JPH09100647A - Correction method and device for slantwise parking of car in mechanical multi-story garage - Google Patents
Correction method and device for slantwise parking of car in mechanical multi-story garageInfo
- Publication number
- JPH09100647A JPH09100647A JP28661495A JP28661495A JPH09100647A JP H09100647 A JPH09100647 A JP H09100647A JP 28661495 A JP28661495 A JP 28661495A JP 28661495 A JP28661495 A JP 28661495A JP H09100647 A JPH09100647 A JP H09100647A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- wheel
- conveyor
- passage
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、機械式立体駐車場
の斜め停車、つまり車両が所定の定められた方向を向か
ず、その他の方向を向いた停車の自動修正方法及び装置
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for automatically correcting a stop at an oblique stop in a mechanical multi-story parking lot, that is, a stop in which the vehicle is not directed in a predetermined direction but directed in another direction. .
【0002】[0002]
【従来の技術】近年、入出庫を機械的に行う機械式立体
駐車場が普及されつつあるが、かかる機械式立体駐車場
は、大別すると、入庫ステージ、昇降機、走行台車、及
び出庫ステージから構成される。この入庫ステージ及び
出庫ステージと昇降機との間、昇降機と走行台車との間
には、コンベヤ等を設け、車両を機械的に搬送できるよ
うにしている。このように機械的に搬送が行われるた
め、車両が斜め姿勢で停車され、かかる状態で搬送され
た場合、昇降機や走行台車などにおいて車両のボディー
やドアミラーなどが接触し破損するおそれがある。一
方、入庫ステージ上での停車姿勢はドライバーの運転技
術に左右され、必ずしも車両が所定の停止位置に正確に
停車できるとは限らない。2. Description of the Related Art In recent years, a mechanical multi-story parking garage for mechanically entering and exiting a car has been widely used. Such a mechanical multi-story parking garage is roughly divided into a storage stage, an elevator, a traveling trolley, and a retrieval stage. Be composed. A conveyor or the like is provided between the loading and unloading stage and the elevator and between the elevator and the traveling carriage so that the vehicle can be mechanically transported. Since the vehicle is mechanically transported as described above, when the vehicle is stopped in an oblique posture and transported in such a state, the vehicle body, the door mirror, and the like may contact and be damaged in an elevator, a traveling vehicle, or the like. On the other hand, the stopping posture on the entrance stage depends on the driving skill of the driver, and the vehicle cannot always stop accurately at a predetermined stop position.
【0003】従って、斜めに停車された車両を機械的に
修正する機構が必要になるが、かかる斜め停車を修正す
る方法として、従来、以下に示すものがある。[0003] Therefore, a mechanism for mechanically correcting a vehicle stopped at an angle is required, and the following methods have conventionally been used to correct such a vehicle stop at an angle.
【0004】(A)車輪を乗せるコンベヤに、車輪幅に
合わせた凹形状の溝や走行ガイド等を突設し、車両が斜
め停車しにくい構造にしている。(A) On a conveyor on which wheels are placed, concave grooves and running guides matching the wheel width are provided so as to project so that the vehicle is not likely to stop diagonally.
【0005】(B)図13に示すように、入庫ステージ
102の床において昇降機103に向け走行するよう平
行に設置された前輪スラットコンベヤ104及び後輪ス
ラットコンベヤ105と、隣接する昇降機103上に前
記両スラットコンベヤ104、105と平行に設置され
たフォークコンベヤ106とを矢印方向に走行させ、両
スラットコンベヤ104、105にまたがって乗せられ
ている車両1を入庫ステージ102から昇降機103に
移動させるのもであるが、かかる乗せ替え途中に両スラ
ットコンベヤ104、105の走行を制御することによ
り斜め停車(車両1が両スラットコンベヤ104、10
5の走行方法に対して垂直に停車していないことを意味
する。以下同じ)の修正がなされている。なお、前輪ス
ラットコンベヤ104、後輪スラットコンベヤ105
は、上記特許請求の範囲に記載の「前輪搬送用コンベ
ヤ」、「後輪搬送用コンベヤ」のことである。(B) As shown in FIG. 13, a front wheel slat conveyor 104 and a rear wheel slat conveyor 105, which are installed in parallel so as to run toward the elevator 103 on the floor of the storage stage 102, and the adjacent elevator 103 on the floor. It is also possible to move both slat conveyors 104, 105 and a fork conveyor 106 installed in parallel in the direction of the arrow to move the vehicle 1 mounted on both slat conveyors 104, 105 from the storage stage 102 to the elevator 103. However, by controlling the traveling of both slat conveyors 104 and 105 during the transfer, the vehicle is diagonally stopped (the vehicle 1 has both slat conveyors 104 and 105).
5 means that the vehicle is not stopped vertically. The same applies below). The front wheel slat conveyor 104 and the rear wheel slat conveyor 105
"Conveyor for front wheel conveyance" and "Conveyor for rear wheel conveyance" described in the claims.
【0006】かかる装置による修正の方法は、両スラッ
トコンベヤ104、105の終点近くにおいて、両スラ
ットコンベヤの走行方法と垂直な単一線上に検知線をお
く前輪検知センサ107と後輪検知センサ108が設け
られ、一方の前記センサ107又は108が一方の車輪
を検知した場合に、検知された一方の車輪の搬送を行う
スラットコンベヤ104又は105の走行を停止し、そ
の後に他方の前記センサ107又は108が他方の車輪
を検知した場合に、検知された他方の車輪の搬送を行う
スラットコンベヤ104又は105の走行を停止するこ
とによる。この方法により、前輪と後輪の位置、つまり
車両1の向きを両スラットコンベヤ104、105の走
行方向と垂直な状態にすることができる。このように双
方のスラットコンベヤ104、105が停止し、斜め停
車が修正されたた後、両スラットコンベヤ104、10
5の走行を再開することで、昇降機103に車両1を正
しい向きで搬送できる。このような斜め停車修正方法
は、実開平4−34355号公報に開示されている。The correction method by such a device is such that the front wheel detection sensor 107 and the rear wheel detection sensor 108, which place detection lines on a single line perpendicular to the running method of both slat conveyors, near the end points of both slat conveyors 104, 105. When one of the sensors 107 or 108 detects one wheel, the slat conveyor 104 or 105 that conveys the detected one wheel is stopped, and then the other sensor 107 or 108 is transferred. When the other wheel is detected, the traveling of the slat conveyor 104 or 105 that carries the detected other wheel is stopped. With this method, the positions of the front wheels and the rear wheels, that is, the direction of the vehicle 1 can be set in a state perpendicular to the traveling direction of the slat conveyors 104 and 105. In this way, after the slats conveyors 104 and 105 are stopped and the diagonal stop is corrected, the slats conveyors 104 and 10 are stopped.
By restarting the traveling of the vehicle 5, the vehicle 1 can be transported to the elevator 103 in the correct direction. Such an oblique stop correction method is disclosed in Japanese Utility Model Laid-Open No. 4-34355.
【0007】[0007]
【発明が解決しようとする課題】以上で紹介した従来の
方法には、次に示すような不都合がある。The conventional method introduced above has the following disadvantages.
【0008】(1)上記(A)に記載の方法では、溝の
深さや走行ガイドの高さを小さくした場合、斜め停車防
止の効果がない。一方、溝の深さ等を大きくした場合、
溝等の側面とタイヤやアルミホイールとがこすれて傷が
着くおそれがある。また、ドライバーにとっても、正し
い位置に駐車しなければならないという心理的圧迫感が
大きい。このため、運転技術の低いドライバーにとって
入庫は困難で、入庫に多くの時間を要する。(1) In the method described in the above (A), when the depth of the groove or the height of the traveling guide is reduced, there is no effect of preventing the vehicle from stopping obliquely. On the other hand, when the depth of the groove is increased,
There is a possibility that the side surface of the groove or the like and the tire or the aluminum wheel may be rubbed and damaged. Also, the driver has a great psychological pressure to park at the correct position. For this reason, it is difficult for drivers with low driving skills to enter the warehouse, and it takes a lot of time to enter the warehouse.
【0009】(2)上記(B)に記載の方法では、車輪
が据え切り状態(前輪が直進方向ではなく右折又は左折
方向を向いている状態を意味する。以下同じ)にある場
合、前輪が直進状態にある場合に比べて早く検知されて
しまうため、前輪スラットコンベヤ104が所定位置よ
り早く停止し、車両1を両スラットコンベヤ104、1
05に対して垂直に修正することができない。(2) In the method described in the above (B), when the wheels are in a stationary state (meaning that the front wheels are not turning straight but turning right or left, the same applies hereinafter). The front wheel slat conveyor 104 is stopped earlier than a predetermined position because the vehicle 1 is detected earlier than in the case where the vehicle is in a straight traveling state, and the vehicle 1 is moved to both slat conveyors 104, 1
It cannot be corrected perpendicular to 05.
【0010】また、前輪と後輪のタイヤ幅が異なる場合
にも、センサ107、108で通過を検知する車輪の外
側を、スラットコンベヤ104、105の走行方向と垂
直にするため、車両自体を垂直に修正できない。In addition, even when the tire widths of the front wheels and the rear wheels are different from each other, the vehicle itself is vertically set in order to make the outside of the wheels whose passage is detected by the sensors 107 and 108 perpendicular to the traveling direction of the slat conveyors 104 and 105. Cannot be modified.
【0011】さらに、両スラットコンベヤ104、10
5の停止及び再起動を伴う操作により、車両の斜め停車
の修正がなされるため、車両を乗せた状態のスラットコ
ンベヤ104、105に必要な駆動トルクが大きくな
る。このため、スラットコンベヤ104、105の走行
を正確に制御するのは困難で、その結果正確な斜め停車
の修正が困難になる。一方、かかる装置で正確な修正を
行おうとすれば、いきおい当該装置の構造が複雑かつ高
価になる。Further, both slat conveyors 104, 10
Since the operation of stopping and restarting 5 causes the vehicle to stop at an angle, the driving torque required for the slat conveyors 104 and 105 with the vehicle mounted thereon increases. For this reason, it is difficult to accurately control the travel of the slat conveyors 104 and 105, and as a result, it is difficult to accurately correct an oblique stop. On the other hand, if an accurate correction is to be performed by such a device, the structure of the device becomes complicated and expensive.
【0012】本発明は上述の従来の不都合を解決するた
めになされたもので、簡易かつ正確に斜め停車が修正可
能な機械式立体駐車場の斜め停車自動修正方法及び装置
の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional inconveniences, and an object of the present invention is to provide a method and an apparatus for automatically correcting an oblique stop of a mechanical multi-story parking garage which can easily and accurately correct an oblique stop. .
【0013】[0013]
【課題を解決するための手段】上記した目的を達成する
ために本発明の機械式立体駐車場の斜め停車(車両の向
きが前輪搬送用コンベヤ及び後輪搬送用コンベヤの走行
方向に対して垂直でない状態の停車を意味する。以下同
じ)自動修正方法は、車両の前輪を乗せ横方向に走行す
る前輪搬送用コンベヤの走行速度と、車両の後輪を乗せ
同方向に走行する後輪搬送用コンベヤの走行速度とを制
御することにより車両の向きを各コンベヤの走行方向に
対し垂直方向に修正する機械式立体駐車場の斜め停車自
動修正方法であって、前記各コンベヤによる車両の搬
送速度が所定速度に達した状態で、検出器により前記車
両の反搬送方向側の前輪の通過開始時期と、前記車両の
反搬送方向側の後輪の通過開始時期とをそれぞれ検知し
たのち、前記前輪の検知時期と前記後輪の検知時期と
の時間差に基づいて前記車両の斜め度合い(前記両コン
ベヤの走行方向と垂直な面を基準として、かかる基準面
から前輪までの距離と後輪までの距離との差を意味す
る。以下同じ)を判別し、この判別結果に基づいて前
記前輪搬送用コンベヤと前記後輪搬送用コンベヤの少な
くとも一方の走行速度を制御することにより、車両の向
きを修正するものである。In order to achieve the above-mentioned object, the present invention provides a mechanical multi-story parking lot according to the present invention in which the vehicle is parked diagonally (the direction of the vehicle is perpendicular to the running direction of the front wheel conveyor and the rear wheel conveyor). The same applies to the following.) The automatic correction method is based on the traveling speed of the front wheel conveyor that runs in the lateral direction with the front wheels of the vehicle and the rear wheel transportation that runs in the same direction with the rear wheels of the vehicle. A method for automatically correcting the oblique stop of a mechanical multi-story parking garage in which the direction of the vehicle is corrected in a direction perpendicular to the traveling direction of each conveyor by controlling the traveling speed of the conveyor, wherein the transport speed of the vehicle by each of the conveyors is adjusted. After reaching the predetermined speed, the detector detects the passage start timing of the front wheel on the side opposite to the transport direction of the vehicle and the start time of passage of the rear wheel on the side opposite to the transport direction of the vehicle. Based on the time difference between the sensing time and the detection time of the rear wheel, the inclination of the vehicle (based on a plane perpendicular to the traveling direction of the two conveyors, the distance from the reference plane to the front wheel, the distance to the rear wheel, The same applies hereinafter.) And correcting the direction of the vehicle by controlling the traveling speed of at least one of the front wheel conveyor and the rear wheel conveyor based on the result of the judgment. It is.
【0014】上記構成を有する本発明の機械式立体駐車
場の斜め停車修正方法では、以下に示す作用がある。The oblique stop correction method for a mechanical multistory parking lot of the present invention having the above-described structure has the following effects.
【0015】前輪搬送用コンベヤと後輪搬送用コンベヤ
とによる車両の定速搬送途中で、前輪通過開始時期(タ
イミング)と後輪通過開始時期(タイミング)とを検知
し、かかるタイミングの時間差に基づいて、より正確に
は前記両コンベヤの走行速度も考慮することにより車両
の斜め度合いが判定される。この斜め度合いの判定に基
づき、前輪搬送用コンベヤ又は後輪搬送用コンベヤの走
行速度を変化させることで、車両の向きを変え、車両の
斜め姿勢が修正される。特に、コンベヤによる搬送方向
と反対側の前後輪を検知して車両の姿勢を判別するの
で、斜め姿勢有りと判別したのち、車両を他のステージ
へ搬出するまでの間に車両の姿勢を修正でき、姿勢の修
正作業によって駐車効率が妨げられることがない。During the constant speed conveyance of the vehicle by the front and rear wheel conveyors, a front wheel passage start timing (timing) and a rear wheel passage start timing (timing) are detected, and a time difference between the timings is detected. More precisely, the inclination of the vehicle is determined by considering the traveling speeds of the two conveyors. By changing the traveling speed of the front-wheel transport conveyor or the rear-wheel transport conveyor based on the determination of the degree of inclination, the direction of the vehicle is changed and the oblique posture of the vehicle is corrected. In particular, since the posture of the vehicle is determined by detecting the front and rear wheels opposite to the direction of conveyance by the conveyor, the posture of the vehicle can be corrected before it is determined that there is an oblique posture and before the vehicle is carried out to another stage. The parking efficiency is not hindered by the posture correction work.
【0016】なお、本方法では、前後輪のタイヤ幅やト
レッド幅が異なる場合においては、車両の向きをコンベ
ヤの走行方向に対し垂直(直角)方向に正確に修正する
ことができないが、実際に量販されている車両の場合、
その差は20mm程度と小さく、車両の斜め姿勢の修正
に影響はない。In the present method, when the tire width and tread width of the front and rear wheels are different, the direction of the vehicle cannot be accurately corrected in a direction perpendicular (perpendicular) to the traveling direction of the conveyor. For vehicles sold in volume,
The difference is as small as about 20 mm, and does not affect the correction of the oblique posture of the vehicle.
【0017】請求項2記載のように、前記検知時期の
遅れた側の車輪を搬送している前記コンベヤを増速する
ことにより車両の斜め修正を行うことが望ましい。It is preferable that the oblique correction of the vehicle is performed by increasing the speed of the conveyor that is conveying the wheel on the side where the detection timing is delayed.
【0018】この方法によれば、車両の斜め姿勢の修正
を一方のコンベヤの走行速度を速めることにより行うか
ら、制御が容易なうえに、車両の斜め修正の有無にかか
わらず車両を横方向に搬送する時間は一定になる。According to this method, the inclination of the vehicle is corrected by increasing the traveling speed of one of the conveyors, so that the control is easy and the vehicle can be moved in the lateral direction regardless of the presence or absence of the vehicle. The transport time is constant.
【0019】請求項3記載のように、前記検出器によ
り前記車両の反搬送方向側の前輪の通過開始時期及び通
過終了時期と、前記車両の反搬送方向側の後輪の通過開
始時期及び通過終了時期とをそれぞれ検知し、前記各
車輪の通過開始時期と通過終了時期の時間差の1/2の
時間D100,D101をそれぞれ算出し、前記前後
輪の検知時期の時間差D102とD101の和が、D1
00と等しいか、大きいか、小さいかにより前記車両の
斜め度合いを判別することが好ましい。According to a third aspect of the present invention, the start and end times of passage of the front wheels on the side opposite to the transport direction of the vehicle, and the start times and passage of rear wheels of the rear side of the vehicle on the opposite side of the vehicle by the detector. End times are respectively detected, and times D100 and D101, which are half the time difference between the passage start time and the passage end time of each wheel, are calculated. The sum of the time differences D102 and D101 between the front and rear wheel detection times is D1
It is preferable to determine the degree of inclination of the vehicle based on whether it is equal to 00, larger or smaller than 00.
【0020】この方法によれば、前輪通過のタイミング
と後輪通過のタイミングとの時間差に、それぞれの通過
始期と通過終期との中間点における時間差を用いて斜め
度合いを演算するので、前輪及び後輪のタイヤ中心で比
較した斜め度合いが得られる。このため、前輪が据え切
り状態にある場合や前後輪のタイヤ幅が異なる場合で
も、正確に車両の向きを修正できる。また本方法では、
車両を所定の位置に駐車しなくても、また前輪が進行方
向を向かず、据え切り状態のままでも、前輪搬送用コン
ベヤと後輪搬送用コンベヤとに前輪と後輪を架け渡せば
駐車場への搬入が可能である。このため、ドライバーへ
の負担が小さく、搬入作業に時間がかからない。According to this method, the degree of obliqueness is calculated using the time difference between the front wheel passage timing and the rear wheel passage timing at the midpoint between the start and end of each pass, so that the front wheel and the rear wheel are calculated. The degree of obliqueness compared at the center of the tire of the wheel is obtained. Therefore, even when the front wheels are in a stationary state or when the tire widths of the front and rear wheels are different, the direction of the vehicle can be accurately corrected. In this method,
Even if the vehicle is not parked in a predetermined position, or even if the front wheels do not face the traveling direction and remain in the stationary state, if the front wheels and the rear wheels are bridged between the front and rear wheel conveyors, the parking lot It is possible to carry it in. Therefore, the burden on the driver is small, and the carrying-in work does not take much time.
【0021】請求項4記載の本発明の機械式立体駐車場
の斜め停車自動修正装置は、A)車両の前輪を乗せ横方向
に走行する前輪搬送用コンベヤと、車両の後輪を乗せ横
方向に走行する後輪搬送用コンベヤとを装備し、かかる
前輪搬送用コンベヤと後輪搬送用コンベヤの走行速度を
制御することにより車両の向きを各コンベヤの走行方向
に対し垂直方向に修正する機械式立体駐車場の斜め停車
自動修正装置であって、B)前記コンベヤの走行方向に対
して垂直方向に一直線上の検知線を有し、車両の反搬送
方向側の前輪及び反搬送方向側の後輪の通過をそれぞれ
検知する前輪検知センサ及び後輪検知センサと、C)かか
る両センサが検知した所定速度で搬送中の車両の前輪及
び後輪の通過開始時期及び通過終期時期に関するデータ
により車両の斜め度合いを演算し、この演算結果に基づ
いて前記前輪搬送用コンベヤと前記後輪搬送用コンベヤ
の少なくとも一方の走行速度を制御する制御部と、D)こ
の制御部からの指令に基づいて可変速可能な前記前輪搬
送用コンベヤの駆動モータと後輪搬送用コンベヤの駆動
モータからなる動作部とを備えている。According to a fourth aspect of the present invention, there is provided a device for automatically correcting an oblique stop of a mechanical multi-story parking garage, comprising the following steps: A) a front-wheel transport conveyor for driving the front wheels of the vehicle in the lateral direction; A mechanical system that corrects the direction of the vehicle in a direction perpendicular to the traveling direction of each conveyor by controlling the traveling speed of the front wheel conveyor and the rear wheel conveyor, equipped with a rear wheel conveyor that travels An automatic correcting device for oblique stop of a multi-story parking garage, B) having a detection line on a straight line in a direction perpendicular to the traveling direction of the conveyor, and a front wheel on a side opposite to a transport direction of the vehicle and a rear side on a side opposite to the transport direction. A front wheel detection sensor and a rear wheel detection sensor that respectively detect the passage of the wheels, and C) the data of the vehicle that is being conveyed at a predetermined speed detected by these two sensors based on data on the passage start time and the passage end time of the front and rear wheels of the vehicle. Diagonal degree A control unit that controls the traveling speed of at least one of the front wheel conveyor and the rear wheel conveyor based on the calculation result; andD) a variable speed based on a command from the control unit. And a drive unit for driving the front wheel conveyor and a drive unit for driving the rear wheel conveyor.
【0022】かかる請求項4記載の機械式立体駐車場の
斜め停車自動修正装置によれば、上記請求項1又は2記
載の方法を実施でき、それらの方法と同様の作用が発揮
できる。また、前輪検知センサと後輪検知センサの検知
線を前記コンベヤの走行方向に対して垂直方向の一直線
上にし、かつ所定速度で搬送中に検知するようにしたた
め、前輪通過のタイミングと後輪通過のタイミングの時
間差に搬送速度を乗じた値が斜め度合いとなる。このた
め演算や両コンベヤの速度制御などが簡易になる。According to the device for automatically correcting the oblique stop of a mechanical multi-story parking lot according to the fourth aspect, the method according to the first or second aspect can be implemented, and the same operation as those methods can be exhibited. In addition, since the detection lines of the front wheel detection sensor and the rear wheel detection sensor are aligned on a straight line in a direction perpendicular to the traveling direction of the conveyor and are detected during conveyance at a predetermined speed, the timing of front wheel passage and rear wheel passage are determined. The value obtained by multiplying the time difference between the timings by the transport speed is the oblique degree. This simplifies calculations and speed control of both conveyors.
【0023】請求項5記載のように、前記車両の斜め度
合いの演算は、前輪の通過開始時期と通過終了時期の中
間点と、後輪の通過開始時期と通過終了時期の中間点と
の時間差に、前記各コンベヤの走行速度に関するデータ
を乗ずることによるとよい。According to a fifth aspect of the present invention, the calculation of the degree of obliqueness of the vehicle is performed by calculating a time difference between an intermediate point between the passage start time and the passage end time of the front wheels and an intermediate point between the passage start time and the passage end time of the rear wheels. Multiplied by data on the traveling speed of each of the conveyors.
【0024】この機械式立体駐車場の斜め停車自動修正
装置によれば、上記請求項3の方法を実施でき、その方
法と同様の作用が発揮できる。According to the automatic oblique stop correction system for a mechanical multi-story parking lot, the method of the third aspect can be implemented, and the same operation as the method can be exhibited.
【0025】請求項6記載のように、請求項4又は5記
載の機械式立体駐車場の斜め停車自動修正装置を入庫ス
テージに装備するとよい。According to a sixth aspect of the present invention, the automatic oblique stop automatic correction device for a mechanical multi-story parking garage according to the fourth or fifth aspect of the present invention is preferably provided on a storage stage.
【0026】当該機械式立体駐車場の斜め停車自動修正
装置は、上述の入庫ステージと昇降機との乗せ替え、昇
降機と走行台車との乗せ替え等に使用可能であるが、入
庫ステージからの搬出時に斜め姿勢を修正すれば、その
後の乗せ替えで姿勢が斜めになることはほとんどないた
め、入庫ステージに当該装置を装備するのが効果的であ
る。The automatic oblique stop automatic correction device for a mechanical multi-story parking garage can be used for the transfer of the above-described storage stage and the elevator, the transfer of the elevator and the traveling vehicle, and the like. If the oblique posture is corrected, the posture will hardly become oblique after the transfer, and it is effective to equip the storage stage with the device.
【0027】[0027]
【発明の実施の形態】以下、本発明に係る機械式立体駐
車場の斜め停車自動修正方法及び装置について各実施の
形態を図面に基づいて説明する。当該機械式立体駐車場
の概略平面図を図1に、本発明に係る機械式立体駐車場
の斜め停車自動修正装置を装備した入庫ステージの概略
平面図を図2に示す。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a method and an apparatus for automatically correcting an oblique stop of a mechanical multi-story parking lot according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view of the mechanical multi-story parking lot, and FIG. 2 is a schematic plan view of a storage stage equipped with the automatic oblique stop automatic correction device for the mechanical multi-story parking lot according to the present invention.
【0028】(1)機械式立体駐車場の概説 図1に示すように、当該機械式立体駐車場の構造は、大
別すると入庫ステージ2、入庫用昇降機3、走行台車
4、駐車スペース5、出庫用昇降機6、及び出庫ステー
ジ7からなる。このような構造の立体駐車場は、地下式
のものに多く採用されている。(1) Overview of mechanical multi-storey parking lot As shown in FIG. 1, the structure of the mechanical multi-storey parking lot is roughly classified into a storage stage 2, a storage elevator 3, a traveling carriage 4, a parking space 5, It comprises an elevator 6 for delivery and a delivery stage 7. Multi-storey parking lots having such a structure are often used in underground parking lots.
【0029】当該駐車場に入庫する場合、ドライバーは
入庫管制灯10及びゲート装置8により入庫可能を確認
した後、入庫ステージ2に車両1を進入させる。次に、
車両1はスラットコンベヤ11、12により機械的に入
庫用昇降機3に搬入され、入庫用昇降機3は任意のフロ
アーに移動される。その後、そのフロアー上で移動可能
に設けられた走行台車4に車両1が搬入され、この走行
台車4を移動させ、任意の駐車スペース5に車両1を搬
入することで駐車が完了する。一方、駐車場から出庫す
る場合、その逆に走行台車4、出庫用昇降機6、及び出
庫ステージ7の順に車両1を搬送し、ドライバーがゲー
ト装置9による出庫可能を確認後、出口に向けて運転す
る。When entering the parking lot, the driver confirms that the vehicle can enter the parking lot by the entrance control light 10 and the gate device 8, and then makes the vehicle 1 enter the entrance stage 2. next,
The vehicle 1 is mechanically carried into the storage elevator 3 by the slat conveyors 11 and 12, and the storage elevator 3 is moved to an arbitrary floor. Thereafter, the vehicle 1 is carried into the traveling vehicle 4 movably provided on the floor, the traveling vehicle 4 is moved, and the vehicle 1 is carried into an arbitrary parking space 5, whereby parking is completed. On the other hand, when leaving from the parking lot, conversely, the vehicle 1 is transported in the order of the traveling carriage 4, the exit elevator 6 and the exit stage 7, and after the driver confirms that the exit by the gate device 9 is possible, the driver drives toward the exit. I do.
【0030】上述のように、入庫ステージ2上での停車
はドライバーの運転によりなされるため、車両1の向き
がスラットコンベヤ11、12の走行方向と垂直方向に
ならず、斜め姿勢で停車されることがある。このような
斜め姿勢のままでは、車両1と昇降機3の内壁とが接触
するおそれがある。かかる不都合を防止すべく、後述す
る斜め停車自動修正装置を入庫ステージ2に装備した。As described above, since the vehicle is stopped on the storage stage 2 by the driver's operation, the vehicle 1 is not inclined in the direction perpendicular to the traveling direction of the slat conveyors 11 and 12, but is stopped in an oblique posture. Sometimes. With such an oblique posture, the vehicle 1 may come into contact with the inner wall of the elevator 3. In order to prevent such inconveniences, an oblique stop automatic correction device, which will be described later, is provided on the storage stage 2.
【0031】(2)入庫ステージ及び入庫用昇降機の構
成 入庫ステージ2から入庫用昇降機3への車両1の搬送
は、図2に示すように、入庫ステージ2上の設けた前輪
スラットコンベヤ11及び後輪スラットコンベヤ12
と、入庫用昇降機3上に設けたフォークコンベヤ14と
を同期運転することによる。この前輪スラットコンベヤ
11は、前輪を乗せて昇降機3方向(車両1の横方向と
同じであり、図中矢印で示す)に走行可能に設け、後輪
スラットコンベヤ12は、後輪を乗せ前記前輪スラット
コンベヤ11と同方向に走行可能に設けた。一方、フォ
ークコンベヤ14は車両1の前輪及び後輪を乗せ同方向
に走行可能にした。また、入庫ステージ2の両スラット
コンベヤ11、12から入庫用昇降機3のフォークコン
ベヤ14への車両1の乗せ替えをスムーズにするため、
入庫用昇降機3上の入庫ステージ2との境界線側におい
て、上記双方のコンベヤ11、12、14の走行方向に
回転可能な円柱状の乗り移りローラ13を付設した。こ
こまでの構成は、上記従来の装置(B)(図13参照)
と同様であるが、後述する斜め姿勢を検知するためのセ
ンサの位置や、姿勢を修正するための制御方法が異な
る。(2) Configuration of the Storage Stage and Storage Elevator The transportation of the vehicle 1 from the storage stage 2 to the storage elevator 3 is performed by the front wheel slat conveyor 11 provided on the storage stage 2 and the rear, as shown in FIG. Wheel slat conveyor 12
And the fork conveyor 14 provided on the storage elevator 3 by synchronously operating. The front wheel slat conveyor 11 is provided so as to be able to carry front wheels and travel in the direction of the elevator 3 (same as the lateral direction of the vehicle 1 and indicated by an arrow in the drawing), and the rear wheel slat conveyor 12 carries the rear wheels and The slat conveyor 11 is provided so as to be able to travel in the same direction. On the other hand, the fork conveyor 14 carries the front wheel and the rear wheel of the vehicle 1 and can run in the same direction. Further, in order to smoothly transfer the vehicle 1 from the slat conveyors 11 and 12 of the storage stage 2 to the fork conveyor 14 of the storage elevator 3,
A column-shaped transfer roller 13 rotatable in the traveling direction of the two conveyors 11, 12, and 14 is provided on the storage elevator 3 on the boundary side with the storage stage 2 on the storage elevator. The configuration up to this point is the above-mentioned conventional device (B) (see FIG. 13).
However, the control method for correcting the position of a sensor for detecting an oblique posture described later and the posture is different.
【0032】(3)斜め停車自動修正装置 図2において、入庫ステージ2上の前輪スラットコンベ
ヤ11及び後輪スラットコンベヤ12とをそれぞれ横切
って、反搬送方向側(左側)の前輪1aの位置検出セン
サ15・16と、反搬送方向側(左側)の後輪1bの検
知センサ17・18とが設置されている。各検知センサ
15・16、17・18が設置されている位置は、後述
するように各スラットコンベヤ11・12の走行速度が
所定速度(本例では40m/min)に達した状態で前後輪
を検出可能な位置である。そして、本例の光電式センサ
では、投光器15、17から照射される一直線上の光線
が受光器16、18に向けて、各スラットコンベヤ11
・12の走行方向に対し垂直(直角)方向になるように
それぞれ配置されている。(3) Automatic oblique stop correction device In FIG. 2, a position detection sensor for the front wheel 1a on the opposite side (left side) in the direction opposite to the conveyance direction, crossing the front wheel slat conveyor 11 and the rear wheel slat conveyor 12 on the storage stage 2 respectively. 15 and 16, and detection sensors 17 and 18 for the rear wheel 1b on the side opposite to the transport direction (left side). The positions at which the detection sensors 15, 16, 17 and 18 are installed are determined by moving the front and rear wheels when the traveling speed of each of the slat conveyors 11 and 12 reaches a predetermined speed (40 m / min in this example) as described later. It is a detectable position. In the photoelectric sensor according to the present embodiment, a straight line of light emitted from the light projectors 15 and 17 is directed toward the light receivers 16 and 18 by the respective slat conveyors 11.
・ They are arranged so as to be perpendicular (perpendicular) to the traveling direction of twelve.
【0033】図3は斜め停車自動修正装置の制御装置を
示す構成図、図4は図3の制御装置の検出部、演算部及
び動作部を示すブロック図である。FIG. 3 is a block diagram showing a control device of the automatic correction device for oblique stop, and FIG. 4 is a block diagram showing a detection unit, a calculation unit and an operation unit of the control device of FIG.
【0034】図3に示すように、制御装置は前記各検知
センサ15〜18のほかに、前輪スラットコンベヤ11
及び後輪スラットコンベヤ12をそれぞれ駆動する可変
速駆動モータ20、21を備えている。各駆動モータ2
0、21は制御盤25内のインバータ27、28と動力
ケーブル23を介して接続され、各インバータ27、2
8はシーケンサ26に接続されている。また、光電式セ
ンサの受光器16、18が、制御ケーブル22を介して
シーケンサ26に接続されている。As shown in FIG. 3, in addition to the detection sensors 15 to 18, the control device includes a front wheel slat conveyor 11
And variable speed drive motors 20 and 21 for driving the rear wheel slat conveyor 12 respectively. Each drive motor 2
0 and 21 are connected to inverters 27 and 28 in a control panel 25 via a power cable 23,
8 is connected to the sequencer 26. The light receivers 16 and 18 of the photoelectric sensor are connected to a sequencer 26 via a control cable 22.
【0035】図4に示すように、制御装置は検出部、演
算部及び動作部から構成され、検出部を構成する光電式
センサ15〜18を、図2の左側前輪1a、左側後輪1
bがそれぞれ通過するときの開始時期と終了時期とを検
出して演算部に出力する。演算部は、シーケンサ26の
ソフトウエア(ラダーシーケンス)回路により構成され
る。演算部内において、検知センサ15〜18から入力
されるタイムデータ、すなわち左側前輪1a及び左側後
輪1bが検知センサ15〜18を遮光したときの時間に
基づいて、各車輪(タイヤ)幅を算出し、同時に左側前
輪1aと左側後輪1bが検知センサ15〜18の遮光を
開始したときの時間差を算出する。そして、これらのタ
イムデータから、後述するステップに基づいて車両1の
斜め方向及び斜め度合いを判定する。As shown in FIG. 4, the control device comprises a detecting section, a calculating section and an operating section, and the photoelectric sensors 15 to 18 constituting the detecting section are connected to the left front wheel 1a and the left rear wheel 1 in FIG.
The start time and the end time when b respectively passes are detected and output to the calculation unit. The operation unit is configured by a software (ladder sequence) circuit of the sequencer 26. In the arithmetic unit, the width of each wheel (tire) is calculated based on the time data input from the detection sensors 15 to 18, that is, the time when the left front wheel 1a and the left rear wheel 1b shield the detection sensors 15 to 18. At the same time, the time difference between when the left front wheel 1a and the left rear wheel 1b start blocking light of the detection sensors 15 to 18 is calculated. Then, from these time data, the oblique direction and the oblique degree of the vehicle 1 are determined based on steps described later.
【0036】それらの結果から、上記所定速度から増速
する必要があるスラットコンベヤ11又は12を決定
し、各スラットコンベヤ11・12の速度制御を行って
いるインバータ27又は28に対し、増速指令を出力す
る。本例では、その増速指令は、増速速度をあらかじめ
設定(インバータ出力周波数:60Hz)しており、増
速時間を何秒間出力するかの時間要素を決定するように
している。なお、各スラットコンベヤ11・12の定常
走行速度は40m/min(インバータ出力周波数:46.
4Hz)に設定している。From these results, the slat conveyor 11 or 12 which needs to increase the speed from the predetermined speed is determined, and the speed increase command is sent to the inverter 27 or 28 which controls the speed of each slat conveyor 11 or 12. Is output. In this example, the speed-up command sets the speed-up speed in advance (inverter output frequency: 60 Hz) and determines the time element for how many seconds the speed-up time is output. The steady running speed of each of the slat conveyors 11 and 12 is 40 m / min (inverter output frequency: 46.
4 Hz) is set.
【0037】(4)斜め停車自動修正方法 図5(a)は各スラットコンベヤ11・12の速度パター
ンを示す線図、図5(b)は車両の斜め検出タイミングを
示す線図である。(4) Automatic Correction Method of Slant Stopping FIG. 5 (a) is a diagram showing speed patterns of the slat conveyors 11 and 12, and FIG. 5 (b) is a diagram showing a slant detection timing of the vehicle.
【0038】図5(a)に示すように、各スラットコンベ
ヤ11・12は運転開始後から40m/minまで徐々に増
速され、40m/minで定速運転される。そして、10m
/minまで一旦減速して定速運転された後に、減速されて
停止する。前記各検知センサ15〜18による車両1の
前後輪1a・1bの検出は、40m/minで定速運転され
ている状態で行われる。As shown in FIG. 5A, the speed of each of the slat conveyors 11 and 12 is gradually increased to 40 m / min from the start of operation, and the slat conveyors 11 and 12 are operated at a constant speed of 40 m / min. And 10m
After decelerating once to / min and operating at a constant speed, decelerate and stop. The detection of the front and rear wheels 1a and 1b of the vehicle 1 by the detection sensors 15 to 18 is performed in a state where the vehicle is driven at a constant speed of 40 m / min.
【0039】図5(b)に示すように、一方の検知センサ
15・16又は17・18が一方の車輪1a又は1bの
通過開始時期を検知してから、他方の検知センサ15・
16又は17・18が他方の車輪1a又は1bの通過開
始時期を検知するまでの時間差をt秒とすれば、667
mm/s(40m/min)×t、すなわち667tmmが前
後輪の位置ずれとなる。この時間差tは、車両の斜め方
向の向き、タイヤの据え切り、4WS車のタイヤの据え
切り、前後タイヤ幅の差異、前後のトレッド幅の差異な
どによって生じるが、本発明の方法によれば、いずれの
場合にも車両の斜め方向をほぼ正確に修正することがで
きる。なお、前後タイヤ幅の差異及び前後のトレッド幅
の差異はそれぞれ20mm程度であるから、斜め修正制
御には影響がない。As shown in FIG. 5 (b), after one of the detection sensors 15, 16, or 17, 18 has detected the passage start time of one of the wheels 1a or 1b, the other detection sensor 15, 16 or 17
Assuming that the time difference between when 16 or 17, 18 detects the passage start timing of the other wheel 1a or 1b is t seconds, 667
The displacement of the front and rear wheels is mm / s (40 m / min) × t, that is, 667 tmm. The time difference t is caused by a diagonal direction of the vehicle, a stationary tire, a stationary tire of a 4WS vehicle, a difference in front and rear tire width, a difference in front and rear tread width, and the like. According to the method of the present invention, In any case, the oblique direction of the vehicle can be corrected almost exactly. The difference between the front and rear tire widths and the difference between the front and rear tread widths are each about 20 mm, so that there is no effect on the oblique correction control.
【0040】図6は斜め停車自動修正方法を実施するた
めの演算部タイミングチャートで、左側前輪1aが左側
後輪1bよりも右側(コンベヤの走行方向側)に偏って
駐車したケースを表している。FIG. 6 is a timing chart of a calculation section for implementing the automatic oblique stop correction method, and shows a case where the left front wheel 1a is parked on the right side (in the traveling direction of the conveyor) of the left rear wheel 1b. .
【0041】図6に示すように、各検知センサ15〜1
8からの検知信号の取り込みは、各スラットコンベヤ1
1・12の走行速度が40m/minに達した信号が発せら
た状態で行われる。そして、本例では前輪1aが先行し
て検知されるから、検知センサ15・16がそれを検知
すると同時に、前輪検出保持タイマT30が経過時間の
計測を開始し、以降はこのタイマT30の経過時間が入
庫運転中の基準時間データになる。なお、後輪1bが先
行して検知されたときには、後輪検出保持タイマT40
により計測される経過時間が基準になる。As shown in FIG. 6, each of the detection sensors 15-1
Of the detection signal from the slat conveyor 1
The operation is performed in a state where a signal indicating that the traveling speed of 1 · 12 has reached 40 m / min is issued. In this example, since the front wheel 1a is detected in advance, the front wheel detection holding timer T30 starts measuring the elapsed time at the same time as the detection sensors 15 and 16 detect it, and thereafter the elapsed time of the timer T30 is detected. Is the reference time data during the warehousing operation. When the rear wheel 1b is detected in advance, the rear wheel detection holding timer T40
The elapsed time measured by is the standard.
【0042】先行してセンサを遮光した前輪1aの遮光
時間(通過開始時期と通過終了時期との時間差)をT2
とし、前輪1aの中間点(センター)における時間差D
100を算出する。The light-shielding time (time difference between the passage start time and the passage end time) of the front wheel 1a, which previously shielded the sensor, is T2
And the time difference D at the midpoint (center) of the front wheel 1a
Calculate 100.
【0043】D100=T2÷2……… 後続してセンサを遮光した後輪1bの遮光時間をT3と
し、後輪1bの中間点(センター)における時間差D1
01を算出する。D100 = T2 ÷ 2..., T3 denotes the light blocking time of the rear wheel 1b after which the sensor is blocked, and the time difference D1 at the intermediate point (center) of the rear wheel 1b.
01 is calculated.
【0044】D101=T3÷2……… ここで、前輪1aが検知されてから後輪1bが検知され
るまでの時間差tをD102とすると、以下の関係式に
より車両1(図2)の姿勢が判別される。D101 = T3 ÷ 2 Here, assuming that a time difference t from when the front wheel 1a is detected to when the rear wheel 1b is detected is D102, the attitude of the vehicle 1 (FIG. 2) is expressed by the following relational expression. Is determined.
【0045】 D100=D101+D102……正規の姿勢(斜め修正不要) D100<D101+D102……前輪先行斜め姿勢[後輪先行斜め姿勢] D100>D101+D102……後輪先行斜め姿勢[前輪先行斜め姿勢] []内は後輪先行時 そして、車両の斜め姿勢の修正は次の関係式に基づいて
行われる。D100 = D101 + D102... Normal posture (no oblique correction is required) D100 <D101 + D102... Front wheel front oblique posture [rear wheel front oblique posture] The inside is the time when the rear wheels are ahead. The correction of the diagonal posture of the vehicle is performed based on the following relational expression.
【0046】 のとき:((D101+D102)−D100)*K=D1…… ここで、K:増速定数(実施して経験的に求められ
る)、D1:増速時間(秒)となり、後輪スラットコン
ベヤ12がインバータ28の出力周波数60HzでD1
秒増速されて、車両1の斜め姿勢が修正される。In the case of: ((D101 + D102) -D100) * K = D1 where K: acceleration constant (determined empirically by implementation), D1: acceleration time (seconds), and rear wheel When the output frequency of the inverter 28 is 60 Hz, the slat conveyor 12
The speed is increased by two seconds, and the oblique posture of the vehicle 1 is corrected.
【0047】 のとき:(D100−(D101+D102))*K=D2…… ここで、D2:増速時間(秒)となり、前輪スラットコ
ンベヤ11がインバータ27の出力周波数60HzでD
2秒増速され、車両1の斜め姿勢が修正される。When: (D100- (D101 + D102)) * K = D2 ... Here, D2: acceleration time (seconds), and the front wheel slat conveyor 11 outputs D at the output frequency 60 Hz of the inverter 27.
The speed is increased by 2 seconds, and the oblique posture of the vehicle 1 is corrected.
【0048】図7は上記した斜め停車自動修正方法の手
順を示すフローチャートである。本例の方法は、図7に
示すように、分別すると、前後輪のずれを測定する各ス
テップと、前輪幅を決定する各ステップと、後輪幅を決
定する各ステップと、これらのステップにより算出され
る各データに基づいて、スラットコンベヤ11・12の
うち、増速すべきスラットコンベヤを決定するととも
に、増速時間を算出して車両の斜め方向の向きを修正す
るステップとからなる。なお、フローチャートには示し
ていないが、車両の向きの修正が不要な場合には、補正
演算ステップにおける速度補正時間が0になり、修正作
業が終了(エンド)する。FIG. 7 is a flow chart showing the procedure of the above-mentioned oblique stop automatic correction method. As shown in FIG. 7, in the method of this example, when discriminating, the steps of measuring the deviation between the front and rear wheels, the steps of determining the front wheel width, the steps of determining the rear wheel width, and these steps are performed. Based on each of the calculated data, a step of determining the slat conveyor to be accelerated among the slat conveyors 11 and 12, and calculating the acceleration time to correct the diagonal direction of the vehicle. Although not shown in the flowchart, when the correction of the vehicle direction is not necessary, the speed correction time in the correction calculation step becomes 0, and the correction work ends (ends).
【0049】(5)斜め停車姿勢の修正例 ケース1:斜め姿勢なし・タイヤ据え切りなしの場合
(図8(a)) [判定] D100(T2/2)=D101(T3/2) D102(T1)=0 T2=T3[タイヤの据え切りなし] D100=D101+D102[斜め姿勢なし] ケース2:前輪先行斜め姿勢・タイヤ据え切りなしの場
合(図8(b)) [判定] D100(T2/2)=D101(T3/2) D102(T1)≠0 T2=T3[タイヤの据え切りなし] D100<D101+D102[前輪先行斜め姿勢] ○後輪スラットコンベヤ12を増速 ケース3:斜め姿勢なし・タイヤ据え切り有りの場合
(図9(a)) [判定] D100(T2/2)≠D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100=D101+D102[斜め姿勢なし] ケース4:斜め姿勢なし・タイヤ据え切り有りの場合
(図9(b)) [判定] D100(T2/2)=D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100=D101+D102[斜め姿勢なし] ○後輪スラットコンベヤ12を増速 ケース5:前輪先行斜め姿勢・タイヤ据え切り有りの場
合(図10(a)) [判定] D100(T2/2)=D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100<D101+D102[前輪先行斜め姿勢] ○後輪スラットコンベヤ12を増速 ケース6:前輪先行斜め姿勢・タイヤ据え切り有りの場
合(図10(b)) [判定] D100(T2/2)=D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100<D101+D102[前輪先行斜め姿勢] ○後輪スラットコンベヤ12を増速 ケース7:後輪先行斜め姿勢・タイヤ据え切りなしの場
合(図11(a)) [判定] D100(T2/2)≠D101(T3/2) D102(T1)≠0 T2=T3[タイヤの据え切りなし] D100<D101+D102[後輪先行斜め姿勢] ○前輪スラットコンベヤ11を増速 ケース8:後輪先行斜め姿勢・タイヤ据え切り有りの場
合(図11(b)) [判定] D100(T2/2)≠D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100<D101+D102[後輪先行斜め姿勢] ○前輪スラットコンベヤ11を増速 ケース9:後輪先行斜め姿勢・タイヤ据え切り有りの場
合(図12(a)) [判定] D100(T2/2)≠D101(T3/2) D102(T1)≠0 T2≠T3[タイヤの据え切り有り] D100<D101+D102[後輪先行斜め姿勢] ○前輪スラットコンベヤ11を増速 ケース10:4WS車における斜め姿勢なし・タイヤ据
え切りなしの場合(図12(b)) [判定] D100(T2/2)=D101(T3/2) D102(T1)=0 T2=T3[タイヤの据え切りなし] D100=D101+D102[斜め姿勢なし](5) Example of Correction of Slant Stopping Posture Case 1: Case of No Slant Posture and No Tire Standing (FIG. 8A) [Determination] D100 (T2 / 2) = D101 (T3 / 2) D102 ( T1) = 0 T2 = T3 [No tire stationary] D100 = D101 + D102 [No oblique posture] Case 2: Front wheel oblique posture / No tire stationary (FIG. 8 (b)) [Determination] D100 (T2 / 2) = D101 (T3 / 2) D102 (T1) ≠ 0 T2 = T3 [No tire stationary] D100 <D101 + D102 [Front wheel leading oblique posture] ○ Increase rear wheel slat conveyor 12 Case 3: No slant posture When there is a tire stationary (FIG. 9A) [Determination] D100 (T2 / 2) / D101 (T3 / 2) D102 (T1) ≠ 0 T2 ≠ T3 [Tire stationary is present D100 = D101 + D102 [No slanting posture] Case 4: No slanting posture / Tire standing off (FIG. 9B) [Determination] D100 (T2 / 2) = D101 (T3 / 2) D102 (T1) ≠ 0 T2 ≠ T3 [there is a stationary tire] D100 = D101 + D102 [there is no diagonal posture] ○ Increase the speed of the rear wheel slat conveyor 12 Case 5: When the front diagonal posture is the front wheel and the tire is stationary (FIG. 10A) D100 (T2 / 2) = D101 (T3 / 2) D102 (T1) ≠ 0 T2 ≠ T3 [there is a tire stationary installation] D100 <D101 + D102 [front-wheel forward oblique attitude] ○ Speed-up rear wheel slat conveyor 12 Case 6 : In the case where the front wheel is in the oblique posture and the tire is stationary (FIG. 10B) [Determination] D100 (T2 / 2) = D101 (T3 / 2) D1 2 (T1) ≠ 0 T2 ≠ T3 [with tire stationary] D100 <D101 + D102 [front wheel leading diagonal position] ○ Speeding up rear wheel slat conveyor 12 Case 7: rear wheel leading diagonal position without tire loading ( FIG. 11 (a)) [Determination] D100 (T2 / 2) ≠ D101 (T3 / 2) D102 (T1) ≠ 0 T2 = T3 [No tire stationary] D100 <D101 + D102 [Rear-wheel front-diagonal posture] ○ Front wheel Acceleration of slat conveyor 11 Case 8: Diagonal posture of the front wheels and tire stationary (Fig. 11 (b)) [Determination] D100 (T2 / 2) ≠ D101 (T3 / 2) D102 (T1) ≠ 0 T2 ≠ T3 [with tire stationary] D100 <D101 + D102 [rear wheel leading diagonal position] ○ front wheel slat conveyor 11 speed up Case 9: rear wheel leading diagonal position When there is a tire stationary (FIG. 12 (a)) [Judgment] D100 (T2 / 2) ≠ D101 (T3 / 2) D102 (T1) ≠ 0 T2 ≠ T3 [there is a tire stationary] D100 <D101 + D102 [after] Wheel leading oblique posture] ○ Front wheel slat conveyor 11 is accelerated. Case 10: No oblique posture in 4WS car, no tire stationary (FIG. 12 (b)) [Determination] D100 (T2 / 2) = D101 (T3 / 2) D102 (T1) = 0 T2 = T3 [no tire stationary] D100 = D101 + D102 [no diagonal posture]
【0050】(6)他の実施例 上記に本発明の一実施例を示したが、例えば下記のよう
に実施することができる。すなわち、 a)入庫ステージ2の各スラットコンベヤ11、12の
搬出側付近にも前後輪の検知センサを設置し、車両1の
斜め姿勢が修正されたかどうかを検出できるようにす
る。そして車両1の修正が不十分な場合には、各スラッ
トコンベヤ11、12を逆方向に走行させ、再度、車両
1の向きを修正する。(6) Other Embodiments One embodiment of the present invention has been described above. For example, the present invention can be implemented as follows. That is, a) Front and rear wheel detection sensors are also installed near the carry-out sides of the slat conveyors 11 and 12 of the storage stage 2 so that it can be detected whether or not the oblique posture of the vehicle 1 has been corrected. If the correction of the vehicle 1 is insufficient, the slat conveyors 11 and 12 are caused to run in opposite directions, and the direction of the vehicle 1 is corrected again.
【0051】b)光電式センサに代えて赤外線センサや
リミットスイッチなどを使用する。B) An infrared sensor or a limit switch is used instead of the photoelectric sensor.
【0052】c)本発明の姿勢修正装置を、入庫ステー
ジ2のほか、入庫用昇降機3や走行台車4に装備する。C) The posture correcting device of the present invention is mounted on the storage elevator 2 and the traveling carriage 4 in addition to the storage stage 2.
【0053】d)制御は複雑になるが、各スラットコン
ベヤ11、12の両方の走行速度を制御して車両の姿勢
を修正する。D) Although the control is complicated, the traveling speed of both slat conveyors 11 and 12 is controlled to correct the posture of the vehicle.
【0054】[0054]
【発明の効果】以上説明したことから明らかなように、
本発明に係る機械式立体駐車場の斜め停車自動修正方法
及び装置によれば、次のような効果がある。As is apparent from the above description,
According to the automatic oblique stop correction method and device of the mechanical multi-story parking lot according to the present invention, the following effects can be obtained.
【0055】(1) 請求項1記載の方法では、前後輪を検
知した時間差に基づきかつ前後輪搬送用のコンベヤの走
行速度を考慮することにより車両の斜め度合いを、簡単
にかつ正確に判定でき、またこの斜め度合いの判定に基
づき車両の斜め姿勢を修正できる。さらに、コンベヤに
よる搬送方向と反対側の前後輪を検知して車両の姿勢を
判別するので、斜め姿勢を判別したのち、車両を他のス
テージへ搬出するまでの間に車両の姿勢を修正でき、姿
勢の修正作業により駐車効率が妨げられることがない。(1) According to the method of the first aspect, the inclination of the vehicle can be easily and accurately determined based on the time difference between the detection of the front and rear wheels and by considering the traveling speed of the conveyor for front and rear wheel conveyance. The oblique attitude of the vehicle can be corrected based on the determination of the degree of obliqueness. Furthermore, since the posture of the vehicle is determined by detecting the front and rear wheels on the opposite side to the transport direction by the conveyor, the posture of the vehicle can be corrected before the vehicle is taken out to another stage after determining the oblique posture, The parking efficiency is not hindered by the posture correction work.
【0056】(2) 請求項2記載の方法では、車両の斜め
姿勢の修正を一方のコンベヤの走行速度を速めることに
より行うから、制御が容易なうえに、車両の斜め修正の
有無にかかわらず車両の搬送時間が一定になる。(2) In the method according to the second aspect, the correction of the oblique attitude of the vehicle is performed by increasing the traveling speed of one of the conveyors, so that the control is easy and regardless of the presence or absence of the oblique correction of the vehicle. The transport time of the vehicle becomes constant.
【0057】(3) 請求項3記載の方法では、前輪通過の
タイミングと後輪通過のタイミングとの時間差に、それ
ぞれの通過開始時期と通過終了時期との中間点における
時間差を考慮して斜め度合いを演算するので、前輪及び
後輪のタイヤ中心(センター)で比較した斜め度合いを
が得られる。したがって、例えば前輪が据え切り状態に
ある場合や前後輪のタイヤ幅が異なる場合でも、正確に
車両の向きを修正できる。(3) In the method according to the third aspect, the time difference between the timing of passing the front wheel and the timing of passing the rear wheel is calculated by taking into account the time difference at the intermediate point between the start time and the end time of the passage. Is calculated, it is possible to obtain the degree of obliqueness at the center of the tire between the front wheel and the rear wheel. Therefore, for example, even when the front wheels are in the stationary state or when the front and rear wheels have different tire widths, the direction of the vehicle can be accurately corrected.
【0058】(4) 請求項4記載の装置は、請求項1又は
2記載の方法を実施でき、それらの方法と同様の効果が
得られ、また、構造が簡単で製造コストも低減できる。(4) The apparatus according to the fourth aspect can implement the method according to the first or second aspect, has the same effects as those of the methods, and has a simple structure and a low manufacturing cost.
【0059】(5) 請求項5記載の装置は、請求項3の方
法を実施でき、その方法と同様の効果が得られる。(5) The device according to claim 5 can execute the method according to claim 3, and the same effect as that of the method can be obtained.
【0060】(6) 請求項6記載の装置は、入庫ステージ
からの車両の搬出時に斜め姿勢を修正するので、それ以
降の装置内で車両が他の部材に接触するなどの不具合が
防止される。(6) Since the device according to the sixth aspect corrects the oblique posture when the vehicle is carried out of the storage stage, problems such as the vehicle coming into contact with other members in the subsequent devices are prevented. .
【図1】本発明の実施例に係る斜め停車自動修正装置を
備えた機械式立体駐車場の全体的な概要を示す平面図で
ある。FIG. 1 is a plan view showing an overall outline of a mechanical multi-story parking lot provided with an automatic oblique stop correction device according to an embodiment of the present invention.
【図2】本発明の斜め停車自動修正装置の実施例を示す
平面図である。FIG. 2 is a plan view showing an embodiment of the automatic oblique stop correction device of the present invention.
【図3】本発明の実施例に係る斜め停車自動修正装置の
制御装置を示す構成図である。FIG. 3 is a configuration diagram illustrating a control device of the automatic oblique stop correction device according to the embodiment of the present invention.
【図4】図3の制御装置の検出部、演算部及び動作部を
示すブロック図である。FIG. 4 is a block diagram illustrating a detection unit, a calculation unit, and an operation unit of the control device in FIG. 3;
【図5】図5(a)は各スラットコンベヤ11・12の速
度パターンを示す線図、図5(b)は車両の斜め検出タイ
ミングを示す線図である。FIG. 5 (a) is a diagram showing speed patterns of the slat conveyors 11 and 12, and FIG. 5 (b) is a diagram showing oblique detection timing of the vehicle.
【図6】斜め停車自動修正方法を実施するための演算部
タイミングチャートで、左側前輪1aが左側後輪1bよ
りも右側(コンベヤの走行方向側)に偏って駐車したケ
ースを表している。FIG. 6 is a timing chart of a calculation unit for implementing the automatic oblique stop correction method, showing a case where the left front wheel 1a is parked on the right side (on the traveling direction of the conveyor) of the left rear wheel 1b.
【図7】斜め停車自動修正方法の手順を示すフローチャ
ートである。FIG. 7 is a flowchart showing a procedure of an oblique stop automatic correction method.
【図8】図8(a)は斜め姿勢なし・タイヤ据え切りなし
の状態(ケース1)を示す平面図、図8(b)は前輪先行
斜め姿勢・タイヤ据え切りなしの状態(ケース2)を示
す平面図である。FIG. 8 (a) is a plan view showing a state in which there is no oblique posture and tires are not cut off (case 1), and FIG. 8 (b) is a state in which the front wheels are in an oblique posture and tires are not cut off (case 2). FIG.
【図9】図9(a)は斜め姿勢なし・タイヤ据え切り有り
の状態(ケース3)を示す平面図、図9(b)は前輪先行
斜め姿勢・タイヤ据え切りなしの状態(ケース4)を示
す平面図である。9 (a) is a plan view showing a state in which there is no oblique posture and tires are cut off (case 3), and FIG. 9 (b) is a state in which the front wheels are in an oblique posture and tires are not cut off (case 4). FIG.
【図10】図10(a)は前輪先行斜め姿勢・タイヤ据え
切り有りの状態(ケース5)を示す平面図、図10(b)
は前輪先行斜め姿勢・タイヤ据え切り有りの状態(ケー
ス6)を示す平面図である。FIG. 10 (a) is a plan view showing a state (case 5) in which the front wheel is obliquely positioned and the tire is stationary, FIG. 10 (b).
FIG. 8 is a plan view showing a state in which the front wheel is in an oblique posture and a tire is stationary (case 6).
【図11】図11(a)は後輪先行斜め姿勢・タイヤ据え
切りなしの状態(ケース7)を示す平面図、図11(b)
は後輪先行斜め姿勢・タイヤ据え切り有りの状態(ケー
ス8)を示す平面図である。FIG. 11 (a) is a plan view showing a state (case 7) in which the rear wheels are in an oblique posture with no front tires and the tires are not stationary, and FIG. 11 (b).
FIG. 7 is a plan view showing a state in which the rear wheel is in an oblique posture and a tire is stationary (case 8).
【図12】図12(a)は後輪先行斜め姿勢・タイヤ据え
切り有りの状態(ケース9)を示す平面図、図12(b)
は4WS車における斜め姿勢なし・タイヤ据え切りなし
の状態(ケース10)を示す平面図である。FIG. 12 (a) is a plan view showing a state (case 9) in which a rear-wheel leading diagonal posture is set and tires are stationary, and FIG. 12 (b) is a plan view.
FIG. 4 is a plan view showing a state (case 10) of a 4WS vehicle without an oblique posture and without tire standing-off.
【図13】従来の斜め停車自動修正装置を示す斜視図で
ある。FIG. 13 is a perspective view showing a conventional oblique stop automatic correction device.
1 車両 2 入庫ステージ 11 前輪搬送用スラットコンベヤ 12 後輪搬送用スラットコンベヤ 15〜18 センサ 20・21 可変速駆動モータ 25 制御盤 26 シーケンサ 27・28 インバータ 1 Vehicle 2 Storage Stage 11 Front Wheel Slat Conveyor 12 Rear Wheel Slat Conveyor 15-18 Sensor 20 ・ 21 Variable Speed Drive Motor 25 Control Panel 26 Sequencer 27 ・ 28 Inverter
Claims (6)
搬送用コンベヤの走行速度と、車両の後輪を乗せ同方向
に走行する後輪搬送用コンベヤの走行速度とを制御する
ことにより車両の向きを各コンベヤの走行方向に対し垂
直方向に修正する機械式立体駐車場の斜め停車自動修正
方法であって、 前記各コンベヤによる車両の搬送速度が所定速度に達し
た状態で、検出器により前記車両の反搬送方向側の前輪
の通過開始時期と、前記車両の反搬送方向側の後輪の通
過開始時期とをそれぞれ検知したのち、 前記前輪の検知時期と前記後輪の検知時期との時間差に
基づいて前記車両の斜め度合いを判別し、 この判別結果に基づいて前記前輪搬送用コンベヤと前記
後輪搬送用コンベヤの少なくとも一方の走行速度を制御
することにより、車両の向きを修正することを特徴とす
る機械式立体駐車場の斜め停車自動修正方法。The vehicle is controlled by controlling the traveling speed of a front-wheel transport conveyor that travels in the lateral direction with front wheels of the vehicle and the traveling speed of a rear-wheel transport conveyor that travels in the same direction with rear wheels of the vehicle. A method of automatically correcting the oblique stop of a mechanical multi-story parking lot in which the direction of the vehicle is corrected in a direction perpendicular to the traveling direction of each conveyor, in a state where the transport speed of the vehicle by each of the conveyors reaches a predetermined speed, a detector After detecting the passage start time of the front wheels on the side opposite to the transport direction of the vehicle and the start time of passage of the rear wheels on the side opposite to the transport direction of the vehicle, respectively, the detection time of the front wheels and the detection time of the rear wheels By determining the degree of inclination of the vehicle based on the time difference, and controlling the traveling speed of at least one of the front wheel conveyor and the rear wheel conveyor based on the determination result, the direction of the vehicle is determined. A method for automatically correcting an oblique stop of a mechanical multi-story parking garage, wherein the correction is performed.
ている前記コンベヤを増速することにより車両の斜め修
正を行う請求項1記載の機械式立体駐車場の斜め停車自
動修正方法。2. The automatic oblique stop correction method of a mechanical multi-story parking garage according to claim 1, wherein the vehicle is obliquely corrected by increasing the speed of the conveyor conveying the wheel on the side where the detection timing is delayed.
側の前輪の通過開始時期及び通過終了時期と、前記車両
の反搬送方向側の後輪の通過開始時期及び通過終了時期
とをそれぞれ検知し、 前記各車輪の通過開始時期と通過終了時期の時間差の1
/2の時間D100,D101をそれぞれ算出し、 前記前後輪の検知時期の時間差D102とD101の和
が、D100と等しいか、大きいか、小さいかにより前
記車両の斜め度合いを判別する請求項1又は2記載の機
械式立体駐車場の斜め停車自動修正方法。3. The detector detects a passage start time and a passage end time of a front wheel on a side opposite to the conveyance direction of the vehicle, and a passage start time and a passage end time of a rear wheel on the side opposite to the conveyance direction of the vehicle. The time difference between the passage start time and the passage end time of each wheel is 1
The time D100 and D101 of / 2 are respectively calculated, and the inclination degree of the said vehicle is discriminate | determined based on whether the sum of the time difference D102 and D101 of the detection timing of the front and rear wheels is equal to, larger or smaller than D100. 2. The method for automatically correcting a diagonal stop of a mechanical multi-story parking lot according to 2.
搬送用コンベヤと、車両の後輪を乗せ横方向に走行する
後輪搬送用コンベヤとを装備し、かかる前輪搬送用コン
ベヤと後輪搬送用コンベヤの走行速度を制御することに
より車両の向きを各コンベヤの走行方向に対し垂直方向
に修正する機械式立体駐車場の斜め停車自動修正装置で
あって、 前記コンベヤの走行方向に対して垂直方向に一直線上の
検知線を有し、車両の反搬送方向側の前輪及び反搬送方
向側の後輪の通過をそれぞれ検知する前輪検知センサ及
び後輪検知センサと、 かかる両センサが検知した所定速度で搬送中の車両の前
輪及び後輪の通過開始時期及び通過終期時期に関するデ
ータにより車両の斜め度合いを演算し、この演算結果に
基づいて前記前輪搬送用コンベヤと前記後輪搬送用コン
ベヤの少なくとも一方の走行速度を制御する制御部と、 この制御部からの指令に基づいて可変速可能な前記前輪
搬送用コンベヤの駆動モータと後輪搬送用コンベヤの駆
動モータからなる動作部とを備えたことを特徴とする機
械式立体駐車場の斜め停車自動修正装置。4. A vehicle for driving a vehicle, comprising: a front wheel conveyor for carrying a front wheel of a vehicle in a lateral direction; and a rear wheel conveyor for carrying a rear wheel of a vehicle in a lateral direction. A diagonal stop automatic correction device of a mechanical multi-story parking lot that corrects the direction of the vehicle in a direction perpendicular to the traveling direction of each conveyor by controlling the traveling speed of the conveyor, A front-wheel detection sensor and a rear-wheel detection sensor that have a detection line that is linear in the vertical direction and that detects the passage of the front wheel on the side opposite to the conveyance direction and the rear wheel on the side opposite to the conveyance direction of the vehicle. The obliqueness of the vehicle is calculated based on data relating to the passage start time and the passage end time of the front wheels and rear wheels of the vehicle being conveyed at a predetermined speed, and based on the calculation result, the front wheel conveyor and the rear wheel are used. A control unit for controlling the traveling speed of at least one of the conveyors; an operating unit comprising a drive motor for the front wheel conveyor and a drive motor for the rear wheel conveyor that can be varied based on a command from the controller; An automatic correcting device for obliquely stopping a mechanical multi-story parking garage, comprising:
通過開始時期と通過終了時期の中間点と、後輪の通過開
始時期と通過終了時期の中間点との時間差に、前記各コ
ンベヤの走行速度に関するデータを乗ずることによるこ
ととした請求項4記載の機械式立体駐車場の斜め停車自
動修正装置。5. The calculation of the degree of obliqueness of the vehicle is performed by calculating a time difference between an intermediate point between a passage start time and a passage end time of a front wheel and an intermediate point between a passage start time and a passage end time of a rear wheel. 5. The automatic correcting device for obliquely stopping a mechanical multi-story parking lot according to claim 4, wherein the data is multiplied by data relating to the traveling speed.
記載の機械式立体駐車場の斜め停車自動修正装置。6. The storage stage according to claim 4, wherein the storage stage is provided.
The automatic oblique stop automatic correction device for the mechanical multi-story parking lot described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28661495A JP2709584B2 (en) | 1995-10-06 | 1995-10-06 | Automatic correction method and device for oblique stop of mechanical multi-story parking lot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28661495A JP2709584B2 (en) | 1995-10-06 | 1995-10-06 | Automatic correction method and device for oblique stop of mechanical multi-story parking lot |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09100647A true JPH09100647A (en) | 1997-04-15 |
JP2709584B2 JP2709584B2 (en) | 1998-02-04 |
Family
ID=17706698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28661495A Expired - Fee Related JP2709584B2 (en) | 1995-10-06 | 1995-10-06 | Automatic correction method and device for oblique stop of mechanical multi-story parking lot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2709584B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008099A (en) * | 2006-06-30 | 2008-01-17 | Tokyu Car Corp | Wheel-distinction method and wheel-distinction device of vehicle of mechanical parking device |
JP2015161080A (en) * | 2014-02-26 | 2015-09-07 | 新明和工業株式会社 | Entrance area detection device, and mechanical parking facility equipped with the same |
CN107605208A (en) * | 2017-10-28 | 2018-01-19 | 关仁舟 | Multi-storied garage multistage wheelbase self-adapting type conveyor-type position in storehouse equipment |
JP2020084723A (en) * | 2018-11-30 | 2020-06-04 | 三菱重工機械システム株式会社 | Mechanical parking device |
-
1995
- 1995-10-06 JP JP28661495A patent/JP2709584B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008099A (en) * | 2006-06-30 | 2008-01-17 | Tokyu Car Corp | Wheel-distinction method and wheel-distinction device of vehicle of mechanical parking device |
JP4654992B2 (en) * | 2006-06-30 | 2011-03-23 | 東急車輛製造株式会社 | Wheel discriminating method and wheel discriminating device for vehicle in mechanical parking device |
JP2015161080A (en) * | 2014-02-26 | 2015-09-07 | 新明和工業株式会社 | Entrance area detection device, and mechanical parking facility equipped with the same |
CN107605208A (en) * | 2017-10-28 | 2018-01-19 | 关仁舟 | Multi-storied garage multistage wheelbase self-adapting type conveyor-type position in storehouse equipment |
JP2020084723A (en) * | 2018-11-30 | 2020-06-04 | 三菱重工機械システム株式会社 | Mechanical parking device |
Also Published As
Publication number | Publication date |
---|---|
JP2709584B2 (en) | 1998-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2709584B2 (en) | Automatic correction method and device for oblique stop of mechanical multi-story parking lot | |
JP2011145975A (en) | Automated guided vehicle | |
JP3116213B2 (en) | Vehicle type identification device | |
JP3401493B2 (en) | Automatic correction device for oblique stop of mechanical multi-story parking lot | |
JP2853459B2 (en) | Vehicle transfer method | |
JP3366923B2 (en) | Truck traveling speed control method in separation zone of transfer device | |
JPH0962354A (en) | Traveling vehicle control method | |
JP2000330635A (en) | Automatic guided vehicle | |
JP3420530B2 (en) | Garage storage assist device | |
JP2884125B2 (en) | Vehicle moving device | |
JP3019609B2 (en) | Palletless transporter and car storage equipment | |
JP2000142923A (en) | Multilevel storage facility | |
JP3267056B2 (en) | Traveling control method and device for tracked bogie | |
JP2801133B2 (en) | Apparatus and method for detecting vehicle size in parking lot facility | |
JPH04115067A (en) | Taking in and out device of multi-story parking garage | |
JP6263416B2 (en) | How to stop a transport carriage in a parking system | |
EP0557962B1 (en) | Collision avoidance system for carriages | |
JP2983433B2 (en) | Vehicle size determination apparatus and size determination method | |
JPS5952310A (en) | Control method of unmanned guide truck | |
JP2879516B2 (en) | Vehicle turning equipment | |
KR100240958B1 (en) | Method for controlling a travelling operation of parking system | |
JPH06173491A (en) | Transfer conveyor control method for parking area facility | |
JPS61101813A (en) | Controller for stopping railless truck to constant position | |
JP3286923B2 (en) | Safety stop device for panel in electric partitioning system | |
JPH0535332A (en) | Travel controller for moving work wagon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |