JPH09100883A - Continuously variable transmission by differential gear mechanism - Google Patents

Continuously variable transmission by differential gear mechanism

Info

Publication number
JPH09100883A
JPH09100883A JP7291610A JP29161095A JPH09100883A JP H09100883 A JPH09100883 A JP H09100883A JP 7291610 A JP7291610 A JP 7291610A JP 29161095 A JP29161095 A JP 29161095A JP H09100883 A JPH09100883 A JP H09100883A
Authority
JP
Japan
Prior art keywords
rotation
differential gear
shaft
paths
gear mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7291610A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasakura
寛士 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7291610A priority Critical patent/JPH09100883A/en
Publication of JPH09100883A publication Critical patent/JPH09100883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent slippage despite of strong force, by providing two paths having different gear ratio only when one side or the other side path is fixed, and distributing input rotation to two paths. SOLUTION: The revolution of the planetary pinion 3 of a first differential gear mechanism 19, as one of a rotation movement transmission paths; is transmitted as the revolution of the planetary pinion 16 of a second differential gear mechanism 20 via a carrier 6, a rotation spindle 7, and a carrier 8. Also, the rotation of the internal gear 4 of the differential gear mechanism 19, as one more rotation movement transmission path, is transmitted to the internal gear 15 of the differential gear mechanism 20 via gears 5 and 9, a rotation spindle 10, bevel gears 11 and 12, a worm 13, and a worm wheel 14. In the gear mechanism 20, rotation, transmitted from the differential gear mechanism 19 is extracted to an output spindle 18 from a sun gear 17 via two paths, in a primarily joined form. Consequently, because of continuously variable transmission, anxiety, slippage in a transmission path, like transmission utilizing friction force, can be eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は差動歯車機構を用い入力
軸回転数に対する出力軸回転数を無段階に制御する無段
変連装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuously variable transmission device which uses a differential gear mechanism to continuously control the output shaft rotational speed with respect to the input shaft rotational speed.

【0002】[0002]

【従来の技術】従来無段変速装置は一般的にはリングコ
ーン方式、ベルトプーリ方式が代表的なものとして挙げ
られるが、双方共2軸間で回転力を伝達するための摩擦
媒体の回転力伝達径を変化させることにより無段変速を
行っている。従って力の伝達に摩擦力を利用するため、
大きな力の伝達には不十分であった。
2. Description of the Related Art Conventionally, as a continuously variable transmission, a ring cone system and a belt pulley system are generally mentioned as typical ones, but both of them have a rotational force of a friction medium for transmitting a rotational force between two axes. Continuously shifting is performed by changing the transmission diameter. Therefore, in order to use frictional force to transmit force,
It was not enough to transmit a large force.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来技術
の問題を解決するために考案されたものであり、歯車と
いう剛体により力を伝達することにより、力の伝達を摩
擦力にたよらず大きな力でもスリップすることがない無
段変速装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been devised to solve the above-mentioned problems of the prior art. By transmitting a force by a rigid body such as a gear, the force transmission is large regardless of frictional force. An object of the present invention is to provide a continuously variable transmission that does not slip even with force.

【0004】[0004]

【課題を解決するための手段】本発明は2組の差動歯車
装置からなり、第1の差動歯車装置の任意の1つの軸を
入力軸とし、残る2軸を各々動力伝達の経路として第2
の差動歯車装置の任意の2軸に連結し、第2の差動歯車
装置の残る1軸より出力を取り出す装置である。上記第
1と第2の差動歯車装置間の動力伝達のための二つの経
路は、一方の経路のみを固定したときと他方の経路のみ
を固定した時とでは、入力軸と出力軸の間で異なる変速
比を持ち、上記二つの動力伝達のための経路に入力回転
を配分制御することに特徴を有している。
SUMMARY OF THE INVENTION The present invention comprises two sets of differential gears, where any one shaft of the first differential gear is used as an input shaft and the remaining two shafts are used as power transmission paths. Second
This is a device that is connected to any two shafts of the differential gear set of 1 above and takes out the output from the remaining one shaft of the second differential gear set. The two paths for power transmission between the first and second differential gear units are between the input shaft and the output shaft when only one path is fixed and when the other path is fixed. And has different gear ratios, and is characterized in that the input rotation is distributed and controlled to the paths for transmitting the two powers.

【0005】また上記の無段変速装置において2組の差
動歯車装置間の二つの動力伝達経路の内、一方の経路内
にウオームギアを利用することが好ましい。
In the above continuously variable transmission, it is preferable to use a worm gear in one of the two power transmission paths between the two sets of differential gear units.

【0006】[0006]

【作用】本発明の無段変速装置において2組の差動歯車
装置間の二つの動力伝達経路は、一方の経路のみを固定
したときと他方の経路のみを固定した時とでは、入力軸
回転数に対する出力軸回転数の比率が異なり、減速比が
大きい方の動力伝達経路は低速回転伝達経路、他方は高
速回転伝達経路として作用する。この二つの動力伝達経
路は入力軸と出力軸の間で常に連結されているので両方
の経路を同時に使用し回転力を伝達できるのである。
In the continuously variable transmission of the present invention, the two power transmission paths between the two sets of differential gears are rotated when the one path is fixed and when the other path is fixed. The ratio of the output shaft rotation number to the number is different, and the power transmission path having the larger reduction ratio acts as the low speed rotation transmission path, and the other acts as the high speed rotation transmission path. Since the two power transmission paths are always connected between the input shaft and the output shaft, both paths can be used simultaneously to transmit the rotational force.

【0007】出力軸負荷が小さい時は高速回転伝達経路
が主たる動力伝達経路として働き、出力軸負荷が大きく
なるにつれて伝達動力を低速回転伝達経路に配分してい
くことにより入力軸回転数に対する出力軸回転数を低く
し、大きなトルクを発生させることができるのである。
When the load on the output shaft is small, the high-speed rotation transmission path acts as the main power transmission path, and as the output shaft load increases, the transmitted power is distributed to the low-speed rotation transmission path, whereby the output shaft relative to the input shaft rotation speed is output. The rotation speed can be reduced and a large torque can be generated.

【0008】[0008]

【実施例】実施例について図面を参照して説明する。図
1は本発明の無段変速装置の第1実施例を斜視図で示す
概略構成図である。第1の差動歯車装置19は太陽歯車
2、遊星ピニオン3、内歯車4より構成され太陽歯車2
は入力軸1に固定されている。遊星ピニオン3はキャリ
ア6により回転自在に支持されている。キャリア6とキ
ャリア8は回転軸7に固定されている。キャリア8は第
2の差動歯車装置20の遊星ピニオン16を回転自在に
支持している。歯車5は内歯車4に固定されている。歯
車9は回転軸10に固定され、歯車5と噛み合ってい
る。かさ歯車11は回転軸10に固定され、かさ歯車1
2と噛み合っている。かさ歯車12はウオーム13と固
定されている。ウオーム13と噛み合うウオームホイー
ル14は第2の差動歯車装置20の内歯車15に固定さ
れている。第2の差動歯車装置20の太陽歯車17は出
力軸18に固定されている。
An embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a perspective view of a first embodiment of a continuously variable transmission according to the present invention. The first differential gear device 19 comprises a sun gear 2, a planetary pinion 3, and an internal gear 4
Is fixed to the input shaft 1. The planet pinion 3 is rotatably supported by the carrier 6. The carrier 6 and the carrier 8 are fixed to the rotating shaft 7. The carrier 8 rotatably supports the planet pinion 16 of the second differential gear unit 20. The gear 5 is fixed to the internal gear 4. The gear 9 is fixed to the rotating shaft 10 and meshes with the gear 5. The bevel gear 11 is fixed to the rotating shaft 10, and the bevel gear 1
2 is engaged. The bevel gear 12 is fixed to the worm 13. The worm wheel 14 that meshes with the worm 13 is fixed to the internal gear 15 of the second differential gear device 20. The sun gear 17 of the second differential gear device 20 is fixed to the output shaft 18.

【0009】入力軸1を回転させると第1の差動歯車装
置19が運動する。回転運動伝達経路の一つとして第1
の差動歯車装置19の遊星ピニオン3の公転はキャリア
6、回転軸7、キャリア8を経て第2の差動歯車装置2
0の遊星ピニオン16の公転として伝達される。またも
う一つの回転運動伝達経路として第1の差動歯車装置1
9の内歯車4の回転は歯車5、歯車9、回転軸10、か
さ歯車11、かさ歯車12、ウオーム13、ウオームホ
イール14を経て第2の差動歯車装置20の内歯車15
に伝達される。第2の差動歯車装置20では上記二つの
経路を経て第一の差動歯車装置19より伝達された回転
を一次結合した形で太陽歯車17から出力軸18へと取
り出す。
When the input shaft 1 is rotated, the first differential gear device 19 moves. First as one of the rotational motion transmission paths
The revolution of the planetary pinion 3 of the differential gear device 19 of the second differential gear device 2 passes through the carrier 6, the rotation shaft 7, and the carrier 8.
It is transmitted as the revolution of the planetary pinion 16 of zero. In addition, the first differential gear device 1 is used as another rotary motion transmission path.
The rotation of the internal gear 4 of the gear 9 passes through the gear 5, the gear 9, the rotary shaft 10, the bevel gear 11, the bevel gear 12, the worm 13, and the worm wheel 14, and the internal gear 15 of the second differential gear device 20.
Is transmitted to In the second differential gear device 20, the rotation transmitted from the first differential gear device 19 via the above two paths is taken out from the sun gear 17 to the output shaft 18 in a form of primary coupling.

【0010】二つの差動歯車装置間の回転軸7を含む経
路は高速回転伝達経路として作用し、回転軸10を含む
経路は減速比の大きい低速回転伝達経路として作用す
る。第一の差動歯車装置19に入力された回転は上記二
つの高速回転伝達経路と低速回転伝達経路に配分された
後に、第2の差動歯車装置20で合成され、出力軸18
に取り出すことができる。従って任意の出力軸回転数は
入力軸からの回転を上記二つの高速回転伝達経路と低速
回転伝達経路に配分割合を制御することにより得ること
ができる。
The path including the rotating shaft 7 between the two differential gears acts as a high speed rotation transmitting path, and the path including the rotating shaft 10 acts as a low speed rotation transmitting path having a large reduction ratio. The rotation input to the first differential gear device 19 is distributed to the two high-speed rotation transmission paths and the low-speed rotation transmission path, and then combined by the second differential gear device 20 to output the output shaft 18
Can be taken out. Therefore, an arbitrary output shaft rotation speed can be obtained by controlling the distribution ratio of the rotation from the input shaft to the two high speed rotation transmission paths and the low speed rotation transmission path.

【0011】回転軸10を含む低速回転伝達経路内に設
けられているウオーム13とウオームホイール14の間
ではすべり伝達による摩擦負荷があるので、回転軸10
を含む低速回転伝達経路を回転させる際の回転抵抗とな
る。
Since there is a frictional load due to slip transmission between the worm 13 and the worm wheel 14 provided in the low speed rotation transmission path including the rotation shaft 10, the rotation shaft 10
It becomes a rotation resistance when the low speed rotation transmission path including is rotated.

【0012】説明のため図1の装置内のすべての回転軸
の回転による摩擦損失、ウオームギアを除く歯車の伝達
損失、すべての回転体の慣性が十分小さく、無視できる
と仮定すると、出力軸18の負荷が無い場合は回転軸1
0を含む低速回転伝達経路は上記回転抵抗があるため回
転しない。従って入力された回転は回転軸7を含む高速
回転伝達経路によってのみ出力軸まで伝達される。上記
回転抵抗に反して回転軸10を含む低速回転伝達経路を
回転させるに十分な出力軸負荷がかかると、入力回転は
回転軸10を含む低速回転伝達経路に出力軸負荷に応じ
て配分される。つまり出力軸負荷の大きさに応じた入力
軸回転数に対する出力軸回転数の割合はウオームギによ
って制御される。
For the sake of explanation, it is assumed that the friction loss due to the rotation of all the rotary shafts in the apparatus of FIG. 1, the transmission loss of the gears except the worm gear, and the inertia of all the rotating bodies are sufficiently small and can be ignored. Rotating shaft 1 when there is no load
The low-speed rotation transmission path including 0 does not rotate because of the rotation resistance. Therefore, the input rotation is transmitted to the output shaft only by the high-speed rotation transmission path including the rotation shaft 7. When the output shaft load sufficient to rotate the low-speed rotation transmission path including the rotation shaft 10 is applied against the rotation resistance, the input rotation is distributed to the low-speed rotation transmission path including the rotation shaft 10 according to the output shaft load. . That is, the ratio of the output shaft rotation speed to the input shaft rotation speed according to the magnitude of the output shaft load is controlled by the worm.

【0013】また他の実施例として、図2は本発明の無
段変速装置の第2実施例を斜視図で示す概略構成図であ
り、前記第1実施例と同一構成部分に同一符号を付して
重複する説明を省略して述べる。図2の第2実施例は図
1の第1実施例に制動装置21を付加したもので、制動
装置21を働かせるとキャリア8に制動がかかり、その
結果回転軸7を含む高速回転伝達経路全体に制動がかか
るため、入力軸1に入力された回転は回転軸10を含む
低速回転伝達経路を主たる動力伝達経路として出力軸1
8に取り出すことができる。つまり制動装置21を働か
せると回転軸7を含む高速回転伝達経路の回転が制限さ
れ入力軸1と出力軸18の回転比率に制約を与えること
が選択できる。
As another embodiment, FIG. 2 is a schematic configuration diagram showing a perspective view of a second embodiment of the continuously variable transmission according to the present invention, in which the same components as those in the first embodiment are designated by the same reference numerals. The redundant description will be omitted. In the second embodiment of FIG. 2, a braking device 21 is added to the first embodiment of FIG. 1, and when the braking device 21 is activated, the carrier 8 is braked, and as a result, the entire high-speed rotation transmission path including the rotary shaft 7 is applied. Since braking is applied to the output shaft 1, the rotation input to the input shaft 1 uses the low speed rotation transmission path including the rotation shaft 10 as a main power transmission path.
8 can be taken out. That is, when the braking device 21 is operated, the rotation of the high-speed rotation transmission path including the rotation shaft 7 is limited, and it is possible to select to restrict the rotation ratio of the input shaft 1 and the output shaft 18.

【0014】また他の実施例として、図3は本発明の無
段変速装置の第3実施例を斜視図で示す概略構成図であ
り、前記第1実施例と同一構成部分に同一符号を付して
重複する説明を省略して述べる。図3の第3実施例は図
1の第1実施例に歯車22と歯車23を付加したもので
ある。歯車22はキャリア6に固定されている。歯車2
3は回転軸10に回転を伝達し、且つ軸方向に滑動させ
ることにより歯車22と選択的に噛み合わせることがで
きる。歯車23を滑動させ歯車22と噛み合わせると、
入力軸1より入力された回転は差動歯車装置19で回転
軸7を含む高速回転伝達経路と回転軸10を含む低速回
転伝達経路に出力軸負荷の大きさに関係なく一定割合で
配分された後、差動歯車装置20で合成され出力軸18
の回転となる。つまり2組の差動歯車装置間の二つの動
力伝達経路の回転比率を制限することにより入力軸1と
出力軸18の回転比率に制約を与えることが選択でき
る。
As another embodiment, FIG. 3 is a schematic configuration diagram showing a perspective view of a third embodiment of the continuously variable transmission according to the present invention, and the same components as those in the first embodiment are designated by the same reference numerals. The redundant description will be omitted. The third embodiment of FIG. 3 is obtained by adding a gear 22 and a gear 23 to the first embodiment of FIG. The gear 22 is fixed to the carrier 6. Gear 2
The gear 3 can be selectively meshed with the gear 22 by transmitting the rotation to the rotary shaft 10 and sliding the same in the axial direction. When the gear 23 is slid and meshed with the gear 22,
The rotation input from the input shaft 1 is distributed by the differential gear device 19 to the high-speed rotation transmission path including the rotation shaft 7 and the low-speed rotation transmission path including the rotation shaft 10 at a constant ratio regardless of the magnitude of the output shaft load. After that, the output shaft 18 is synthesized by the differential gear device 20.
Rotation. That is, it is possible to limit the rotation ratio of the two power transmission paths between the two sets of differential gear devices to restrict the rotation ratio of the input shaft 1 and the output shaft 18.

【0015】上記第3実施例において回転軸7を含む高
速回転伝達経路と回転軸10を含む低速回転伝達経路を
連動させることにより入力軸1と出力軸18の回転比率
を制約しているが本発明の構成上入力軸1、出力軸1
8、回転軸7を含む高速回転伝達経路内の任意の軸、回
転軸10を含む低速回転伝達経路内の任意の軸の四つの
軸の内2軸を連動させると他のすべての軸が連動する。
従って回転軸7を含む高速回転伝達経路と回転軸10を
含む低速回転伝達経路を連動させるためには第3実施例
のように直接連動させなくても間接的に他の軸との連動
によっても実現でき、その場合も結果は同様に入力軸1
と出力軸18の回転比率に制約を与えることができる。
In the third embodiment, the rotation ratio of the input shaft 1 and the output shaft 18 is restricted by interlocking the high speed rotation transmission path including the rotation shaft 7 and the low speed rotation transmission path including the rotation shaft 10. Due to the configuration of the invention, the input shaft 1 and the output shaft 1
8, any of the four axes of the arbitrary axis in the high-speed rotation transmission path including the rotation axis 7 and the arbitrary axis in the low-speed rotation transmission path including the rotation axis 10 are interlocked with all other axes. To do.
Therefore, in order to interlock the high-speed rotation transmission path including the rotation shaft 7 and the low-speed rotation transmission path including the rotation shaft 10, it is possible to indirectly interlock with other shafts without directly interlocking as in the third embodiment. Can be realized, and in that case the result is input shaft 1 as well.
And the rotation ratio of the output shaft 18 can be restricted.

【0016】上記三つの実施例においては、入力軸1を
太陽歯車2にとってあるが差動歯車装置19の他の軸を
選択することができる。出力軸18は太陽歯車17にと
ってあるが差動歯車装置20の他の軸を選択することが
できる。回転軸7を含む高速回転伝達経路と回転軸10
を含む低速回転伝達経路についても同様であり、それぞ
れ差動歯車装置19の入力軸以外の1軸と作動歯車装置
20の出力軸以外の1軸を組み合わせることができるの
は勿論のことである。また本発明のすべての実施例にお
いて差動歯車装置に平行軸歯車機構を用いたが、自動車
等に用いられるかさ歯車のごとき交差軸歯車を利用した
差動歯車装置を使用することができる。
In the above three embodiments, the input shaft 1 is the sun gear 2, but another shaft of the differential gear device 19 can be selected. The output shaft 18 is for the sun gear 17, but another shaft of the differential gear unit 20 can be selected. High-speed rotation transmission path including rotating shaft 7 and rotating shaft 10
The same applies to the low-speed rotation transmission path including the above. Of course, one shaft other than the input shaft of the differential gear device 19 and one shaft other than the output shaft of the actuating gear device 20 can be combined. Further, although the parallel shaft gear mechanism is used for the differential gear device in all the embodiments of the present invention, a differential gear device using a cross shaft gear such as a bevel gear used in an automobile or the like can be used.

【0017】[0017]

【発明の効果】以上に説明したように本発明によれば、
差動歯車装置による無段変速であるため摩擦力を利用し
た伝達のように伝達経路内でスリップする心配がなく高
トルクの伝達ができるので自動車、電車等に利用でき
る。また動力伝達経路を装置内部で二系統に分けている
ので広範囲の変速比が得られる。その上歯車による伝達
であるため騒音の発生が少ない。
According to the present invention as described above,
Since the continuously variable transmission is performed by the differential gear device, it is possible to transmit high torque without the risk of slipping in the transmission path unlike transmission using frictional force, so that it can be used for automobiles, trains, etc. Further, since the power transmission path is divided into two systems inside the device, a wide range of gear ratio can be obtained. In addition, since it is transmitted by gears, it produces less noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明の第2実施例の斜視図である。FIG. 2 is a perspective view of a second embodiment of the present invention.

【図3】本発明の第3実施例の斜視図である。FIG. 3 is a perspective view of a third embodiment of the present invention.

【符号の脱明】[Decoding of sign]

1 入力軸 2、3、4、19 第1の差動歯車装置 5、9 歯車 6、8 キャリア 7、10 回転軸 11、12 かさ歯車 13、14 ウオームギア 15、16、17、20 第2の差動歯車装置 18 出力軸 21 制動装置 22、23 歯車 1 Input Shaft 2, 3, 4, 19 First Differential Gear Device 5, 9 Gear 6, 8 Carrier 7, 10 Rotation Shaft 11, 12 Bevel Gear 13, 14 Worm Gear 15, 16, 17, 20 Second Difference Dynamic gear device 18 Output shaft 21 Braking device 22, 23 Gear

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2組の差動歯車装置からなり、第1の差
動歯車装置の任意の1つの軸を入力軸とし、残る2軸を
各々動力伝達の経路として第2の差動歯車装置の任意の
2軸に連結し、第2の差動歯車装置の残る1軸より出力
を取り出す装置である。上記第1と第2の差動歯車装置
間の動力伝達のための二つの経路は、一方の経路のみを
固定したときと他方の経路のみを固定した時とでは、入
力軸と出力軸の間で異なる変速比を持ち、上記二つの動
力伝達のための経路に入力回転を配分制御することを特
徴とする無段変速装置。
1. A second differential gear device comprising two sets of differential gear devices, wherein any one shaft of the first differential gear device is used as an input shaft, and the remaining two shafts are used as power transmission paths. Is a device which is connected to any two shafts of the above and takes out the output from the remaining one shaft of the second differential gear device. The two paths for power transmission between the first and second differential gear units are between the input shaft and the output shaft when only one path is fixed and when the other path is fixed. And a variable speed ratio, the input rotation is distributed and controlled to the two paths for power transmission.
【請求項2】 請求項1の無段変速装置において2組の
差動歯車装置間の二つの動力伝達経路の内、一方の経路
内にウオームギアを有することを特徴とする無段変速装
置。
2. The continuously variable transmission according to claim 1, wherein a worm gear is provided in one of the two power transmission paths between the two sets of differential gear units.
【請求項3】 請求項1の無段変速装置において2組の
差動歯車装置間の二つの動力伝達経路の内、少なくとも
一方の経路に制動装置を有するか、或は両方の経路を歯
車等により一時的に連動させることができる機構を設け
ることにより入力軸と出力軸の回転比率に制約を与える
ことが選択可能なことを特徴とする無段変速装置。
3. The continuously variable transmission according to claim 1, wherein a braking device is provided in at least one of the two power transmission paths between the two sets of differential gear devices, or both paths are provided with gears or the like. A continuously variable transmission characterized in that it is possible to select to restrict the rotation ratio of the input shaft and the output shaft by providing a mechanism that can be temporarily interlocked with each other.
JP7291610A 1995-10-02 1995-10-02 Continuously variable transmission by differential gear mechanism Pending JPH09100883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7291610A JPH09100883A (en) 1995-10-02 1995-10-02 Continuously variable transmission by differential gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7291610A JPH09100883A (en) 1995-10-02 1995-10-02 Continuously variable transmission by differential gear mechanism

Publications (1)

Publication Number Publication Date
JPH09100883A true JPH09100883A (en) 1997-04-15

Family

ID=17771182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7291610A Pending JPH09100883A (en) 1995-10-02 1995-10-02 Continuously variable transmission by differential gear mechanism

Country Status (1)

Country Link
JP (1) JPH09100883A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225105B1 (en) * 2009-05-21 2013-01-22 조춘상 Device for infinitely variable transmission and method thereof
CN103953725A (en) * 2014-05-13 2014-07-30 清华大学 Actuator for mechanical automatic transmission clutch
US10001196B2 (en) 2014-12-19 2018-06-19 Caleb Chung Continuously variable transmission
EP3397878A4 (en) * 2015-12-29 2019-11-13 Palaspagar, Sandeep Ramesh A planetary gearbox
CN110494675A (en) * 2016-12-29 2019-11-22 河太焕 Multiple-speed gear-box
WO2020180268A1 (en) * 2019-03-06 2020-09-10 Sah Timur A gear shift system
US10774901B2 (en) 2014-12-19 2020-09-15 Caleb Chung Continuously variable transmission

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225105B1 (en) * 2009-05-21 2013-01-22 조춘상 Device for infinitely variable transmission and method thereof
CN103953725A (en) * 2014-05-13 2014-07-30 清华大学 Actuator for mechanical automatic transmission clutch
CN103953725B (en) * 2014-05-13 2016-01-20 清华大学 A kind of clutch actuating mechanism of automatic mechanical speed variator
US10001196B2 (en) 2014-12-19 2018-06-19 Caleb Chung Continuously variable transmission
US10774901B2 (en) 2014-12-19 2020-09-15 Caleb Chung Continuously variable transmission
EP3397878A4 (en) * 2015-12-29 2019-11-13 Palaspagar, Sandeep Ramesh A planetary gearbox
CN110494675A (en) * 2016-12-29 2019-11-22 河太焕 Multiple-speed gear-box
JP2020508417A (en) * 2016-12-29 2020-03-19 ハ,テ ファン Multi-stage transmission
EP3564556A4 (en) * 2016-12-29 2020-06-10 Tae Hwan Ha Multi-stage transmission
WO2020180268A1 (en) * 2019-03-06 2020-09-10 Sah Timur A gear shift system

Similar Documents

Publication Publication Date Title
JP4330528B2 (en) Continuously variable ratio transmission
US7530916B2 (en) Continuously variable ratio transmission system
EP1026424B1 (en) Toroidal continously variable transmission
JP2005527754A5 (en)
JPH0621625B2 (en) Continuous speed transmission
JPS60132165A (en) Stepless speed variation transmission
MXPA04007423A (en) Continuously variable transmission system.
JPH02195051A (en) Epicyclic gear type transmission for car
WO1991002910A1 (en) Speed change gear and continuous speed change gear consisting of high-speed unit
US5967931A (en) Torodial traction transmission for all wheel vehicles
JPH09100883A (en) Continuously variable transmission by differential gear mechanism
GB2136893A (en) Vehicle transmission system
US20070155575A1 (en) Apparatus for differential power distribution
GB2238090A (en) Power transmission system comprising two sets of epicyclic gears
CN102996748A (en) High-power output stepless speed regulator
GB2219640A (en) Drive transmission apparatus
EP0155112A1 (en) Improvements in or relating to drive systems for automobile vehicles
JPH02129447A (en) Planetary gear type transmission for vehicle
JP2006214530A (en) Differential gearing
JPS6231296Y2 (en)
KR100302755B1 (en) Power train of automatic transmission for vehicle
JP2002327809A (en) Differential gear type continuously variable transmission
JPH0235246A (en) Planetary geared transmission for vehicle
KR100213161B1 (en) Power train for automatic transmission
GB2031531A (en) A gearbox