted to the right. This is an extracted display when there is no tilt and when there is no tilt. In addition, the lower graph in FIG. 3 is a plot of height changes on the left side, center portion, and right side of the plate in the longitudinal direction. As long as the change in the height of the plate in the longitudinal direction is observed, it appears that waves are also generated at the center and right side of the plate. However, when the shape of the plate was confirmed visually, an ear wave was generated on the left side of the plate, but no wave was generated on the right side from the center. The reason why the waveform appears in a pseudo manner at the central portion and the right side of the plate is that the plate is twisted due to the ear wave on the left side of the plate and the height of the plate is changed.
[0013]
Next, a method of measuring the shape by arranging two pairs of the linear laser light source 2 and the special camera 5 close to each other in the longitudinal direction at an interval L will be described. If the true shape of the plate is y = f (x) and the height variation of the plate at time t is h (t), the longitudinal position x t -L, x by the two laser-camera pairs at time t The shape measurement values y 1 and y 2 at t are approximately expressed as follows.
y 1 (t) = f ( x t -L) + h (t) ··· (1)
y 2 (t) = f (x t ) + h (t) (2)
Here, if the difference y 2 −y 1 of the shapes captured at the same time is calculated,
y 2 (t) −y 1 (t) = f (x t ) −f (x t −L) (3)
Thus, the common height variation measured in both pairs can be subtracted. Since the camera interval L is small, the true shape f (x) can be obtained by integrating this. If the true shape can be approximated by the sine function, even if it is integrated, it becomes a cos function, and the position is only shifted by π / 2 radians in phase. You can just calculate FIG. 4 is a diagram showing a method of calculating the true shape by integrating the difference. That is, two sets of laser that are spaced apart by a distance L - height variations of the plate in the camera pair calculates the applied shape, and then calculates the difference [Delta] y n obtained shape at the same time, already computed The true shape y n is calculated by adding the difference Δy n to the data y np that is obtained by the distance L between cameras. Usually, in a method of measuring a shape by integrating sensors such as laser displacement meters separated by a distance L and integrating a difference between measured values between two points, for example, y 0p and y separated by a distance L in FIG. Difference / integration processing can be performed only between two points of 0 , but according to the method of the present invention, the measurement interval per camera can be taken close, so y 1p in addition to y 0p and y 0 , Y 2p ,... And y 1 , y 2 ,... Can be subjected to difference / integration processing, and dense and highly accurate measurement is possible.
[0014]
FIG. 5 shows a recalculation of the shape in the longitudinal direction of FIG. 3 according to the method of the present invention, and the pseudo shape from the center of the plate to the right side caused by the twisting of the plate can be suppressed. The shape could be calculated accurately. FIG. 6 shows the relative plate height converted to 256-level luminance, and an image is displayed so that the higher the whiteness is, the lower the blackness is. As shown in FIG. 6, it is possible to reveal shapes that have been hidden by vibrations until now using a pair of laser-cameras, making it possible to express shapes clearly with high-precision shape measurement and imaging. Became.
[0015]
In FIG. 1, the linear laser light source 1 is described as a combination of a laser light source that can be modulated and an optical element that forms the linear beam 3. However, as shown in FIG. Two parallel laser beams may be formed between the optical element 27 to be formed via the half mirror 25 and the total reflection mirror 26, and then a linear beam may be obtained by the optical element 27.
[0016]
【The invention's effect】
According to the present invention, it is an epoch-making invention that enables continuous shape measurement of a high-speed moving object to which height fluctuation has been added, which has been difficult until now, for example, in online shape measurement in the steel industry, Compared with the conventional method, it is possible to measure the entire length of the entire surface with much higher density, and to improve the accuracy of building the product dimension and shape and to realize the complete quality assurance for the user. In terms of cost, this method can be realized with a simple device. For example, it can be installed with much lower capital investment than a method in which a large number of laser displacement meters used in hot rolling are arranged. is there.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of the present invention.
FIG. 2 is a diagram illustrating a function of a special camera and a structure of signal processing.
FIG. 3 is a diagram illustrating that a pseudo shape is generated from the center to the right side due to twisting of the plate when the shape of the left side of the plate is bad.
FIG. 4 is a diagram for explaining a method of calculating a true shape by integrating a shape difference measured by each of two sets of laser-camera pairs.
FIG. 5 is a diagram illustrating that the pseudo shape described in FIG. 3 can be suppressed by integrating the difference.
FIG. 6 is a diagram for explaining an example in which a shape hidden in vibration can be found by integrating the difference.
FIG. 7 is a diagram showing an implementation method in another form in the embodiment of the present invention.
[Explanation of symbols]
1: Object to be measured 2: Linear laser light source,
3: Linear laser beam 4: Optical cut image,
5: Special camera 6: Speed measurement roll,
7: Rotational speed measuring instrument 8: Signal processing control panel,
9: Display device 10: Photoelectric conversion charge integration transfer unit,
11: Horizontal transfer reading unit 12: Preamplifier,
13: Comparator 14: Shift register,
15: Latch 16: Judgment device
17: First control circuit 18: Shift register for holding interval integration count value,
19: Second control circuit 20: Shift register for change integration,
21: Reference interval value setting device 22: D / A converter,
23: Display 24: Laser light source,
25: Half mirror 26: Total reflection mirror,
27: Optical element for spreading into a linear beam

Claims (1)

出力が変調された線状レーザ光源を用い、帯状体上にその幅方向に線状のレーザビームを照射して光切断像を形成し、光切断像を前記帯状体上で所定の間隔ずつずらしながら、光電変換素子の配列の水平方向を帯状体の幅方向に向けて配設した遅延積分型のリニアセンサを用いて重ね撮像して、帯状体の厚さ方向の形状を測定する光切断方式の形状測定方法であって、前記線状レーザ光源と前記リニアセンサ複数の対を前記帯状体の長手方向に所定の間隔L離れた位置に配設し、該線状レーザ光源を所定の時間間隔で発光させ、各リニアセンサからの出力に基づいて、所定の間隔L離れた長手方向位置それぞれにおける帯状体の幅方向の高さ変化である形状測定値を求め、同時刻tにそれぞれの対により測定された前記形状測定値について帯状体の幅方向の同じ位置ごとに差分を計算し各幅方向の位置ごとの該差分を時刻tについて積算して、高速に移動する帯状体の上下振動やねじれ振動による高さ変動を除いた真の形状を、帯状体の幅方向と長手方向の全面にわたって密に測定することを特徴とする光学的形状測定方法。Output using the linear laser light which is modulated forms a light section image by irradiating a linear laser beam in the width direction on the strip, not a predetermined interval the light cut image on the strip Measure the shape of the strip in the thickness direction by superimposing it using a delay integration type linear sensor arranged with the horizontal direction of the array of photoelectric conversion elements facing the width of the strip while shifting. a shape measuring method of light section method, is disposed at a position separated a predetermined distance L a plurality of pairs in the longitudinal direction of the band-like body and said linear sensor and the linear laser light source, the linear laser light source At a predetermined time interval, and based on the output from each linear sensor, a shape measurement value that is a height change in the width direction of the strip at each longitudinal position separated by the predetermined interval L is obtained, and at the same time t the shape measurement value measured by each pair Nitsu The difference was calculated for each same position in the width direction of the strip Te, the said difference for each position of each width direction by integrating the time t, the height variation due to vertical vibration and the torsional vibration of the strip which moves at high speed An optical shape measuring method, characterized in that the true shape removed is closely measured over the entire surface in the width direction and the longitudinal direction of the belt-like body.
JP2003014533A 2003-01-23 2003-01-23 Optical shape measurement method Expired - Fee Related JP4116887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014533A JP4116887B2 (en) 2003-01-23 2003-01-23 Optical shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014533A JP4116887B2 (en) 2003-01-23 2003-01-23 Optical shape measurement method

Publications (2)

Publication Number Publication Date
JP2004226240A JP2004226240A (en) 2004-08-12
JP4116887B2 true JP4116887B2 (en) 2008-07-09

Family

ID=32902557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014533A Expired - Fee Related JP4116887B2 (en) 2003-01-23 2003-01-23 Optical shape measurement method

Country Status (1)

Country Link
JP (1) JP4116887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220683A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Method for producing lengthy goods and visual inspection device
CN102870506A (en) * 2010-05-04 2013-01-09 Lpkf激光和电子股份公司 Method for partially stripping a defined area of a conductive layer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194999B2 (en) 2004-07-26 2007-03-27 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP4690727B2 (en) * 2005-01-06 2011-06-01 新日本製鐵株式会社 Optical shape measurement method
JP2009110169A (en) * 2007-10-29 2009-05-21 C Micro:Kk Medicament inspection apparatus and image processing method
JP5294891B2 (en) * 2009-01-13 2013-09-18 株式会社神戸製鋼所 Image processing method for extracting uneven characters
KR101129880B1 (en) * 2009-07-24 2012-03-23 현대제철 주식회사 Optical apparatus for measuring flatness
JP2011163852A (en) * 2010-02-08 2011-08-25 Kobe Steel Ltd Visual inspection device
JP5595969B2 (en) * 2011-04-26 2014-09-24 住友重機械工業株式会社 Straightening press
JP5494758B2 (en) * 2012-08-24 2014-05-21 東芝三菱電機産業システム株式会社 Shape measuring device
CN106249509B (en) * 2016-07-29 2019-02-05 深圳市路远自动化设备有限公司 Line for intelligent paste machine clears off source
JP2018119851A (en) * 2017-01-25 2018-08-02 東芝三菱電機産業システム株式会社 Flatness degree measurement device
JP7431195B2 (en) 2021-06-03 2024-02-14 東芝三菱電機産業システム株式会社 Inspection device for planar shape measurement system
KR102566740B1 (en) * 2021-09-28 2023-08-16 현대제철 주식회사 System and method for measuring flatness of steel plate
CN118209561A (en) * 2024-05-21 2024-06-18 宁德时代新能源科技股份有限公司 Coil stock detection method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220683A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Method for producing lengthy goods and visual inspection device
CN102870506A (en) * 2010-05-04 2013-01-09 Lpkf激光和电子股份公司 Method for partially stripping a defined area of a conductive layer
CN102870506B (en) * 2010-05-04 2015-04-08 Lpkf激光和电子股份公司 Method for partially stripping a defined area of a conductive layer

Also Published As

Publication number Publication date
JP2004226240A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4116887B2 (en) Optical shape measurement method
JP4690727B2 (en) Optical shape measurement method
US5135308A (en) Method and apparatus for non-contact measuring of object surfaces
JP4647867B2 (en) Apparatus and method used to evaluate a target larger than the sensor measurement aperture
US7315383B1 (en) Scanning 3D measurement technique using structured lighting and high-speed CMOS imager
JP3629532B2 (en) Method and system for measuring real-time shape of continuously moving object
JP2913903B2 (en) Optical shape measurement method
JP4197340B2 (en) 3D shape measuring device
JPWO2019059236A1 (en) Shape measurement sensor
JPH10122842A (en) Method for measuring flatness of steel plate
KR102682167B1 (en) Apparatus and method for testing rod-shaped articles of the tobacco processing industry
JP3048107B2 (en) Method and apparatus for measuring object dimensions
JPH11118435A (en) Wheel measuring device
JPH0443204B2 (en)
JPH08201034A (en) Method and device for measuring non-contact surface shape
KR0129054B1 (en) Measuring method and apparatus for plate transformation of steel plate
JP2001004367A (en) Distance measurement computing device
JPH1062139A (en) Shape measuring equipment
WO2023119816A1 (en) Solid-state imaging device, shape-measuring device, and shape-measuring method
JPH06258040A (en) Laser displacement meter
JP2969466B2 (en) Monitor device for speckle length meter
JPS6253764B2 (en)
JPS6134601B2 (en)
JPH02190083A (en) Offset value measurement and offset correction method for infrared ray image pickup device
JPS6010563B2 (en) How to measure the flatness of a flat plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4116887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees