JPH09100720A - Air intake device for engine - Google Patents

Air intake device for engine

Info

Publication number
JPH09100720A
JPH09100720A JP28468995A JP28468995A JPH09100720A JP H09100720 A JPH09100720 A JP H09100720A JP 28468995 A JP28468995 A JP 28468995A JP 28468995 A JP28468995 A JP 28468995A JP H09100720 A JPH09100720 A JP H09100720A
Authority
JP
Japan
Prior art keywords
intake
intake pipe
engine
opening
air intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28468995A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tange
勝博 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP28468995A priority Critical patent/JPH09100720A/en
Publication of JPH09100720A publication Critical patent/JPH09100720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sufficient output characteristic in a whole engine speed range of an engine by simplifying a structure and changing both of the length of an air intake passage and a passage area according to engine speed. SOLUTION: An engine air intake device is provided with a first air intake tube 1 communicated with the inside of an engine cylinder, a second air intake tube 2 having a passage intersecting area smaller than that of the first air intake tube 1 and freely moved between a first position P1 fitted in the opening part 1b of an upstream side for the first air intake tube 1 and a second position away from the opening part 1b, a chamber 5 having an intaken air introducing port 6 for housing the second air intake tube 2, to which the opening 1a of the upstream side opening part 1b for the first air intake tube 1, and a driving device 20 for moving the second air intake tube 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多気筒エンジンに
吸気を供給する吸気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake system for supplying intake air to a multi-cylinder engine.

【0002】[0002]

【従来の技術】自動車などのエンジンの出力特性を決定
するうえで、吸気通路の長さ及び横断面積(以下、「通
路面積」という。)が重要な因子であることはよく知ら
れている(特開平2−81927号公報,同4−116
226号公報等)。一般に、吸気通路の長さを短く設定
し、通路面積を大きく設定すると、低回転時の充填効率
は悪いが、高回転時には充填効率が良くなり、高回転時
に高い出力が得られる。一方、吸気通路の長さを長く設
定し、通路面積を小さく設定すると、高回転時は吸気抵
抗が大きくなって充填効率が悪くなるが、低回転時に
は、流速が速くなると共に吸気の慣性過給により充填効
率が良くなり、低回転時に高いトルクが得られるように
なる。こうしたことから、従来、エンジンの回転数に応
じて、吸気通路の長さや通路面積を変化させる吸気装置
が種々提案されてきた。
2. Description of the Related Art It is well known that the length and cross-sectional area of an intake passage (hereinafter referred to as "passage area") are important factors in determining the output characteristics of an engine such as an automobile. JP-A-2-81927, 4-116
No. 226, etc.). Generally, when the length of the intake passage is set to be short and the passage area is set to be large, the filling efficiency at low rotation is poor, but the filling efficiency is good at high rotation, and high output is obtained at high rotation. On the other hand, if the length of the intake passage is set to be long and the passage area is set to be small, the intake resistance will increase at high revolutions and the charging efficiency will deteriorate, but at low revolutions the flow velocity will increase and the inertial supercharging of intake air will increase. As a result, the charging efficiency is improved, and high torque can be obtained at low rotation speed. For this reason, conventionally, various intake devices have been proposed in which the length and area of the intake passage are changed according to the engine speed.

【0003】例えば、実開昭60−26233号公報に
記載のごとく、複数の吸気通路の一部に開閉弁を設け、
エンジンの回転数が増大するに伴ない開閉弁を開にして
通路面積を大きくする吸気装置があった(従来技術
1)。或いは、特開平4−116226号公報に記載の
ように、一つのシリンダに二つの吸気口を形成すると共
に、長さ及び径の異なる吸気通路を各吸気口に連通さ
せ、吸気通路に設けた弁を開閉することで、低回転時に
長い吸気通路から一つの吸気口に吸気を導き、高回転時
には二つの吸気通路及び吸気口から吸気を導く吸気装置
等があった(従来技術2)。
For example, as described in Japanese Utility Model Laid-Open No. 60-26233, an on-off valve is provided in a part of a plurality of intake passages,
There has been an intake device in which an opening / closing valve is opened to increase the passage area as the engine speed increases (prior art 1). Alternatively, as described in Japanese Patent Laid-Open No. 4-116226, two intake ports are formed in one cylinder, and intake passages having different lengths and diameters are communicated with each intake port, and a valve provided in the intake passage is provided. There is an intake device that guides intake air from a long intake passage to one intake opening at low rotation speed by opening and closing, and guides intake air from two intake passages and intake opening at high rotation speed (prior art 2).

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記従来技
術1によれば、吸気通路長さを変えることができないた
め、低,高両方の回転速度域で高充填効率を得るには限
界があった。また、従来技術2は、低回転時と高回転時
とで、実質的な通路の長さ及び通路面積を変化させるこ
とができるものの、低回転用と高回転用の二つの吸気通
路を別々に設けねばならなかった。そして、各シリンダ
に対して吸気が二系統になるために、吸気装置が複雑に
なるだけでなく重量的にも重くなる難点があった。
However, according to the prior art 1, since the length of the intake passage cannot be changed, there is a limit in obtaining high filling efficiency in both low and high rotational speed regions. . Further, in the prior art 2, although the substantial passage length and passage area can be changed between low rotation speed and high rotation speed, two intake passages for low rotation and high rotation are separately provided. I had to set it up. Further, since there are two intake systems for each cylinder, there is a drawback that the intake system becomes complicated and also heavy in weight.

【0005】本発明は上記問題点を解決するもので、簡
単な構造にして、エンジンの回転数に応じて吸気通路の
長さ及び通路面積の双方を変化させ、エンジンの全回転
速度域で十分な出力特性を得ることのできるエンジンの
吸気装置を提供することを目的とする。
The present invention solves the above problems and has a simple structure in which both the length and the passage area of the intake passage are changed in accordance with the engine speed, so that the entire engine speed range is sufficient. It is an object of the present invention to provide an intake system for an engine that can obtain various output characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく、
請求項1に記載の本発明の要旨は、エンジンのシリンダ
内へ連通する第一吸気管と、該第一吸気管よりも通路の
横断面積が小さく、第一吸気管に係る上流側の開口部に
嵌まり込む第一の位置と前記開口部から離間した第二の
位置との間を移動自在な第二吸気管と、吸気の導入口を
有し、前記第二吸気管を収納すると共に前記第一吸気管
に係る上流側開口部の開口が臨むチャンバと、前記第二
吸気管を移動させる駆動装置と、を具備することを特徴
とするエンジンの吸気装置にある。ここで、「第一吸気
管よりも通路の横断面積が小さく」とは、全域にわたっ
て第一吸気管よりも通路の横断面積が小さくなる必要は
なく、一部が満たせば足りる。請求項2に記載の本発明
のエンジンの吸気装置は、請求項1の第二吸気管が強化
繊維を含有した合成樹脂で形成されることを特徴とす
る。請求項3に記載の本発明のエンジンの吸気装置は、
請求項1又は2の第一吸気管の上流側の開口部及び第二
吸気管の上流側の開口部を、上流に行くにしたがい内径
が大きくなるベルマウス状に形成したことを特徴とす
る。
In order to achieve the above object,
The gist of the present invention according to claim 1 is the first intake pipe communicating with the cylinder of the engine, and the cross-sectional area of the passage is smaller than that of the first intake pipe, and the opening on the upstream side of the first intake pipe. A second intake pipe movable between a first position fitted into the second intake pipe and a second position separated from the opening; An intake system for an engine, comprising: a chamber facing an opening of an upstream side opening of the first intake pipe; and a drive device for moving the second intake pipe. Here, “the cross-sectional area of the passage is smaller than that of the first intake pipe” does not require that the cross-sectional area of the passage is smaller than that of the first intake pipe over the entire region, and it is sufficient if a part of the cross-sectional area is satisfied. According to a second aspect of the present invention, there is provided the engine air intake device, wherein the second air intake pipe of the first aspect is formed of a synthetic resin containing reinforcing fibers. The intake system for an engine according to a third aspect of the present invention,
The upstream opening of the first intake pipe and the upstream opening of the second intake pipe according to claim 1 or 2 are formed in a bell mouth shape whose inner diameter increases as it goes upstream.

【0007】請求項1に記載の発明は、低回転時に、第
一吸気管に係る上流側の開口部に第二吸気管を嵌め込ま
せる。これにより、吸気はチャンバの導入口から入り込
んだ後、第二吸気管及び第一吸気管内を通ってシリンダ
内へ流れる。この際、吸気通路は第一吸気管と第二吸気
管の長さの和に近い長いものとなり、且つ、第二吸気管
の通路面積は第一吸気管よりも小さく、吸気通路の実質
的な通路面積も小さくなるので、流速が速くなると共に
吸気の慣性も大きくなって、慣性供給により充填効率が
向上する。一方、高回転時には、第一吸気管を第二吸気
管の開口部から離間した位置に移動させる。これによ
り、吸気はチャンバの導入口から導入された後、第二吸
気管内を流れることなく直接第一吸気管へ入り、シリン
ダ内へと導かれるので、実質的な吸気通路の長さが短く
なる。しかも、第一吸気管は、第二吸気管よりも通路面
積が大きいので、吸気抵抗が小さくなって充填効率が向
上する。
According to the first aspect of the present invention, the second intake pipe is fitted into the upstream side opening of the first intake pipe when the engine speed is low. As a result, the intake air flows into the cylinder through the second intake pipe and the first intake pipe after entering from the inlet of the chamber. At this time, the intake passage has a length close to the sum of the lengths of the first intake pipe and the second intake pipe, and the passage area of the second intake pipe is smaller than that of the first intake pipe, so that the intake passage is substantially Since the passage area is also small, the flow velocity is high and the inertia of the intake air is large, and the charging efficiency is improved by the inertia supply. On the other hand, at the time of high rotation, the first intake pipe is moved to a position separated from the opening of the second intake pipe. Thus, after the intake air is introduced from the introduction port of the chamber, it directly enters the first intake pipe without flowing in the second intake pipe and is guided into the cylinder, so that the length of the intake passage is substantially shortened. . Moreover, since the passage area of the first intake pipe is larger than that of the second intake pipe, the intake resistance is reduced and the filling efficiency is improved.

【0008】請求項2に記載の発明によれば、第二吸気
管が合成樹脂で形成されるので、軽量化に貢献するのみ
ならず、第二吸気管の移動操作が行ない易くなる。請求
項3に記載の発明によれば、第一吸気管の上流側の開口
部及び第二吸気管の上流側の開口部がベルマウス状にな
るので、吸入抵抗が少なくなる。
According to the second aspect of the present invention, since the second intake pipe is made of synthetic resin, not only it contributes to weight reduction, but also the operation of moving the second intake pipe is facilitated. According to the third aspect of the present invention, since the opening on the upstream side of the first intake pipe and the opening on the upstream side of the second intake pipe have a bellmouth shape, the suction resistance is reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態について
詳述する。図1〜図3は、本発明に係るエンジンの吸気
装置(以下、「吸気装置」という。)の一形態で、図1
は吸気装置の分解斜視図、図2,図3は吸気装置の概略
構成図であって、図2は低回転時の状態を示し、図3は
吸気装置の高回転時の状態を表したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. 1 to 3 show one embodiment of an engine intake device according to the present invention (hereinafter referred to as "intake device").
2 is an exploded perspective view of the intake device, FIG. 2 and FIG. 3 are schematic configuration diagrams of the intake device, FIG. 2 shows a state at low rotation, and FIG. 3 shows a state at high rotation of the intake device. Is.

【0010】本吸気装置は、第一吸気管1と第二吸気管
2と吸気箱3とフランジ蓋8と駆動装置20を主構成要
素とする。吸気箱3は一側面が開口した箱体である。吸
気箱3の開口縁の一部は突縁になり、開口周囲にねじ孔
が設けられる。この開口を覆い得るフランジ蓋8が蓋を
し、ねじ孔を利用して吸気箱3とフランジ蓋8をボルト
固着すれば、サージタンクたるチャンバ5となる。チャ
ンバ5には、第二吸気管2が収納され、図略のエアクリ
ーナに連通する吸気Aの導入口6が設けられる。そし
て、チャンバ5を集合管として複数(ここでは四つ)の
第一吸気管1及び第二吸気管2で吸気マニホールド4が
形成される。
The main component of this intake system is a first intake pipe 1, a second intake pipe 2, an intake box 3, a flange lid 8 and a drive unit 20. The air intake box 3 is a box body whose one side surface is open. A part of the opening edge of the air intake box 3 becomes a projecting edge, and a screw hole is provided around the opening. If the flange lid 8 that can cover this opening is covered and the intake box 3 and the flange lid 8 are fixed by bolts using the screw holes, the chamber 5 serving as a surge tank is formed. The chamber 5 accommodates the second intake pipe 2 and is provided with an inlet 6 for the intake air A that communicates with an air cleaner (not shown). An intake manifold 4 is formed by a plurality of (four in this case) first intake pipes 1 and second intake pipes 2 using the chamber 5 as a collecting pipe.

【0011】第一吸気管1は、シリンダヘッドの各吸気
口に導通するパイプ状の分岐管である。第一吸気管1の
両端にエンジン側の取付用フランジ7と上述のフランジ
蓋8をそれぞれ一体化して、フランジ付き吸気ポートα
を形成する。吸気ポートαの取付用フランジ7をエンジ
ンサイドに固着すれば、第一吸気管1がエンジンEのシ
リンダ(図示せず)に連通する。また、吸気箱3にフラ
ンジ蓋8がボルト9で固定されると、吸気Aの上流側に
あたる第一吸気管1の開口1aが前記チャンバ5内に臨
む(図2)。第一吸気管1の上流側の開口部1bの先端
は、吸気Aの上流に行くにしたがいその内径を大きくし
たベルマウス状に形成する。吸入抵抗を小さくするため
である。上記吸気ポートα及び前述の吸気箱3について
は、その形状が比較的単純であり、ダイカスト製品,射
出成形品とすることができる。吸気ポートα,吸気箱3
の材質については、金属,耐熱性樹脂等を問わない。
The first intake pipe 1 is a pipe-shaped branch pipe that communicates with each intake port of the cylinder head. The engine-side mounting flange 7 and the above-mentioned flange lid 8 are integrated at both ends of the first intake pipe 1, respectively, to form a flanged intake port α.
To form If the mounting flange 7 of the intake port α is fixed to the engine side, the first intake pipe 1 communicates with a cylinder (not shown) of the engine E. Further, when the flange lid 8 is fixed to the intake box 3 with the bolt 9, the opening 1a of the first intake pipe 1, which is the upstream side of the intake air A, faces the chamber 5 (FIG. 2). The tip of the opening 1b on the upstream side of the first intake pipe 1 is formed in a bell mouth shape whose inner diameter increases as it goes upstream of the intake air A. This is to reduce the inhalation resistance. The shape of the intake port α and the intake box 3 described above is relatively simple, and can be a die cast product or an injection molded product. Intake port α, intake box 3
The material may be metal, heat resistant resin, or the like.

【0012】第二吸気管2は、基端側の各開口部2bが
第一吸気管1の各開口部1bに対向するように配された
パイプ状の分岐管である。第二吸気管2は、第一吸気管
1よりも通路面積が小さく設定され、図2に示すごと
く、第二吸気管2の外径が第一吸気管1の内径とほぼ同
程度の大きさ、或いは、第一吸気管1の内径よりも若干
小さく設定される。尚、第一吸気管1,第二吸気管2の
それぞれの通路面積は平均値で表したものである。第二
吸気管2の上流側の開口部2aの先端も、ベルマウス状
になっていて吸気抵抗を少なくする。前記第二吸気管2
の下流側の開口部2bについては、吸気Aの下流に行く
にしたがい内径のみ大きくなるよう形成する。
The second intake pipe 2 is a pipe-shaped branch pipe arranged so that each opening 2b on the base end side faces each opening 1b of the first intake pipe 1. The passage area of the second intake pipe 2 is set smaller than that of the first intake pipe 1, and the outer diameter of the second intake pipe 2 is substantially the same as the inner diameter of the first intake pipe 1 as shown in FIG. Alternatively, it is set to be slightly smaller than the inner diameter of the first intake pipe 1. The passage areas of the first intake pipe 1 and the second intake pipe 2 are represented by average values. The tip of the opening 2a on the upstream side of the second intake pipe 2 also has a bell-mouth shape to reduce intake resistance. The second intake pipe 2
The opening 2b on the downstream side is formed so that only the inner diameter increases as it goes downstream of the intake air A.

【0013】平行に配された四つの第二吸気管2は、三
枚の連結板部2cによって一体に連結され、複合管体β
になっている。このような複合管体βは、射出成形品,
ブロー成形品等とすると軽量化が進む。とりわけ、中空
パイプを複数もつ複雑形状がブロー成形に適合し、ブロ
ー成形品とすると、コストメリットを亨受でき、より好
ましいとされる。複合管体βの材質には、例えば、ガラ
ス繊維強化のナイロン,ポリプロピレン等の耐熱性に優
れた強化繊維含有の熱可塑性樹脂が好適である。
The four second intake pipes 2 arranged in parallel are integrally connected by three connecting plate portions 2c to form a composite pipe body β.
It has become. Such a composite pipe body β is an injection molded product,
Blow-molded products will reduce the weight. In particular, a complicated shape having a plurality of hollow pipes is suitable for blow molding, and if it is a blow molded product, cost merit can be accepted and it is more preferable. As a material for the composite tube body β, for example, a thermoplastic resin containing a reinforcing fiber having excellent heat resistance such as glass fiber reinforced nylon or polypropylene is suitable.

【0014】ところで、本実施形態では、図1の第二吸
気管2の管路が各々独立していたが、図4に示すよう
に、第二吸気管2を、下流側で分岐している形状にする
こともできる。また、図5のように、第二吸気管2を一
本とし、第一吸気管1を多岐状の管とすることも可能で
ある。但し、斯る場合、第二吸気管2の通路面積を第一
吸気管1の上流部の通路面積よりも小さく設定する。
By the way, in the present embodiment, the conduits of the second intake pipe 2 of FIG. 1 are independent, but as shown in FIG. 4, the second intake pipe 2 is branched on the downstream side. It can also be shaped. Further, as shown in FIG. 5, the second intake pipe 2 may be one and the first intake pipe 1 may be a manifold pipe. However, in such a case, the passage area of the second intake pipe 2 is set smaller than the passage area of the upstream portion of the first intake pipe 1.

【0015】前記連結板部2cへは、シャフト10と一
体のブラケット11をボルト等で螺着する。前記第二吸
気管2は、連結板部2c及びブラケット11を介してシ
ャフト10に固定される。該シャフト10は、吸気箱3
の支持孔3aに回転自在に支持されており、図2のシャ
フト10の軸心Oは、第二吸気管2を構成する曲管の曲
率の中心に位置する。こうして、第二吸気管2は、曲管
が曲がっている方向に沿って回転自在に吸気箱3に支持
される。そして、下流側の開口部2bが、第一吸気管1
の上流側の開口部1bに嵌まり込む第一の位置P1(図
2)と、前記開口部1bから離間した第二の位置P2
(図3)との間を移動できるように吸気箱3に取り付け
られる。具体的には、第二吸気管2は、駆動装置20及
び制御装置30によって、エンジンの回転数に応じ前記
第一の位置P1と第二の位置P2の間を往復移動を可能
とする。
A bracket 11 integral with the shaft 10 is screwed to the connecting plate portion 2c with a bolt or the like. The second intake pipe 2 is fixed to the shaft 10 via the connecting plate portion 2c and the bracket 11. The shaft 10 includes an intake box 3
2 is rotatably supported in the support hole 3a, and the axis O of the shaft 10 in FIG. 2 is located at the center of curvature of the curved pipe forming the second intake pipe 2. In this way, the second intake pipe 2 is rotatably supported by the intake box 3 along the direction in which the curved pipe is bent. Then, the opening 2b on the downstream side has the first intake pipe 1
Position P1 (FIG. 2) fitted in the opening 1b on the upstream side of the second position P2 and second position P2 separated from the opening 1b.
It is attached to the air intake box 3 so as to be movable between (FIG. 3). Specifically, the second intake pipe 2 can be reciprocated between the first position P1 and the second position P2 by the drive device 20 and the control device 30 according to the engine speed.

【0016】駆動装置20は、例えば、アクチュエータ
やモータのような原動機21と、この原動機21によっ
て伸縮されるロッド22と、このロッド22の先端に取
り付けたリンク23とで構成される(図2)。リンク2
3は、シャフト10に固定されており、ロッド22が伸
縮するのに伴って若干揺動して、シャフト10を回転さ
せることにより、ブラケット11を介して第二吸気管2
を第一の位置P1と第二の位置P2との間を往復動させ
る。尚、第二吸気管2をシャフト10のまわりに回転さ
せたが、第二吸気管2を直線的にスライドさせて移動さ
せる構造としてもよい。
The drive unit 20 is composed of, for example, a prime mover 21 such as an actuator and a motor, a rod 22 which is expanded and contracted by the prime mover 21, and a link 23 attached to the tip of the rod 22 (FIG. 2). . Link 2
3 is fixed to the shaft 10 and slightly swings as the rod 22 expands and contracts to rotate the shaft 10 so that the second intake pipe 2 is inserted through the bracket 11.
Is reciprocated between the first position P1 and the second position P2. Although the second intake pipe 2 is rotated around the shaft 10, the second intake pipe 2 may be linearly slid and moved.

【0017】制御装置30は、回転数検出器31とマイ
コン(マイクロコンピュータ)32とで構成されてい
る。回転数検出器31は、エンジンの回転数を検出し
て、回転数信号をマイコン32に出力するもので、例え
ば、クランク角検出器を採用することができる。マイコ
ン32は、低速回転と高速回転との境界値となる所定の
回転数を記憶しており、回転数検出器31から入力され
た回転数と、前記境界値とを比較して、原動機21を介
して、低回転時には第二吸気管2を第一の位置P1に移
動させ、一方、高回転時には第二吸気管2を第二の位置
P2に移動させる。ここでは、マイコン32で回転数を
判別し、専用の原動機21によって第二吸気管2を駆動
制御したが、必ずしもこの構成に限定されるものではな
い。例えば、エンジンのガバナ(調速機)を駆動源と
し、このガバナの作動によって第二吸気管2を駆動させ
る構造とすることもできる。
The control device 30 comprises a rotation speed detector 31 and a microcomputer (microcomputer) 32. The rotation speed detector 31 detects the rotation speed of the engine and outputs a rotation speed signal to the microcomputer 32. For example, a crank angle detector can be adopted. The microcomputer 32 stores a predetermined rotation speed that is a boundary value between low speed rotation and high speed rotation, compares the rotation speed input from the rotation speed detector 31 with the boundary value, and drives the prime mover 21. Through the above, the second intake pipe 2 is moved to the first position P1 during low rotation, while the second intake pipe 2 is moved to the second position P2 during high rotation. Here, the rotational speed is determined by the microcomputer 32 and the second intake pipe 2 is drive-controlled by the dedicated prime mover 21, but the configuration is not necessarily limited to this. For example, the structure may be such that the governor (governor) of the engine is used as a drive source and the second intake pipe 2 is driven by the operation of the governor.

【0018】次に、本吸気装置の動作について説明す
る。エンジンの回転数が低い低回転時には、図2のごと
く、ロッド22が伸張しており、第二吸気管2の開口部
2bが第一吸気管1の開口部1bに嵌入している。その
ため、吸気Aは、導入口6からチャンバ5内に入り込ん
だ後、第二吸気管2及び第一吸気管1内を通ってエンジ
ンEのシリンダ内へと流れる従って、低回転時は、吸気
マニホールド4における吸気通路が、第一吸気管1及び
第二吸気管2の長さの和に近い長いものとなる。しか
も、吸気Aは、第一吸気管1よりも通路面積の小さい第
二吸気管2を通るので、吸気通路の実質的な通路面積も
小さくなる。故に、低回転時には、吸気Aの流速が速く
なると共に吸気の慣性も大きくなるため、慣性過給によ
り充填効率が向上する。その結果、低回転時に高いトル
クが得られる。
Next, the operation of the intake system will be described. When the engine speed is low and the engine speed is low, the rod 22 is extended and the opening 2b of the second intake pipe 2 is fitted in the opening 1b of the first intake pipe 1 as shown in FIG. Therefore, the intake air A flows into the chamber 5 from the introduction port 6 and then flows into the cylinder of the engine E through the second intake pipe 2 and the first intake pipe 1, and therefore, at the time of low rotation, the intake manifold The intake passage at 4 is a length close to the sum of the lengths of the first intake pipe 1 and the second intake pipe 2. Moreover, since the intake air A passes through the second intake pipe 2 having a smaller passage area than the first intake pipe 1, the substantial passage area of the intake passage is also reduced. Therefore, when the engine speed is low, the flow rate of the intake air A is increased and the inertia of the intake air is increased, so that the charging efficiency is improved by the inertia supercharging. As a result, high torque can be obtained at low speed.

【0019】一方、エンジンの回転数が前記境界値より
も大きい高回転になると、マイコン32が原動機21を
介してロッド22を収縮させる。これにより、リンク2
3、シャフト10及びブラケット11を介して、第二吸
気管2が曲がっている方向に沿って回転し、第二吸気管
2が第一の位置P1から図3の第二の位置P2まで移動
する。従って、吸気Aは、チャンバ5の導入口6からチ
ャンバ5内にはいり込んだ後、第二吸気管2内を流れる
ことなく、第一吸気管1だけを通ってエンジンEのシリ
ンダ内へと向かう。このように、高回転時には、吸気マ
ニホールド4における実質的な吸気通路の長さが第一吸
気管1の長さになるので短くなる。しかも、吸気Aは通
路面積が小さい第二吸気管2を通らず、通路面積も大き
くなる。かくして、高回転時は、吸気抵抗が小さくなる
ので、充填効率が向上する。その結果、高回転時にも、
高い出力が得られる。尚、、第二吸気管2を低回転時に
第一の位置P1とし、高回転時に第二の位置P2とした
が、エンジンのトルクを検出して、低負荷高回転時(例
えばアイドリング時)には、第二吸気管2を第一の位置
P1とするなど種々の制御も行なってよい。
On the other hand, when the engine speed becomes higher than the boundary value, the microcomputer 32 contracts the rod 22 via the prime mover 21. This makes link 2
3, the shaft 10 and the bracket 11 rotate along the direction in which the second intake pipe 2 is bent, and the second intake pipe 2 moves from the first position P1 to the second position P2 in FIG. . Therefore, the intake air A flows into the chamber 5 through the introduction port 6 of the chamber 5 and then flows into the cylinder of the engine E through the first intake pipe 1 without flowing in the second intake pipe 2. . As described above, at high rotation speed, the substantial length of the intake passage in the intake manifold 4 becomes the length of the first intake pipe 1 and becomes short. Moreover, the intake air A does not pass through the second intake pipe 2 having a small passage area, and the passage area is also large. Thus, at the time of high rotation, the intake resistance is reduced and the charging efficiency is improved. As a result, even at high revolutions,
High output is obtained. Although the second intake pipe 2 is set to the first position P1 at the time of low rotation and the second position P2 at the time of high rotation, the torque of the engine is detected to detect the low torque and high rotation (for example, idling). May perform various controls such as setting the second intake pipe 2 to the first position P1.

【0020】このように構成した吸気装置は、1つのシ
リンダに対して低回転用と高回転用の二系統の吸気通路
を設けた従来法と異なり、第二吸気管2を移動させて、
低回転用及び高回転用の吸気通路を構成するので、吸気
マニホールド4の構造が簡単になり、重量的にも軽減さ
れる。そして、エンジンの低回転時は、吸気通路が長く
且つ通路面積が小さくなって、流速が速くなると共に吸
気の慣性過給が図られるので、充填効率が向上し大きな
トルクが得られる。一方、高回転時には、吸気通路が短
く且つ通路面積が大きくなって吸気抵抗が小さくなるの
で、高い出力が得られる。更に、第二吸気管2が強化繊
維を含有した合成樹脂で形成されるので、第二吸気管2
が軽量になるだけでなく、低回転時と高回転時との切換
を迅速に行なえるようになる。切換時の吸気の流れを妨
げる虞れもない。また、第一吸気管1の開口部1bをベ
ルマウス状に形成しているので、チャンバから第一吸気
管1への吸入抵抗が少なく、高回転時の出力が向上す
る。第二吸気管1の開口部2aもベルマウス状に形成し
ているので、チャンバ5から第二の吸気管2への吸気の
流れがスムースに流れ、低回転時のトルク増大を図り得
る。
Unlike the conventional method in which one cylinder is provided with two intake passages for low rotation and high rotation, the intake device configured as described above moves the second intake pipe 2,
Since the intake passages for low rotation and high rotation are formed, the structure of the intake manifold 4 is simplified and the weight is reduced. When the engine is running at low speed, the intake passage is long and the passage area is small, so that the flow velocity is high and the intake air is supercharged, so that the charging efficiency is improved and a large torque is obtained. On the other hand, at the time of high rotation, the intake passage is short and the passage area is large, and the intake resistance is small, so that a high output is obtained. Further, since the second intake pipe 2 is made of synthetic resin containing reinforcing fibers, the second intake pipe 2
Not only is it lighter in weight, but it is also possible to quickly switch between low speed and high speed. There is no risk of obstructing the flow of intake air at the time of switching. Further, since the opening 1b of the first intake pipe 1 is formed in a bell mouth shape, the suction resistance from the chamber to the first intake pipe 1 is small, and the output at the time of high rotation is improved. Since the opening 2a of the second intake pipe 1 is also formed in a bell mouth shape, the flow of intake air from the chamber 5 to the second intake pipe 2 smoothly flows, and the torque can be increased at low rotation speed.

【0021】尚、本発明においては、前記実施例に示す
ものに限られず、目的,用途に応じて本発明の範囲で種
々変更できる。第一吸気管1,第二吸気管2,吸気箱
3,フランジ蓋8,駆動装置20等の形状,材質等は適
宜選択できる。例えば、第一吸気管1の開口部1bは、
チャンバ5側に隆起しなければならないことはなく、フ
ランジ蓋8と接合する第一吸気管1の根元部分を拡径し
て第二吸気管2が嵌入し易い開口部としてもよい。前記
実施例では、第一吸気管1,第二吸気管2のパイプ数は
四個としたが、シリンダヘッドの吸気口に合わせて種々
の個数をとることができる。
In the present invention, the present invention is not limited to those shown in the above embodiments, but can be variously changed within the scope of the present invention depending on the purpose and application. The shapes and materials of the first intake pipe 1, the second intake pipe 2, the intake box 3, the flange lid 8, the drive device 20, etc. can be selected as appropriate. For example, the opening 1b of the first intake pipe 1 is
It is not necessary to bulge to the chamber 5 side, and the root portion of the first intake pipe 1 that joins with the flange lid 8 may be enlarged in diameter to form an opening into which the second intake pipe 2 is easily fitted. Although the number of the first intake pipe 1 and the number of the second intake pipe 2 are four in the above-mentioned embodiment, various numbers can be adopted according to the intake port of the cylinder head.

【0022】[0022]

【発明の効果】以上のごとく、本発明のエンジンの吸気
装置は、簡単な構造ながら、第一吸気管と第二吸気管の
嵌合或いはその切り離しによって、吸気通路のみならず
通路面積を同時に変えることができるので、充填効率を
高め大きなトルクが得られるようになり、その性能向上
に優れた効果を発揮する。
As described above, the engine intake system of the present invention has a simple structure, but at the same time, not only the intake passage but also the passage area can be changed by fitting or disconnecting the first intake pipe and the second intake pipe. As a result, the filling efficiency can be increased and a large torque can be obtained, and an excellent effect of improving the performance can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すエンジンの吸気装置
の分解斜視図である。
FIG. 1 is an exploded perspective view of an intake device for an engine showing an embodiment of the present invention.

【図2】エンジンの低回転時の状態を表した吸気装置の
概略構成図である。
FIG. 2 is a schematic configuration diagram of an intake device showing a state of the engine at a low rotation speed.

【図3】エンジンの高回転時の状態を表した吸気装置の
概略構成図である。
FIG. 3 is a schematic configuration diagram of an intake device showing a state of the engine at a high rotation speed.

【図4】他の実施形態に係る第一及び第二吸気管の模式
図である。
FIG. 4 is a schematic view of first and second intake pipes according to another embodiment.

【図5】更に他の実施形態に係る第一及び第二吸気管の
模式図である。
FIG. 5 is a schematic view of first and second intake pipes according to still another embodiment.

【符号の説明】[Explanation of symbols]

1 第一吸気管 1a 開口 1b 開口部 2 第二吸気管 2a 開口部 5 チャンバ 6 導入口 20 駆動装置 A 吸気 P1 第一の位置 P2 第二の位置 1 first intake pipe 1a opening 1b opening 2 second intake pipe 2a opening 5 chamber 6 inlet 20 drive device A intake P1 first position P2 second position

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジンのシリンダ内へ連通する第一吸
気管(1)と、該第一吸気管よりも通路の横断面積が小
さく、第一吸気管に係る上流側の開口部に嵌まり込む第
一の位置と前記開口部から離間した第二の位置との間を
移動自在な第二吸気管(2)と、吸気の導入口を有し、
前記第二吸気管を収納すると共に前記第一吸気管に係る
上流側開口部の開口が臨むチャンバ(5)と、前記第二
吸気管を移動させる駆動装置(20)と、を具備するこ
とを特徴とするエンジンの吸気装置。
1. A first intake pipe (1) communicating with the inside of a cylinder of an engine, and a cross-sectional area of the passage is smaller than that of the first intake pipe, and the first intake pipe (1) is fitted into an upstream opening of the first intake pipe. A second intake pipe (2) movable between a first position and a second position separated from the opening, and an intake port for intake air,
A chamber (5) for accommodating the second intake pipe and facing an opening of an upstream side opening of the first intake pipe; and a drive device (20) for moving the second intake pipe. Characteristic engine intake device.
【請求項2】 前記第二吸気管が強化繊維を含有した合
成樹脂で形成される請求項1記載のエンジンの吸気装
置。
2. The intake system for an engine according to claim 1, wherein the second intake pipe is made of a synthetic resin containing a reinforcing fiber.
【請求項3】 第一吸気管の上流側の開口部及び第二吸
気管の上流側の開口部を、上流に行くにしたがい内径が
大きくなるベルマウス状に形成した請求項1又は2に記
載のエンジンの吸気装置。
3. The method according to claim 1 or 2, wherein the opening on the upstream side of the first intake pipe and the opening on the upstream side of the second intake pipe are formed in a bell mouth shape whose inner diameter increases as it goes upstream. Engine intake system.
JP28468995A 1995-10-04 1995-10-04 Air intake device for engine Pending JPH09100720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28468995A JPH09100720A (en) 1995-10-04 1995-10-04 Air intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28468995A JPH09100720A (en) 1995-10-04 1995-10-04 Air intake device for engine

Publications (1)

Publication Number Publication Date
JPH09100720A true JPH09100720A (en) 1997-04-15

Family

ID=17681710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28468995A Pending JPH09100720A (en) 1995-10-04 1995-10-04 Air intake device for engine

Country Status (1)

Country Link
JP (1) JPH09100720A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580678B1 (en) * 2004-06-18 2006-05-15 현대자동차주식회사 Sealing device
JP2008075524A (en) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd Intake control device and saddle ride type vehicle
US7389758B2 (en) 2006-01-17 2008-06-24 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7418937B2 (en) 2006-01-17 2008-09-02 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7533645B2 (en) 2006-09-20 2009-05-19 Yamaha Hatsudoki Kabushiki Kaisha Variable length intake control devices and methods for a straddle type vehicle
JP2009203850A (en) * 2008-02-27 2009-09-10 Inoac Corp Intake duct and intake duct device
US7640909B2 (en) 2006-04-14 2010-01-05 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with variable air intake arrangement
JP2010059895A (en) * 2008-09-05 2010-03-18 Yamaha Motor Co Ltd Vehicle
US7730865B2 (en) 2006-01-17 2010-06-08 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7806212B2 (en) 2006-04-14 2010-10-05 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with variable air intake arrangement
JP2012031870A (en) * 2011-10-12 2012-02-16 Yamaha Motor Co Ltd Intake control device and saddle riding type vehicle
JP2014125939A (en) * 2012-12-26 2014-07-07 Honda Motor Co Ltd Intake passage structure of vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580678B1 (en) * 2004-06-18 2006-05-15 현대자동차주식회사 Sealing device
US7730865B2 (en) 2006-01-17 2010-06-08 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7389758B2 (en) 2006-01-17 2008-06-24 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7418937B2 (en) 2006-01-17 2008-09-02 Yamaha Hatsudoki Kabushiki Kaisha Engine air intake arrangement for a vehicle
US7640909B2 (en) 2006-04-14 2010-01-05 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with variable air intake arrangement
US7806212B2 (en) 2006-04-14 2010-10-05 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with variable air intake arrangement
US7523732B2 (en) 2006-09-20 2009-04-28 Yamaha Hatsudoki Kabushiki Kaisha Intake control device for a vehicle
US7533645B2 (en) 2006-09-20 2009-05-19 Yamaha Hatsudoki Kabushiki Kaisha Variable length intake control devices and methods for a straddle type vehicle
JP2008075524A (en) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd Intake control device and saddle ride type vehicle
JP2009203850A (en) * 2008-02-27 2009-09-10 Inoac Corp Intake duct and intake duct device
JP2010059895A (en) * 2008-09-05 2010-03-18 Yamaha Motor Co Ltd Vehicle
JP2012031870A (en) * 2011-10-12 2012-02-16 Yamaha Motor Co Ltd Intake control device and saddle riding type vehicle
JP2014125939A (en) * 2012-12-26 2014-07-07 Honda Motor Co Ltd Intake passage structure of vehicle

Similar Documents

Publication Publication Date Title
US4932369A (en) Internal combustion engine inlet manifold
JPH09100720A (en) Air intake device for engine
EP1283350B1 (en) Air intake system of engine
US20050092944A1 (en) Throttle valve apparatus for controlling fluid flow
US6176213B1 (en) Admission system for an internal combustion engine
US7275512B2 (en) Air intake device
CN109398071A (en) A kind of automobile intelligent active air-inlet grille
JP2003120447A (en) Intake manifold for internal combustion engine, and multiple independent intake air passage body
JP2000515214A (en) Air flow device
CN100473808C (en) Engine intake control device
KR100924255B1 (en) Variable intake device
JP3482078B2 (en) Intake manifold and intake control system
JP4362097B2 (en) Intake device
JPS60224922A (en) Suction system for multicylinder engine
JPS60216029A (en) Suction apparatus for engine
JPH02291422A (en) Intake system for internal combustion engine
KR100483175B1 (en) Admission system for an internal combustion engine
JPH11159332A (en) Variable intake device for multicylinder engine
JPH09189271A (en) Intake manifold of engine
JP4206536B2 (en) Intake pipe device
KR101210076B1 (en) Continuous variable air induction system
JPH11141424A (en) Inlet system for internal combustion engine
JP2995200B2 (en) Engine air supply
JP4075037B2 (en) Engine intake system
JP4458709B2 (en) Multi-cylinder engine intake system