JPH089811A - Storage of young rice plant and raising seedling of stored young rice plant - Google Patents

Storage of young rice plant and raising seedling of stored young rice plant

Info

Publication number
JPH089811A
JPH089811A JP15245794A JP15245794A JPH089811A JP H089811 A JPH089811 A JP H089811A JP 15245794 A JP15245794 A JP 15245794A JP 15245794 A JP15245794 A JP 15245794A JP H089811 A JPH089811 A JP H089811A
Authority
JP
Japan
Prior art keywords
storage
seedlings
medium
culture
rice seedlings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15245794A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Okii
三孔 沖井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NURSERY TECHNOL KK
Original Assignee
NURSERY TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NURSERY TECHNOL KK filed Critical NURSERY TECHNOL KK
Priority to JP15245794A priority Critical patent/JPH089811A/en
Publication of JPH089811A publication Critical patent/JPH089811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To provide a liquid for the storage of a young rice plant, composed of an inorganic salt, having an osmotic pressure adjusted to a specific level and effective for the long-term storage of a young rice plant redifferentiated by a tissue-culture technique to obtain a seedling suitable for the transplantation to a paddy field. CONSTITUTION:This storage liquid is composed of an inorganic salt and has an osmotic pressure adjusted to 5-120mOSMOL/kg. The storage liquid is preferably a culture medium residue left after the redifferentiation treatment of rice plant. The liquid is preferably incorporated with a plant growth regulator having a spindly growth suppressing action such as ancymidol. In the case of storing a young rice plant, it is preferable to culture the plant in an inorganic salt liquid medium free from sugar and containing ancymidol and an agent having root-taking and growthpromoting actions under light irradiation and aeration with air enriched with carbon dioxide gas and store the cultured plant in the storage liquid at 15-20 deg.C, a photoperiod of 3-24hr and an illumination intensity of 200-30,000Lux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イネ幼植物体の貯蔵法
及び貯蔵後イネ幼植物体の育苗法に関する。植物組織培
養技術は目覚ましく発展しているが、近年イネの組織培
養分野においても液体再分化技術が開発され、イネのカ
ルスから再分化クローン幼植物体(以下「バイオ幼体」
という。)が大量に得られる状態となっている。しか
も、これらのバイオ幼体を順化・育生し、圃場に田植え
できる苗(以下、「バイオ苗」という。)に育苗するこ
ともできる。更に、バイオ苗を栽培して米を生産するこ
ともできる。
TECHNICAL FIELD The present invention relates to a method for storing rice seedlings and a method for raising seedlings of rice after storage. Although plant tissue culture technology has made remarkable progress, liquid regeneration technology has also been developed in the field of tissue culture of rice in recent years, and it has been developed from rice callus to redifferentiate cloned seedlings (hereinafter referred to as “biolarvae”).
Say. ) Is in a state where a large amount can be obtained. In addition, these bio-larvae can be acclimated and reared to grow into seedlings that can be planted in the field (hereinafter referred to as "bio-seedlings"). Further, bio seedlings can be cultivated to produce rice.

【0002】近年、稲作生産コストの低減化、国際競争
力の付与、後継者難等、本邦稲作農業事情には多くの要
解決技術課題が山積している。ここに、イネ組織培養技
術によって、多品種のクローン苗の必要量を適時に安価
に生産するならば、本邦稲作事情を好転させる一助とな
るであろう。
In recent years, there have been many technical problems to be solved in Japanese rice farming circumstances, such as reduction of rice production cost, international competitiveness, and difficulty in succession. If the required amount of cloned seedlings of various varieties can be produced in a timely and inexpensive manner by the rice tissue culture technology, it will help improve the situation of rice cultivation in Japan.

【0003】ところで、バイオ幼体を大量に生産し、こ
れを現行の育苗技術システム(現行の育苗センター方
式)を用いて順化・育生し、大量・安価・適期にバイオ
苗を供給するためには、バイオ幼体の貯蔵が必要になっ
てくる。即ち、バイオ幼体の長期貯蔵が出来るようにな
ると、バイオ苗生産時期を現行の田植え時期のみに適合
させる必要がなくなり、生産期間の長期化が可能とな
る。その結果、再分化培養装置等の稼働率が飛躍的に向
上し、必要量を適時に安価に事業的規模で計画生産する
ことができる。従って、本発明技術は品種を異にする必
要数のイネ苗を安価に適時に計画的に供給することが求
められているイネ苗生産現場に利用することができる。
By the way, in order to produce a large amount of bio-larvae and acclimate and grow them using the current seedling raising technology system (current seedling raising center system), it is necessary to supply bio seedlings in a large amount, at low cost and in a proper time. , It becomes necessary to store the bio-cub. In other words, if it becomes possible to store the bio-larvae for a long time, it is not necessary to adapt the bio-seedling production time to the current rice planting time, and the production period can be extended. As a result, the operating rate of the redifferentiation culture device and the like is dramatically improved, and the required amount can be planned and produced on a commercial scale in a timely and inexpensive manner. Therefore, the technique of the present invention can be used in a rice seedling production site where it is required to inexpensively and systematically supply the required number of rice seedlings of different varieties at low cost.

【0004】一方、本発明技術は、イネ以外の再分化幼
植物体及びイネ以外の茎頂培養等によって増殖させた幼
植物体の貯蔵に対し、直接・間接に適用もしくは応用さ
れうる技術を提供した。更には、上記のイネ以外の幼植
物体の貯蔵技術の開発に対し、原理的・基礎的知見を与
えた。
On the other hand, the technique of the present invention provides a technique which can be directly or indirectly applied to or applied to the storage of redifferentiated seedlings other than rice and seedlings grown by shoot apical culture other than rice. did. Furthermore, we have given the basic and basic knowledge to the development of the storage technology for seedlings other than rice.

【0005】[0005]

【従来の技術】バイオ幼苗を順化育生してバイオ苗にす
るとき、従来は貯蔵技術が無かった為に、田植え時期
(特定時期)に合わせて必要とされる苗数(必要苗数)
を供給する為の多数の再分化培養槽を備えた高価な生産
設備(無貯蔵技術世代での生産設備の内で、特に再分化
培養槽は装置的・技術的・経済的にも全設備に占める割
合が極めて高かった)が必要であった。ここに、必要苗
数を生産する為に必要な再分化培養槽数をNとすると、
Nは特定時期のみ稼働し、それ以外の時期では遊休化す
る為に、無貯蔵技術世代での生産設備の稼働率は極めて
低く(1回転)、且つバイオ苗の生産コストは、種子由
来苗に比べ、極めて高くなり、バイオ苗の普及を遅らせ
ている主要な原因を与えていた。
[Prior Art] When acclimatizing and growing bio-seedlings into bio-seedlings, the number of seedlings (required seedlings) required according to the rice planting time (specific time) has not been available because there was no conventional storage technology.
Expensive production equipment equipped with a large number of redifferentiation culture tanks for supplying water (among the production equipment in the non-storage technology generation, the redifferentiation culture tanks are all equipments, technically and economically Was very high). Here, if the number of redifferentiation culture tanks required to produce the required number of seedlings is N,
N operates only at a specific time and is idle at other times, so the operation rate of production equipment in the storageless technology generation is extremely low (1 turn), and the production cost of bio seedlings is lower than that of seed-derived seedlings. In comparison, it was extremely high, which was the main cause of delaying the spread of bio-seedlings.

【0006】[0006]

【発明が解決しようとする課題】無貯蔵技術世代での生
産設備は、極く限られた期間だけ稼働することになり、
バイオ苗生産コストを種子由来苗のコスト以上にしてい
る主要な原因を与えていた。ここに、バイオ幼体の長期
貯蔵が可能となるならば、バイオ苗生産設備を繰り返し
使用することができる。従って、稼働率は向上し、初期
の設備投資額は削減され、最終的なバイオ苗の生産コス
トは低下し、優れた組織培養技術を活用した有用品種の
バイオ苗は広範に供給できることになる。
[Problems to be Solved by the Invention] Production facilities in the storageless technology generation will operate only for a very limited period,
It provided the main reason for making the production cost of bio-seedling more than the cost of seed-derived seedling. Here, if long-term storage of bio-larvae is possible, bio-seedling production equipment can be repeatedly used. Therefore, the operation rate is improved, the initial capital investment is reduced, the final production cost of bio-seedling is reduced, and bio-seedlings of useful varieties utilizing excellent tissue culture technology can be widely supplied.

【0007】ここで、バイオ幼体の長期貯蔵が可能とな
ったときの効果を具体的に述べる。カルスからバイオ幼
体を再分化させる液体再分化培養期間をTR 週間とし、
バイオ幼体の貯蔵期間をTS 週間とすると、TS /TR
(=R)は液体再分化培養期間に対するバイオ幼体の貯
蔵期間の倍数(R)を示すことになる。換言すれば、R
は再分化培養槽の使用回数(繰り返し使用回転数)を示
す尺度となり、正確な使用回転数はR+1で表示でき
る。説明を簡略化するために、貯蔵期間中に失われるバ
イオ幼体を無視し生残率を100%と仮定すると、無貯
蔵技術世代で必要とされる初期的な再分化培養槽数N
は、長期貯蔵技術確立世代では培養槽数N[R/(R+
1)]が不用となり(逆に言えば、必要槽数はN[1/
(R+1)]となる)、大幅なNの削減が出来る。例え
ば、R=2となるような長期間の貯蔵技術が確立される
と、2/3Nが不用となり、1/3Nで生産可能とな
る。たとえ、R=1でも、Nの1/2が削減でき、槽数
1/2Nでの2回転生産が可能となり、大幅な初期投資
額の削減が出来る。
[0007] Here, the effect when the long-term storage of bio juveniles becomes possible will be specifically described. The liquid regeneration culture period to regenerate the bio youngs from callus and T R Week
If the storage period of bio-larvae is T S week, T S / T R
(= R) indicates a multiple (R) of the storage period of the biolarvae with respect to the liquid regeneration culture period. In other words, R
Is a scale showing the number of times the redifferentiation culture tank has been used (the number of times of repeated use), and the exact number of times of use can be represented by R + 1. In order to simplify the explanation, assuming that the survival rate is 100% by ignoring the biolarvae lost during the storage period, the number N of initial redifferentiation culture tanks required in the non-storage technology generation is N.
Is the number of culture tanks N [R / (R +
1)] becomes unnecessary (in other words, the required number of tanks is N [1 /
(R + 1)], and it is possible to significantly reduce N. For example, if a long-term storage technology such that R = 2 is established, 2 / 3N becomes unnecessary and 1 / 3N can be produced. Even if R = 1, 1/2 of N can be reduced, and 2-turn production with 1 / 2N of tanks is possible, which can significantly reduce the initial investment amount.

【0008】以上の通り、無貯蔵技術世代における問題
点(大きな初期設備投資額、季節依存性が高く短い生産
期間による低い年間稼働率、高いバイオ苗生産コスト、
等)と長期貯蔵技術確立世代における産業的・経済的利
点の極めて大きいことを述べた。本発明の目的は、長期
貯蔵技術を確立し、上述したような無貯蔵技術世代にお
ける問題点を解決することにある。
[0008] As described above, the problems in the storageless technology generation (large initial capital investment, low annual operating rate due to short production period with high seasonal dependency, high bio-seedling production cost,
Etc.) and that the long-term storage technology has a very large industrial and economic advantage in the established generation. An object of the present invention is to establish a long-term storage technology and solve the above-mentioned problems in the non-storage technology generation.

【0009】[0009]

【課題を解決するための手段】本発明者等は、イネ幼植
物体の貯蔵性を向上させる手段について鋭意検討した結
果、貯蔵液の浸透圧を所定の値に調整することなどによ
り、貯蔵性が飛躍的に向上することを見いだした。さら
に、貯蔵後の幼植物体を所定の薬剤を含む苗化培地で培
養することにより、苗化の歩留りを向上させることがで
きることを見いだし、これらの知見に基づく本発明を完
成した。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to means for improving the storability of rice seedlings, and as a result, by adjusting the osmotic pressure of the stock solution to a predetermined value, the storability is improved. Have found a dramatic improvement. Furthermore, it was found that the seedling yield can be improved by culturing the seedlings after storage in a seedling medium containing a predetermined drug, and the present invention based on these findings was completed.

【0010】即ち、本発明の第一は、少なくとも無機塩
類からなり、その浸透圧が5〜120mOSMOL/Kgであること
を特徴とするイネ幼植物体の貯蔵液である。本発明の第
二は、貯蔵液がイネ再分化培養終了後の培地残液である
ことを特徴とする上記記載のイネ幼植物体の貯蔵液であ
る。本発明の第三は、伸長生長抑制作用を有する植物生
長調節剤を含有することを特徴とする上記記載のイネ幼
植物体の貯蔵液である。
That is, the first aspect of the present invention is a stock solution of rice seedlings comprising at least an inorganic salt and having an osmotic pressure of 5 to 120 mOSMOL / Kg. A second aspect of the present invention is the above-described rice seedling stock solution, wherein the stock solution is a residual medium solution after the rice redifferentiation culture is completed. The third aspect of the present invention is the above-mentioned rice seedling stock solution, which contains a plant growth regulator having an elongation growth inhibitory action.

【0011】本発明の第四は、伸長生長抑制作用を有す
る植物生長調節剤が、アンシミドール、ウニコナゾー
ル、イナベンフィド、アブシジン酸、又はコリンクロラ
イドであることを特徴とする上記記載のイネ幼植物体の
貯蔵液である。本発明の第五は、上記記載の貯蔵液中で
イネ幼植物体を貯蔵することを特徴とするイネ幼植物体
の貯蔵法である。
A fourth aspect of the present invention is that the plant growth regulator having an elongation growth inhibitory effect is ancimidol, uniconazole, inabenfide, abscisic acid, or choline chloride. Is a storage solution of. A fifth aspect of the present invention is a method for storing rice seedlings, which comprises storing the rice seedlings in the above-mentioned storage solution.

【0012】本発明の第六は、貯蔵時の温度条件が10〜
20℃であり、光条件が照度200〜30000Luxで光周期日長
が3〜24時間であることを特徴とする上記記載のイネ幼
植物体の貯蔵法である。本発明の第七は、貯蔵前に、イ
ネ幼植物体を糖を含まない無機塩液体培地に入れ、光照
射・炭酸ガス富化通気条件下で培養処理をすることを特
徴とする上記記載のイネ幼植物体の貯蔵法である。
A sixth aspect of the present invention is that the temperature condition during storage is 10 to
The rice seedling storage method described above is characterized in that the temperature is 20 ° C., the light condition is an illuminance of 200 to 30,000 Lux, and the photoperiod day length is 3 to 24 hours. A seventh aspect of the present invention is characterized in that, before storage, rice seedlings are placed in a sugar-free inorganic salt liquid medium and subjected to culture treatment under light irradiation / carbon dioxide-enriched aeration conditions. This is a storage method for rice seedlings.

【0013】本発明の第八は、糖を含まない無機塩液体
培地が、アンシミドールを含むことを特徴とする上記記
載のイネ幼植物体の貯蔵法である。本発明の第九は、上
記記載のイネ幼植物体の貯蔵法により貯蔵されたイネ幼
植物体を、糖を含まない無機塩培地に入れ、光照射・炭
酸ガス富化通気条件下で苗化することを特徴とする貯蔵
後イネ幼植物体の育苗法である。
An eighth aspect of the present invention is the method for storing rice seedlings as described above, wherein the sugar-free inorganic salt liquid medium contains ansimidol. In a ninth aspect of the present invention, the rice seedlings stored by the above-described rice seedling storage method are placed in a sugar-free inorganic salt medium, and seedling is formed under light irradiation / carbon dioxide-enriched aeration conditions. This is a method for raising seedlings of rice seedlings after storage, which is characterized by:

【0014】本発明の第十は、糖を含まない無機塩培地
が、活着及び生育促進作用を有する剤を含有することを
特徴とする上記記載の貯蔵後イネ幼植物体の育苗法であ
る。本発明の第十一は、活着及び生育促進作用を有する
剤が、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、
1,8-ジアミノオクタン、1,9-ジアミノノナン、α−カロ
チン、β−カロチン、γ−カロチン、セホタキシム、ア
ンホテリシンB、α−サイクロデキストリン、β−サイ
クロデキストリン、又はγ−サイクロデキストリンであ
ることを特徴とする上記記載の貯蔵後イネ幼植物体の育
苗法である。
The tenth aspect of the present invention is the method for raising seedlings of rice seedlings after storage as described above, characterized in that the sugar-free inorganic salt medium contains an agent having a rooting and growth promoting action. The eleventh aspect of the present invention is an agent having a survival and growth promoting action, 1,6-diaminohexane, 1,7-diaminoheptane,
Characterized by being 1,8-diaminooctane, 1,9-diaminononane, α-carotene, β-carotene, γ-carotene, cefotaxime, amphotericin B, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin The method for raising seedlings of rice seedlings after storage as described above.

【0015】以下、本発明を詳細に説明する。本発明に
おいて貯蔵の対象とする幼植物体は、カルスから再分化
された幼植物体(バイオ幼体)であれば特に限定されな
いが、芽長が1〜30mmのものが好ましい。カルスからの
再分化は、公知の方法に従って行うことができ、例え
ば、カルスから幼植物体を効率良く再分化させる培地交
換法である2段階再分化法[Japanese Journal of Bree
ding, 42(3), 583-594(1992)]等により行うことができ
る。即ち、前記文献と同様な方法によりカルスを誘導
し、これを増殖・継代させ、その一定量{カルス塊数20
〔約20mg(FW)〕/20mL液体再分化培地}を上述の液体再
分化培地(前期培地)に接種し、3週間培養する(前期
培養)。次に、古い培地を新鮮な液体培地(後期培地)
と交換(置換)して、更に3週間培養する(後期培
養)。ここで用いる前期培地と後期培地は、お互いに同
じでも良いが、前期培地を約1/2に希釈したものを後
期培地とし、これを前期培地量の2倍量で交換(置換)
して用いた方がより高い再分化率が得られる(例えば、
前期培地量を20mLとし、後期培地量を40mLとする)。再
分化培養は、照明下(照度約2000Lux・日長12時間以
上)で、27〜32℃で、回転振盪(100mL三角フラスコな
ら120rpm)を与えながら行う。
The present invention will be described in detail below. The seedlings to be stored in the present invention are not particularly limited as long as they are seedlings regenerated from callus (bio seedlings), but those having a bud length of 1 to 30 mm are preferable. Regeneration from callus can be performed according to a known method, for example, a two-step regeneration method [Japanese Journal of Bree] which is a medium exchange method for efficiently regenerating seedlings from callus.
ding, 42 (3), 583-594 (1992)] and the like. That is, callus was induced by the same method as in the above-mentioned document, and this was propagated and subcultured, and a certain amount of it (callus mass number 20
[About 20 mg (FW)] / 20 mL liquid regeneration medium} is inoculated into the above liquid regeneration medium (preculture medium) and cultured for 3 weeks (preculture). Then replace the old medium with a fresh liquid medium (late medium)
Are replaced (replaced) with each other and cultured for 3 more weeks (late culture). The early medium and late medium used here may be the same as each other, but the early medium is diluted to about 1/2 and used as the late medium, and this is exchanged (replaced) with twice the amount of the early medium.
A higher regeneration rate can be obtained by using (for example,
The volume of the early medium is 20 mL and the volume of the late medium is 40 mL). The redifferentiation culture is performed under illumination (illuminance: about 2000 Lux, day length: 12 hours or longer) at 27 to 32 ° C. while being subjected to rotary shaking (120 rpm for a 100 mL Erlenmeyer flask).

【0016】本発明に用いる貯蔵液の調整法は、以下の
二つに大別される。一つは、少なくとも無機塩から成る
浸透圧5〜120mOSMOL/Kgに調整した人工組成法であり、
もう一つは、再分化培養に使用し、その浸透圧が5〜12
0mOSMOL/Kgである(または5〜120mOSMOL/Kgに調整し
た)培養終了後の培地残液を再利用する法である。前者
の人工組成法による貯蔵液の調整は、植物組織培養実験
において通常用いられている各種培地または水耕栽培に
通常使用されている各種培養液を、純水(脱塩・蒸留し
た浸透圧0の水)で適宜希釈して、もしくは、これらの
培地・培養液の塩類濃度を調合する時から調節して、浸
透圧を5〜120mOSMOL/Kgとなるように、行う。
The method for preparing the stock solution used in the present invention is roughly classified into the following two. One is an artificial composition method in which an osmotic pressure of at least an inorganic salt is adjusted to 5 to 120 mOSMOL / Kg,
The other is used for regeneration culture and its osmotic pressure is 5-12.
This is a method of reusing the medium residual solution after the completion of culture, which is 0 mOSMOL / Kg (or adjusted to 5-120 mOSMOL / Kg). The former artificial composition method is used to adjust the stock solution by demineralizing pure water (desalted / distilled osmotic pressure 0) of various media commonly used in plant tissue culture experiments or various culture solutions commonly used in hydroponics. Water), or by adjusting the salt concentration of these media / culture solutions from the time of preparation, so that the osmotic pressure is 5 to 120 mOSMOL / Kg.

【0017】植物組織培養実験の培地例としては、MS
培地[Murasige and Skoog, Physiol. Plant., 15, 473
-497(1962)]、N6培地[Chu et al., Sci. Sin., 18,
658-668(1975)]、リンスマイヤー・スクーグ(Linsmai
er and Skoog)のLS培地、ホワイト(White)の培地、ガ
ンボルグ(Ganborg) のB5培地、ヘラー(Heller)の培
地、コーレンバッハ・シュミット(Kohlenbach and Schm
idt)の培地、等[これらの培地組成は、竹内正幸・中島
哲夫・古谷力、著「植物組織培養の技術」(pp. 218-22
1、朝倉書店、1986年版)に記載されている]を挙げる
ことができる。貯蔵液として用いるときには、これらの
培地において、その無機塩類は必須であり、その濃度は
1/20〜1.2倍で用いることができるが、特に1/8〜
4/5倍が好ましい(但し、pHを5.8に調整して用い
る)。当然のことながら、本濃度の浸透圧は、5〜120m
OSMOL/Kgの範囲に当てはまる。また、燐酸塩・カルシウ
ム等の各種無機塩、及びアンモニア態窒素/硝酸態窒素
のモル濃度比、の至適濃度(モル濃度比)は、後述する
再分化培地と同じである。但し、後述の再分化培地と大
きく異なる点は、前述したように無機塩は必須である
が、その他の成分(炭素源・植物成長調節剤・浸透圧調
節剤・アミノ酸類・カゼイン加水分解物・ビタミン類・
pH調節剤)は、必須では無く、加えなくとも良い。そ
の他の成分を組織培養実験で通常の使用範囲(特定成分
が過剰にならない範囲)で加え、浸透圧を至適範囲に調
節するならば、有害とはならず、貯蔵液として用いるこ
とができる。しかし、これらのその他の成分は、無機塩
に比べ、高価であり、加えて得られる貯蔵上の利点は殆
ど認められない。人工組成液を調整するもう一つの方法
は、水耕栽培・礫耕栽培・砂耕栽培で用いられるフォグ
ランド(Hoagland)水耕液・山崎&堀らの礫耕用の均衡
培養液・アーノン(Arnon)らの砂耕培養液において、
使用するそれぞれの塩類組成の組み合わせ濃度比率を変
えないで、濃度だけを調節することによって、本発明で
使用する浸透圧5〜120mOSMOL/Kgの貯蔵液を任意に調整
することができる。尚、これらの培養液の組成は、実験
農芸化学上巻〔東京大学農芸化学教室著作、(株)朝倉
書店発行(昭和43年4月30日)、ページ100〜105〕、及
び施設園芸(装置と栽培技術)〔板木利隆著作、(株)
誠文堂新光社発行(昭和62年2月10日)、ページ408〜4
17〕に、記載されている。
As an example of the medium for the plant tissue culture experiment, MS is used.
Medium [Murasige and Skoog, Physiol. Plant., 15, 473
-497 (1962)], N6 medium [Chu et al., Sci. Sin., 18,
658-668 (1975)], Rinsmeier Scoog (Linsmai
er and Skoog LS medium, White medium, Ganborg B5 medium, Heller medium, Kohlenbach and Schm
idt) medium, etc. [These medium compositions are described in Masayuki Takeuchi, Tetsuo Nakajima, Riki Furuya, “Technology of Plant Tissue Culture” (pp. 218-22)
1, Asakura Shoten, 1986 edition)] can be mentioned. When used as a stock solution, the inorganic salts are essential in these media, and the concentration thereof can be 1/20 to 1.2 times, but particularly 1/8 to
4/5 times is preferable (however, the pH is adjusted to 5.8 before use). As a matter of course, the osmotic pressure of this concentration is 5 to 120 m
It falls within the range of OSMOL / Kg. The optimum concentration (molar concentration ratio) of various inorganic salts such as phosphate and calcium and the molar concentration ratio of ammonia nitrogen / nitrate nitrogen is the same as that of the regeneration medium described later. However, the major difference from the regeneration medium described later is that the inorganic salt is essential as described above, but other components (carbon source, plant growth regulator, osmotic pressure regulator, amino acids, casein hydrolyzate, Vitamins
The pH adjustor) is not essential and may not be added. If other components are added in a tissue culture experiment in a usual use range (a range in which a specific component does not become excessive) and the osmotic pressure is adjusted to an optimum range, it is not harmful and can be used as a stock solution. However, these other components are more expensive than the inorganic salts, and the additional storage advantages obtained are hardly recognized. Another method of adjusting the artificial composition liquid is the Hoagland hydroponics solution used in hydroponics, gravel cultivation, and sand culture, and the balanced culture solution for gravels cultivation by Yamazaki & Hori et al. Arnon) et al.
The stock solution having an osmotic pressure of 5 to 120 mOSMOL / Kg used in the present invention can be arbitrarily adjusted by adjusting only the concentration without changing the combination concentration ratio of the respective salt compositions used. The composition of these culture solutions is as follows: Experimental Agricultural Chemistry Vol. 1 [Agricultural Chemistry Department, The University of Tokyo, published by Asakura Shoten Co., Ltd. (April 30, 1964), pages 100 to 105], and facility horticulture. Cultivation technology) [Toshitaka Itaki, Ltd.
Published by Seibundo Shinkosha (February 10, 1987), pages 408-4
17].

【0018】もう一方の再分化培地再利用法(貯蔵液貯
蔵法)であり、浸透圧が5〜120mOSMOL/Kgである再分化
培養終了後の培地残液の調整法について述べる。貯蔵液
としては、再分化時に使用した再分化培養終了後の残液
(浸透圧5〜120mOSMOL/Kg)が貯蔵液として最適であ
る。何故ならば、一旦、再分化培地として使用し、この
培養済みの残液を再度使用するので、貯蔵液を新たに調
整する前述の人工組成法に比べ、経済的・資源的・労力
的に利点が大きいからである。ここで使用する液体再分
化培地の成分組成は、少なくとも無機塩類、炭素源を必
須とし、必要に応じて植物生長調節剤、浸透圧調節剤、
ビタミンやアミノ酸類、カゼイン加水分解物、pH調節
剤、等を添加した培地である。具体的には、前述した植
物組織培養実験において通常用いられているMS培地、
N6培地、リンスマイヤー・スクーグのLS培地、ホワ
イトの培地、ガンボルグのB5培地、ヘラーの培地、コ
ーレンバッハ・シュミットの培地、等を挙げることがで
き、その無機塩類は1/4〜4倍の濃度で用いることが
できるが、特に1/2〜2倍の濃度が好ましい。燐酸塩
としては0.1〜60〔mM〕の添加濃度で用いることができ
るが、特に0.5〜20〔mM〕添加が良い。カルシウム塩と
しては、0.003〜30〔mM〕が良いが、特に0.03〜10〔m
M〕添加が好ましい。微量金属類としては、前記MS培
地に含まれる微量金属の添加で、より好ましい結果が得
られる。無機窒素(N)源としては、硝酸態窒素とアン
モニア態窒素を組み合わせて用いるのが良く、特に前者
の20〜120〔mM〕と後者の0.1〜10〔mM〕の組み合わせが
好ましい。但し、アンモニア態窒素/硝酸態窒素のモル
濃度比を0.001〜1にして添加することが好ましい。上
記した無機塩類に、炭素源を必ず加え、必要に応じて植
物生長調節剤(オーキシンやサイトカイニン)、浸透圧
調節剤、アミノ酸(特に、L-プロリン)類、カゼイン加
水分解物、ビタミン類、pH調節剤、等を添加して調整
された液体培地である。培地の炭素源としては、シュー
クロース、グルコース、フラクトース、等を例示でき、
その濃度は、0.1〜10%が好ましく、0.5〜6%が特に好
ましい。植物生長調節剤としては、オーキシンやサイト
カイニンを単独もしくは組み合わせて用いる。オーキシ
ンとしてα−ナフタレン酢酸(α−NAA)の0.1〜10.
0ppm、やインドール−3−酢酸(IAA)の0.001〜0.1
ppm、等を例示できる。サイトカイニンとしてカイネチ
ン(kinetin) やゼアチン(trans-or ribosyl-zeatin)の
0.001〜5ppm、等が例示できる。浸透圧調節剤として
は、ソルビトールの1〜6%やマンニトールの0.1〜3
%、等が例示できる。アミノ酸としては、L-グルタミ
ン、L-アスパラギン、L-プロリンが挙げられるが、L-プ
ロリンの0.02〜5g/L添加が特に好ましい。また、カゼ
イン加水分解物を添加するときは0.01〜5g/Lが好まし
い。pH調節剤としては、MES(4-morpholinoethane
sulphonic acid)の0.2〜7g/Lを例示でき、培地のpH
を5.8に調整して用いる。また、ビタミン類としてはミ
オイノシトール(myo-inositol)、ニコチン酸(nicoti
nic acid)、ピリドキシン(pyridoxine)、サイアミン
(thiamine)を、それぞれ50〜200、0.05〜3、0.1〜
2、0.5〜1mg/L添加するのが好ましい。尚、上記の2
段階液体再分化法により再分化を行った場合、前記及び
後期培養終了後のそれぞれの培養残液を本発明の貯蔵液
として用いることができる。貯蔵液として、前記培養残
液と後期培養残液を比較したとき、後期培養残液の方
が、より好ましい貯蔵性結果を与える。貯蔵液の浸透圧
は、5〜120mOSMOL/Kgが好ましい。浸透圧が5mOSMOL/K
g以下でも良いが、貯蔵期間が比較的短期間に制約され
る。一方、120mOSMOL/Kg以上では、幼植物体の貯蔵性
(本用語の定義とその説明は後述する)が貯蔵する幼植
物体の生理的状態に左右され易くなり、安定した貯蔵性
が得られない場合が発生する。
Another method for reusing a redifferentiation medium (storage solution storage method), which is an osmotic pressure of 5 to 120 mOSMOL / Kg, will be described. As the stock solution, the residual solution (osmotic pressure 5 to 120 mOSMOL / Kg) after the completion of the redifferentiation culture used during the redifferentiation is most suitable as the stock solution. This is because it is used as a regeneration medium once, and this residual culture solution is reused, which is economically, resourceally, and economically advantageous compared to the artificial composition method described above in which the stock solution is newly adjusted. Is large. Component composition of the liquid regeneration medium used here, at least inorganic salts, carbon source is essential, plant growth regulator, osmotic pressure regulator, if necessary,
It is a medium to which vitamins and amino acids, casein hydrolyzate, pH adjuster and the like are added. Specifically, MS medium usually used in the above-mentioned plant tissue culture experiment,
N6 medium, Rinsmeier-Skoog LS medium, white medium, Gamborg's B5 medium, Heller's medium, Korenbach-Schmidt medium, etc. can be mentioned, and the inorganic salts have a concentration of 1/4 to 4 times. However, a concentration of 1/2 to 2 times is particularly preferable. The phosphate may be used at a concentration of 0.1 to 60 [mM], but 0.5 to 20 [mM] is particularly preferable. As a calcium salt, 0.003 to 30 (mM) is good, but especially 0.03 to 10 (m
M] addition is preferred. As the trace metals, more preferable results can be obtained by adding the trace metals contained in the MS medium. As the inorganic nitrogen (N) source, it is preferable to use a combination of nitrate nitrogen and ammonia nitrogen, and the former combination of 20 to 120 [mM] and the latter 0.1 to 10 [mM] are particularly preferable. However, it is preferable that the molar concentration ratio of ammonia nitrogen / nitrate nitrogen is 0.001-1. A carbon source must be added to the above-mentioned inorganic salts, and plant growth regulators (auxins and cytokinins), osmolarity regulators, amino acids (particularly L-proline), casein hydrolysates, vitamins, and pH as necessary. A liquid medium prepared by adding a regulator and the like. Examples of the carbon source of the medium include sucrose, glucose, fructose, and the like,
The concentration is preferably 0.1 to 10%, particularly preferably 0.5 to 6%. As a plant growth regulator, auxin and cytokinin are used alone or in combination. 0.1-10 of α-naphthalene acetic acid (α-NAA) as auxin.
0ppm, or indole-3-acetic acid (IAA) 0.001-0.1
Examples include ppm and the like. As cytokinins, kinetin and zeatin (trans-or ribosyl-zeatin)
Examples are 0.001 to 5 ppm. As an osmotic pressure regulator, 1-6% of sorbitol and 0.1-3 of mannitol are used.
%, Etc. can be illustrated. Examples of the amino acid include L-glutamine, L-asparagine, and L-proline, and it is particularly preferable to add 0.02 to 5 g / L of L-proline. Further, when the casein hydrolyzate is added, 0.01 to 5 g / L is preferable. MES (4-morpholinoethane) is used as a pH adjuster.
sulphonic acid) 0.2 to 7 g / L can be exemplified, and the pH of the medium
Is adjusted to 5.8 before use. In addition, vitamins include myo-inositol and nicotinic acid (nicoti).
nic acid), pyridoxine (pyridoxine), thiamine (thiamine) 50-200, 0.05-3, 0.1-
2, 0.5-1 mg / L is preferably added. In addition, the above 2
When redifferentiation is carried out by the stepwise liquid redifferentiation method, the culture residual liquid of each of the above and after the end of the late culture can be used as the stock solution of the present invention. As a stock solution, when the culture residual solution and the late culture residual solution are compared, the late culture residual solution gives a more preferable storability result. The osmotic pressure of the stock solution is preferably 5 to 120 mOSMOL / Kg. Osmotic pressure is 5mOSMOL / K
It may be g or less, but the storage period is limited to a relatively short period. On the other hand, above 120 mOSMOL / Kg, the storage properties of seedlings (definition of this term and its explanation will be described later) are easily influenced by the physiological state of the seedlings, and stable storage properties cannot be obtained. There are cases.

【0019】本発明の貯蔵液には、伸長生長抑制作用を
有する植物生長調節剤を添加することが好ましい。ここ
で伸長生長抑制作用を有する植物生長調節剤としては、
アンシミドール[ancymidol(FW,256.3):α-cyclopropy
l-α-(4-methoxyphenyl)-5-pyrimidinemethanol]、イ
ナベンフィド[inabenfide(FW,338.6):4´-chloro-2´
-(α-hydroxybenzyl)-isonicotinanilide]、ウニコナ
ゾール[uniconazole(FW,291.7):(E)-(RS)-1-(4-chlor
ophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)-1-
penten-3-ol]、アブシジン酸[abscissic acid(FW,26
4.3):5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohe
xen-1-yl)-3-methyl-2,4-pentadienoic acid]、コリン
クロライド[choline chloride(FW,139.6):2-(hydroxy
ethyl)trimethylammoniumchloride]等を例示すること
ができるが、伸長生長抑制作用を有するものであれば、
これらに限定されない。これら薬剤の有効濃度は、アン
シミドールでは10-8〜10-6〔M〕、イナベンフィドでは1
0-9〜10-7〔M〕、ウニコナゾールでは10-10〜10
-8〔M〕、アブシジン酸では、2×10-7〜2×10
-5〔M〕、コリンクロライドでは10-4〜10-2〔M〕、であ
る。また、上記の薬剤の最適有効濃度は、アンシミドー
ルでは0.5×10-7〜5.0×10-7〔M〕、イナベンフィドは
0.7×10-8〜7.0×10-8〔M〕、ウニコナゾールでは0.8×
10-9〜8.0×10-9〔M〕、アブシジン酸では7.0×10-7〜1
0-6〔M〕、コリンクロライドでは0.5×10-3〜5.0×10 -3
〔M〕である。
The stock solution of the present invention has a growth inhibitory action.
It is preferable to add a plant growth regulator having the same. here
As a plant growth regulator having a growth inhibitory effect on
Ansimi d'or [ancymidol (FW, 256.3): α-cyclopropy
l-α- (4-methoxyphenyl) -5-pyrimidinemethanol],
Nabenfide [inabenfide (FW, 338.6): 4'-chloro-2 '
-(α-hydroxybenzyl) -isonicotinanilide], Unicona
Sol [uniconazole (FW, 291.7): (E)-(RS) -1- (4-chlor
ophenyl) -4,4-dimethyl-2- (1H-1,2,4-triazol-1-yl) -1-
penten-3-ol], abscisic acid (FW, 26
4.3): 5- (1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohe
xen-1-yl) -3-methyl-2,4-pentadienoic acid], choline
Chloride [choline chloride (FW, 139.6): 2- (hydroxy
ethyl) trimethylammonium chloride], etc.
However, as long as it has a growth inhibitory effect,
It is not limited to these. The effective concentrations of these drugs are
10 for simidol-8~Ten-6[M], 1 for Inabenfide
0-9~Ten-7[M], 10 for uniconazole-Ten~Ten
-8[M], 2 × 10 for abscisic acid-7~ 2 x 10
-Five[M], 10 for choline chloride-Four~Ten-2[M], and
It In addition, the optimal effective concentration of the above drug is
0.5 × 10-7~ 5.0 x 10-7[M], Inabenfide
0.7 x 10-8~ 7.0 x 10-8[M], 0.8 × for uniconazole
Ten-9~ 8.0 x 10-9[M], 7.0 × 10 for abscisic acid-7~ 1
0-6[M], 0.5 × 10 for choline chloride-3~ 5.0 x 10 -3
It is [M].

【0020】本発明の貯蔵法においては、貯蔵温度を10
℃〜25℃とすることが好ましく、15℃〜20℃とすること
が特に好ましい。また、貯蔵期間中の光条件は、光周期
日長を3〜24時間、照度200〜30000Luxとするのが好ま
しい。
In the storage method of the present invention, the storage temperature is 10
C. to 25.degree. C. is preferable, and 15.degree. C. to 20.degree. C. is particularly preferable. The light conditions during the storage period are preferably such that the photoperiod day length is 3 to 24 hours and the illuminance is 200 to 30000 Lux.

【0021】本発明の貯蔵法においては、貯蔵する前
に、幼植物体をアンシミドールが無添加もしくは添加さ
れた糖を含まない無機塩液体培地に入れ一定期間培養す
ることが好ましい。この貯蔵前培養処理は、炭酸ガス富
化通気条件下で、温度27〜30℃に維持し、日長3時間以
上で照度1000〜30000Luxの光を照射して行うことが好ま
しい。ここでアンシミドールを含み糖を含まない無機塩
液体培地としては、例えば、1/4濃度のMS無機塩と
アンシミドールを含む培地等を挙げることができる。ア
ンシミドールの濃度は、10-8〜10-7〔M〕であれば十分
な効果が得られるが、0.5×10-7〜5.0×10-7〔M〕とす
るのが特に好ましい。通気条件は、炭酸ガスを5〜10%
含む炭酸ガス富化空気を0.01〜0.1vvmで通気するのが好
ましい。また、培養期間は、1〜2週間程度が好まし
い。
In the storage method of the present invention, it is preferable that before storage, the seedlings are cultured for a certain period of time in a sugar-free inorganic salt liquid medium with or without addition of ancimidol. This pre-storage culture treatment is preferably carried out under a carbon dioxide-enriched aeration condition by maintaining the temperature at 27 to 30 ° C. and irradiating light with an illuminance of 1000 to 30000 Lux for a day length of 3 hours or more. Here, as the inorganic salt liquid medium containing ancimidol and containing no sugar, for example, a medium containing MS inorganic salt at a concentration of 1/4 and ancimidol can be mentioned. A sufficient effect can be obtained if the concentration of ancimidol is 10 −8 to 10 −7 [M], but it is particularly preferably 0.5 × 10 −7 to 5.0 × 10 −7 [M]. Aeration conditions are 5-10% carbon dioxide
It is preferable to aerate the carbon dioxide-enriched air containing it at 0.01 to 0.1 vvm. The culture period is preferably about 1 to 2 weeks.

【0022】本発明の貯蔵法により貯蔵された幼植物体
は、糖を含まない無機塩培地に入れ、光照射・炭酸ガス
富化通気条件下で苗化されるが、この際、前述の苗化培
地に活着及び生育促進作用を有する剤を添加することが
好ましい。苗化培地としては、公知のものを用いること
ができ、例えば、1/4濃度のMS無機塩とジェランガ
ムなどを含む固体培地を使用することができる。活着及
び生育促進作用を有する剤としては、α,ω−ジアミノ
−n−アルカン(α,ω-diamino-n-alkane)、セホタ
キシム(cephotaxime)、アンホテリシンB(amphoteri
cin B)、α−、β−またはγ−サイクロデキストリン
(α-,β- or γ-cyclodextrin)、α−、β−またはγ
−カロチン(α-,β- or γ-carotene)等を例示できる
が、活着及び生育促進作用を有するものであれば、これ
らに限定されない。これら薬剤の有効濃度範囲は、α,
ω−ジアミノ−−アルカンでは10-6〜10-3〔M〕、セ
ホタキシムでは10-6〜10-3〔M〕、アンホテリシンBで
は10-7〜10-3〔M〕、α−、β−またはγ−サイクロデ
キストリンでは10-6〜10-4〔M〕、α−、β−又はγ−
カロチンでは10-7〜10-4〔M〕である。また、至適濃度
範囲は、α,ω−ジアミノ−−アルカンでは10-5〜10
-4〔M〕、セホタキシムでは2×10-5〜2×10- 4〔M〕、
アンホテリシンBでは10-5〜10-4〔M〕、α−、β−ま
たはγ−サイクロデキストリンでは10-6〜10-5〔M〕、
α−、β−又はγ−カロチンでは10-5〜10-4〔M〕であ
る。
The seedlings stored by the storage method of the present invention are placed in a sugar-free inorganic salt medium and seedled under light irradiation and aeration conditions enriched with carbon dioxide gas. It is preferable to add an agent having an activity of promoting survival and growth to the activated medium. As the seedling medium, a known medium can be used, and for example, a solid medium containing 1/4 concentration of MS inorganic salt, gellan gum and the like can be used. Examples of the agent having the activity of promoting survival and growth include α, ω-diamino- n- alkane, α, ω-diamino- n- alkane, cephotaxime, and amphotericin B.
cin B), α-, β- or γ-cyclodextrin, α-, β- or γ
-Carotene (α-, β- or γ-carotene) and the like can be exemplified, but not limited to these as long as they have an activity of promoting rooting and growth. The effective concentration range of these drugs is α,
ω- diamino - n - 10 -6 to 10 -3 in an alkane (M), 10 -6 to 10 -3 in cefotaxime (M), the amphotericin B 10 -7 to 10 -3 [M], alpha-, beta -Or γ-cyclodextrin is 10 -6 to 10 -4 [M], α-, β- or γ-
For carotene, it is 10 -7 to 10 -4 [M]. The optimum concentration range is 10 -5 to 10 for α, ω-diamino- n -alkanes.
-4 [M], the cefotaxime 2 × 10 -5 ~2 × 10 - 4 [M]
Amphotericin B is 10 -5 to 10 -4 [M], and α-, β- or γ-cyclodextrin is 10 -6 to 10 -5 [M],
It is 10 −5 to 10 −4 [M] for α-, β- or γ-carotene.

【0023】次に、本発明における貯蔵技術水準評価判
定法について説明する。バイオ幼体の「貯蔵性」とは、
バイオ幼体を貯蔵したことによって、生残率・平均草丈
(生長度)・充実度が貯蔵期間の長短により、どの程度
影響を受けるのか、逆に言えば、貯蔵期間をどれだけ延
ばせるか、貯蔵期間を延ばしたときに生残率や生長度や
充実度がどの程度変化するのかを意味する貯蔵に係わる
概念である。技術開発的には、貯蔵技術の開発の為に採
用した貯蔵技術評価判定値である。それは、バイオ幼体
を一定期間貯蔵し、その後に下記方法によって3週間の
育苗を行い、下記の (1)、(2)、(3)及び(4)を求め、こ
れら4者を、無貯蔵(貯蔵直前のバイオ幼体を育苗)バ
イオ幼体試験区の値と比較し、総合勘案したものであ
る。
Next, the storage technology level evaluation judgment method in the present invention will be explained. What is the "storability" of a young bio?
How much survival rate, average plant height (growth rate), and solidity are affected by the length of the storage period due to the storage of the bio-larvae, conversely, how long the storage period can be extended, This is a concept related to storage, which means how much the survival rate, growth rate, and solidity change when the rice is extended. In terms of technology development, it is the storage technology evaluation judgment value used for the development of storage technology. That is, the biological juveniles are stored for a certain period of time, and then the seedlings are raised for 3 weeks by the following method, and the following (1), (2), (3) and (4) are obtained, and these 4 persons are stored ( This is a comprehensive consideration by comparing the values of the bio-larvae just before storage with the bio-larval test section.

【0024】(1) 貯蔵期間(単位、週間)。 (2) 生残率(貯蔵後活着率、%表示)=[生残バイオ幼
体数/20(実験開始時の置床バイオ幼体数)]×100。
本来の意味での生残率は、(貯蔵後活着率/無貯蔵活着
率)×100であるが、本発明では簡略化して、貯蔵後活
着率を以って生残率とした。また、バイオ幼体は多芽体
であるので本数基準で表示する場合もある。そのとき
は、貯蔵後バイオ幼体の本数[貯蔵後活着本数、絶対数
表示(S)]で表す。この場合の基準値は、無貯蔵バイ
オ幼体の活着本数[絶対数表示(P)]となる(試験ご
とに異なる)。ここで、(S/P)×100(%)とすれ
ば、生残本数率が求められる。しかし、本発明では、本
数基準では表示せず、生残率(貯蔵後活着率、%)を以
って、表示した。 (3) 平均草丈( mm または cm 表示)=1個体ごとの地
上部最長草丈の総和/バイオ幼体の総本数。 (4) 充実度〔mg(DW)/cm〕=地上部(葉身・葉鞘)の乾
燥重量総和(DW、mg)/地上部(葉身・葉鞘)長の総和
(cm)。
(1) Storage period (unit, week). (2) Survival rate (survival rate after storage, expressed in%) = [Number of surviving biolarvae / 20 (Number of bed biolarvae at the start of the experiment)] × 100.
The survival rate in the original meaning is (survival rate after storage / survival rate without storage) × 100, but in the present invention, the survival rate was simplified to be the survival rate. In addition, since the bio-larvae are multibuds, they may be displayed on the basis of the number. In that case, the number of biolarvae after storage [number of living cells after storage, absolute number display (S)] is represented. In this case, the reference value is the number of living seedlings of non-stored biolarvae [absolute number display (P)] (different for each test). Here, if (S / P) × 100 (%), the survival rate is obtained. However, in the present invention, it is not displayed on the basis of the number, but is displayed by the survival rate (survival rate after storage,%). (3) Average plant height (in mm or cm) = sum of above-ground longest plant height per individual / total number of biolarvae. (4) Solidity [mg (DW) / cm] = total dry weight (DW, mg) of above-ground part (leaf blade / sheath) / total above-ground part (leaf blade / sheath) (cm).

【0025】バイオ幼体をバイオ苗にするための育苗法
について述べる。育苗培地として、前述の2段階再分化
法の前期培地の塩濃度を1/4とし、しかもシュークロ
ースとソルビトールを添加しない無糖培地を用いる。こ
こで用いる育苗培地は、固体・液体の何れでも良く、固
体培地として用いるときは、液体培地にジェル化剤であ
るジェランガムや寒天を、それぞれ0.2〜0.8%、0.8〜
1.2%添加する。
A seedling raising method for converting bio-larvae into bio-seedlings will be described. As a seedling-growing medium, a sugar-free medium in which the salt concentration of the above-mentioned medium of the two-step redifferentiation method is set to 1/4 and sucrose and sorbitol are not added is used. The seedling growing medium used here may be either solid or liquid, and when used as a solid medium, gellan gum or agar which is a gelling agent in the liquid medium is 0.2 to 0.8%, respectively 0.8 to
Add 1.2%.

【0026】育苗は、バイオ幼体の貯蔵性を評価する為
に行うのであるから、育苗条件を一定に保持する。即
ち、バイオ幼体の面積置床密度を1個/3cm2とし、体
積置床密度を1個/2cm3(育苗培地量)とし、光周期
日長12時間、照度5000Lux、5%炭酸ガス富化通気量0.0
1vvmとして3週間育苗する。育苗終了後に、貯蔵期間
[(1)]ごとの(2)、(3)及び(4)(前述)を調査する。
Since the seedling raising is carried out in order to evaluate the storability of bio-larvae, the seedling raising conditions are kept constant. That is, the area density of bio-larvae was set to 1/3 cm 2 , the volume density was set to 1/2 cm 3 (amount of seedling-growing medium), the photoperiod was 12 hours, the illuminance was 5000 Lux, and the aeration rate was 5% carbon dioxide enriched. 0.0
Raise seedlings as 1 vvm for 3 weeks. After the seedlings are raised, investigate (2), (3) and (4) (described above) for each storage period [(1)].

【0027】次いで、本発明における育苗性について説
明する。貯蔵後のバイオ幼体は、長期の貯蔵によって活
力が失われ生理的傷害を被っているものと考えられる。
育苗段階では、貯蔵後バイオ幼体の貯蔵傷害を出来るだ
け速く快復させる育苗法の開発が求められる。本発明者
は、前述の貯蔵性評価値を求めた場合と全く同じ方法
で、貯蔵したバイオ幼体の育苗性(活着率・生長率・充
実度)に及ぼす多数の活着及び生育促進作用を有する剤
の影響を調べた。ここで、育苗性とは、前述の貯蔵性と
同様の概念で用いる。即ち、貯蔵後のバイオ幼体を、あ
る条件、例えば、活着及び生育促進作用を有する剤を添
加した場合、活着率(生残率)・平均草丈(生長度)・
充実度が、どの程度影響を受けるのかを意味する概念で
ある。具体的な育苗性評価値は、貯蔵性評価値と同じ
く、活着率・草丈(生長率)・充実度で表す。
Next, the seedling raising property in the present invention will be described. It is considered that the stored biological juveniles lose their vitality due to long-term storage and suffer physiological damage.
At the seedling raising stage, it is required to develop a seedling raising method for recovering the storage damage of the bio-larvae after storage as quickly as possible. The present inventor, in exactly the same manner as in the case of obtaining the above-mentioned storage evaluation value, an agent having a large number of rooting and growth promoting effects on the seedling raising properties (sustaining rate / growth rate / solidity) of stored biolarvae I investigated the effect of. Here, the seedling raising property is used in the same concept as the above-mentioned storability. That is, when the stored bio-larvae are added under certain conditions, for example, an agent having a survival and growth promoting action is added, survival rate (survival rate), average plant height (growth rate),
It is a concept that means how much the degree of fulfillment is affected. The specific evaluation value for raising seedlings is expressed by the survival rate, plant height (growth rate), and degree of solidification, like the evaluation value for storage quality.

【0028】以下、試験例、実施例を挙げて、本発明の
貯蔵技術を具体的に示すが、その前に試験例、実施例に
おいて用いた培地組成を一覧に示す。
Hereinafter, the storage technique of the present invention will be specifically described with reference to Test Examples and Examples. Before that, the medium compositions used in the Test Examples and Examples will be listed.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】以下、使用培地は、上記の略号を以て示
す。
Hereinafter, the culture medium used is indicated by the above abbreviations.

【0033】[0033]

【試験例】[Test example]

【0034】〔試験例1〕 貯蔵液の選択・選定 バイオ幼体の貯蔵液を選択し、選定することは、貯蔵技
術確立の上で、最も基本的な初期条件である。バイオ幼
体の貯蔵性に及ぼす貯蔵液の影響因子を考え、諸々の観
点から貯蔵試験を繰り返した。その結果、最も大きな影
響因子は浸透圧であることが把握された。通常一般に使
用されているイ)植物組織培養液、ロ)水耕液、あるい
はハ)再分化培養終了後の培養残液、等、の浸透圧が異
なる液を調整し、これを用いてバイオ幼体の貯蔵性に及
ぼす、貯蔵液ごとの至適浸透圧範囲を求めた。そのとき
用いた人工培地の基本濃度組成表を表1に示した。本表
に示した基本濃度を適宜に変更することによって、異な
る浸透圧を有する人工組成液を任意に調整することがで
きる。浸透圧の微調整は、純水(脱塩・蒸留した浸透圧
0の水)を滴下することにより、行うことができる。例
えば、上の表1の♯RAM培地の浸透圧は、培地調整直
後で、184mOSMOL/Kg前後を示す。従って、本培地に適当
量の純水を加えることによって、表4(貯蔵液の選択・
選定試験)の浸透圧を有する試験液を調整することがで
きる。
Test Example 1 Selection / Selection of Storage Solution Selecting and selecting a storage solution for biolarvae is the most basic initial condition in establishing storage technology. The storage test was repeated from various points of view, considering the influencing factors of the storage solution on the storability of bio juveniles. As a result, it was found that the most influential factor was osmotic pressure. Liquids having different osmotic pressures such as (a) plant tissue culture liquid, (b) hydroponic liquid, or (c) culture residual liquid after redifferentiation culture, which are commonly used, are prepared and used to prepare biolarvae. The optimum osmotic pressure range for each stock solution, which affects the storability of, was determined. The basic concentration composition table of the artificial medium used at that time is shown in Table 1. By appropriately changing the basic concentrations shown in this table, artificial composition liquids having different osmotic pressures can be arbitrarily adjusted. Fine adjustment of the osmotic pressure can be performed by dropping pure water (desalted and distilled water having an osmotic pressure of 0). For example, the osmotic pressure of the #RAM medium in Table 1 above is around 184 mOSMOL / Kg immediately after the medium is adjusted. Therefore, by adding an appropriate amount of pure water to this medium, Table 4 (selection of stock solution
A test solution having an osmotic pressure (selection test) can be prepared.

【0035】[0035]

【表4】 [Table 4]

【0036】各種の人工組成培養液を表1に従い準備
し、表4に示した各水準の浸透圧を有する試験液を準備
した。これらの試験液に、後述の〔実施例1〕と同様に
して準備したバイオ苗(芽長5〜10mm)を温度15℃、照
度(日長)10000Lux(12時間)の条件で、貯蔵液貯蔵法
により、8週間貯蔵した。その後、前述の貯蔵技術水準
評価判定法に従い、3週間の育苗を行い、貯蔵性評価値
である生残率(%)を求めた。表4に示す通り、バイオ
幼体の8週間貯蔵後の生残率(活着率)は、人工培養液
の種類(MS塩組成液、均衡培養液、修飾Hoagland液、
♯RAM)にあまり左右されず、ほぼ同等であることが
認められた。また、これらの人工培地組成液中貯蔵での
生残率は、♯RAM培地を培養に使用した培養終了後の
残液である♯CRAM液中貯蔵での生残率と大差なかっ
た。即ち、バイオ幼体の貯蔵液として、♯RAM培地の
培養残液である♯CRAMを使用出来ることが判明し
た。
Various artificial composition culture solutions were prepared according to Table 1, and test solutions having the osmotic pressure of each level shown in Table 4 were prepared. Bio-seedlings (bud length 5 to 10 mm) prepared in the same manner as in [Example 1] described below were stored in these test solutions under the conditions of a temperature of 15 ° C and an illuminance (day length) of 10,000 Lux (12 hours). It was stored for 8 weeks by the method. Then, the seedlings were raised for 3 weeks according to the above-mentioned storage technology level evaluation and determination method, and the survival rate (%), which is the storage property evaluation value, was determined. As shown in Table 4, the survival rate (suspension rate) of the bio-larvae after storage for 8 weeks was determined by the type of artificial culture solution (MS salt composition solution, balanced culture solution, modified Hoagland solution,
#RAM), and it was confirmed that they were almost the same. Further, the survival rate in storage in these artificial medium composition liquids was not significantly different from the survival rate in #CRAM liquid storage, which is the residual liquid after the end of culture using the #RAM medium for culture. That is, it was found that #CRAM, which is the residual culture solution of the #RAM medium, can be used as the stock solution of the biolarvae.

【0037】以後の貯蔵実験においては、貯蔵液として
人工培地組成液を用いず、再分化培養終了後の♯CRA
Mを使用することにした。何故ならば、一旦、再分化培
地として使用し、この培養済みの残液を再度使用するの
で、貯蔵液を新たに調整する前述の人工培地組成液に比
べ、経済的・資源的・労力的に利点が大きいからであ
る。
In the subsequent storage experiments, the artificial medium composition liquid was not used as the storage liquid, and the #CRA after the redifferentiation culture was completed.
I decided to use M. This is because it is used as a regeneration medium once, and since this residual liquid after culturing is reused, it is economically, resource-wise, and labor-saving compared to the above-mentioned artificial medium composition liquid in which the stock solution is newly prepared. This is because the advantage is great.

【0038】〔試験例2〕 貯蔵環境条件の最適化 バイオ幼体の貯蔵環境条件の最適化は、一定芽長(例え
ば、10mm)のバイオ幼体を選び、これを環境条件を異に
する条件下で一定期間(例えば、8週間)貯蔵し、貯蔵
後に直ちに前述の貯蔵技術水準評価判定法の(1)ごとの
(2)、(3)及び(4)の貯蔵性評価値を求める方法で行っ
た。
[Test Example 2] Optimization of storage environment conditions The storage environment conditions of biolarvae are optimized by selecting biolarvae with a constant bud length (for example, 10 mm) under different environmental conditions. Store for a certain period of time (for example, 8 weeks), and immediately after storage for each (1) of the above-mentioned storage technology level evaluation judgment method.
It was carried out by the method of obtaining the storability evaluation value in (2), (3) and (4).

【0039】貯蔵時の照度を約5000Lux(日長12時間)
に維持し、貯蔵温度の影響を調査した。貯蔵温度10℃以
下では、8週間以上の貯蔵では生残率が極端に低くな
り、バイオ幼体が枯死する場合が度々認められた。一
方、貯蔵温度25℃以上では、貯蔵期間中にバイオ幼体が
生長し続け軟弱化し、バイオ苗の品質が低下した。ま
た、貯蔵期間中に芽長分布が拡大する傾向が認められ、
これはバイオ苗の芽長斉一化を求める目的に反した。こ
れに対し、15〜20℃での貯蔵は、貯蔵期間中の芽長生長
が殆ど認められず、貯蔵期間6・8・10週間で、それぞ
れ80%・50%・30%以上の生残率(貯蔵後活着率、%)
を認めた。尚、対照区(無貯蔵バイオ幼体)の生残率
(貯蔵直前のバイオ幼体の活着率、%)は、90%以上で
あった。
[0039] Illuminance during storage is about 5000 Lux (12 days long)
And the effect of storage temperature was investigated. When the storage temperature was 10 ° C or lower, the survival rate became extremely low after storage for 8 weeks or longer, and it was often observed that the biolarvae died. On the other hand, when the storage temperature was above 25 ℃, the bio-larva continued to grow and became weak during the storage period, and the quality of the bio-seedling deteriorated. In addition, the bud length distribution tended to expand during the storage period,
This was contrary to the purpose of seeking uniform bud length of bio seedlings. On the other hand, storage at 15 to 20 ° C showed almost no bud growth during storage, and the survival rate was 80%, 50%, 30% or more after storage for 6, 8 and 10 weeks, respectively. (Survival rate after storage,%)
Admitted. The survival rate of the control group (non-stored biolarvae) (the survival rate of biolarvae immediately before storage,%) was 90% or more.

【0040】貯蔵時温度を15もしくは20℃に維持して、
照射強度(Lux)の影響を調べた。日長12時間としたと
きでは、1000〜20000Luxの範囲で6・8・10週間貯蔵す
ると、それぞれの貯蔵期間ごとの生残率は80%・40%・
20%であった。日長24時間(連続照明)とし、200〜300
0Luxの範囲で6・8・10週間貯蔵したときの生残率は、
上記の日長12時間の場合とほぼ同じ生残率がえられた。
日長3時間としたときでは、10000〜30000Luxの範囲
で、上記の日長12時間及び連続照明でえられた結果とほ
ぼ同等の生残率が認められた。尚、暗黒〜微照射(0〜
50Lux)では、日長時間に拘わらず、貯蔵期間8週間以
上での生残率は殆どゼロに等しかった。
Maintaining the storage temperature at 15 or 20 ° C.,
The effect of irradiation intensity (Lux) was investigated. When the day length is 12 hours, when stored in the range of 1000 to 20000Lux for 6/8/10 weeks, the survival rate for each storage period is 80% ・ 40% ・
It was 20%. Day length 24 hours (continuous lighting), 200 to 300
The survival rate when stored for 6/8/10 weeks in the range of 0 Lux is
The survival rate was almost the same as in the case of the 12-day length above.
When the day length was set to 3 hours, a survival rate almost equal to the result obtained by the above-mentioned day length of 12 hours and continuous illumination was observed in the range of 10000 to 30000 Lux. In addition, darkness-light irradiation (0-
At 50Lux), the survival rate after storage for more than 8 weeks was almost zero, regardless of the length of day.

【0041】〔試験例3〕 長期貯蔵方法 バイオ幼体の貯蔵期間を長くし、生残率を向上させるた
め以下の二つの方法を検討した。
[Test Example 3] Long-term storage method The following two methods were examined in order to prolong the storage period of biolarvae and improve the survival rate.

【0042】第一は、♯CRAMに最適濃度の中央値に
なるように各種の伸長生長抑制作用を有する植物生長調
節剤(以下「PGS」という)を添加し、これに芽長が
10mmのバイオ幼体を入れ、貯蔵温度15℃、光照度10000L
ux(日長12時間)とし、8・10・12週間貯蔵した。この
結果を表5(PGS添加法)に示す。
First, various plant growth regulators (hereinafter referred to as "PGS") having an inhibitory effect on elongation and growth are added to #CRAM so that the median value of the optimum concentration is reached.
Put a 10 mm bio juvenile, storage temperature 15 ℃, light illuminance 10000L
Stored as ux (length 12 hours) for 8/10/12 weeks. The results are shown in Table 5 (PGS addition method).

【0043】第二は、2.3×10-7〔M〕のアンシミドール
を含む♯PAM培地、及びアンシミドールを含まない♯
PAM培地に芽長10mmのバイオ幼体を入れ、1週間の貯
蔵前培養処理をした。培養処理は、光照射(10000Lux・
日長12時間)下で、温度27℃で、炭酸ガス富化通気〔5
%CO2 富化空気(0.02vvm)〕をし乍ら、行った。次
いで、培養処理後のバイオ幼体を8・10・12、週間培養
した。結果を表5(貯蔵性向上前処理法)に示す。
The second is #PAM medium containing 2.3 × 10 -7 [M] of antimidol, and #PAM medium not containing ansimidol.
Biolarvae with a bud length of 10 mm were placed in a PAM medium and precultured for 1 week for storage. Culture treatment is light irradiation (10000Lux.
Under a temperature of 27 ° C under a day length of 12 hours)
% CO 2 enriched air (0.02 vvm)]. Then, the bio-larvae after the culture treatment were cultured for 8/10/12 weeks. The results are shown in Table 5 (pretreatment method for improving storability).

【0044】「表5」中において、〔貯蔵液貯蔵法〕と
は、貯蔵液を♯CRAMとして、この中に貯蔵すること
を意味する(以下同じ)。
In Table 5, "storage solution storage method" means that the storage solution is #CRAM and stored therein (the same applies hereinafter).

【0045】[0045]

【表5】 [Table 5]

【0046】表5に示した通り、上記二つのバイオ幼体
長期貯蔵法の最大の特徴点は、貯蔵期間が長くなるに従
い、貯蔵性(生残率、充実度)が向上していることであ
る。即ち、PGSを添加しない貯蔵液で12週間貯蔵した
ときの生残率(充実度)は12(0.201)であったが、P
GSを添加した貯蔵液で12週間貯蔵したときの生残率
(充実度)は37〜17(0.236〜0.212)と高くなり、貯蔵
前にアンシミドールを含まない無糖培地で培養処理した
ときの生残率(充実度)は45(0.286)、アンシミドー
ルを含む無糖培地で培養処理したときの生残率(充実
度)は50(0.300)と一層高くなった。端的に言って、
表5の貯蔵性向上培養処理法により、貯蔵期間を12週間
としても約1/2の生残率(活着率)が確保できた。 〔試験例4〕 貯蔵後バイオ幼体の活着促進・生育促進
法 貯蔵開始時のバイオ幼体の芽長を5〜10mmに揃えて、温
度15℃、日長(照度)12時間(15000Lux)の環境条件下
で、6・8・10週間、♯CRAM中で貯蔵した。その
後、バイオ幼体を二分し、一方を活着及び生育促進作用
を有する剤を添加した育苗固体培地#PAMG(至適濃
度中央値となるように、各薬剤を添加)、他方を前記薬
剤を添加しない育苗固体培地#PAMGに、置床した。
続いて、前記の貯蔵技術水準評価判定法で示した育苗法
と同じ方法で、3週間の育苗を行い、育苗性に及ぼす前
記薬剤の添加効果を調べ、その結果を一般化して表6に
示した。
As shown in Table 5, the greatest feature of the above-mentioned two methods for long-term storage of biolarvae is that the storability (survival rate, solidity) is improved as the storage period becomes longer. . That is, the survival rate (solidity) was 12 (0.201) when stored in a storage solution containing no PGS for 12 weeks.
When stored for 12 weeks in a stock solution containing GS, the survival rate (solidity) is as high as 37 to 17 (0.236 to 0.212), and when cultured in a sugar-free medium containing no ancimidol before storage. The survival rate (solidity) was 45 (0.286), and the survival rate (solidity) was 50 (0.300) when cultured in a sugar-free medium containing ansimidol. In short,
By the storage treatment culture treatment method shown in Table 5, a survival rate (survival rate) of about 1/2 could be secured even when the storage period was 12 weeks. [Test Example 4] Method for promoting survival / growth of bio-larvae after storage The bud length of the bio-larvae at the start of storage was adjusted to 5 to 10 mm, and the temperature was 15 ° C and the photoperiod was 12 hours (15000 Lux) under environmental conditions. Stored in #CRAM for 6/8/10 weeks below. After that, the biolarvae are divided into two, one of which is a solid medium for raising seedlings #PAMG (each drug is added so that the median optimum concentration is obtained) to which an agent having a survival and growth promoting action is added, and the other is not added The seedlings were placed on a solid medium #PAMG.
Then, seedlings were raised for 3 weeks by the same method as the seedling raising method shown in the above storage technology level evaluation and determination method, and the effect of addition of the above-mentioned agents on the raising ability was examined, and the results are generalized and shown in Table 6. It was

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【実施例】【Example】

【0049】〔実施例1〕(供試するバイオ幼体の準備
並びにバイオ幼体の貯蔵液の調整) イネ完熟種子の胚盤からカルスを誘導し、本カルスを増
殖・継代し、幼植物体を再分化させる方法(イネの2段
階液体再分化方法)[Japanese Journal of Breeding,4
2(3), 583-594(1992)](使用培養容器は100ml容の三角
フラスコ、培養期間は前期3週間、後期3週間)に従
い、一定量のカルスを再分化培地(前期再分化培地、#
RIM)に接種し、培養途中で、新鮮培地(後期再分化
培地、#RAM)に置換して培養を継続し、イネの再分
化幼植物体(バイオ幼体)を得た。同時に、再分化幼植
物体とカルス塊等の培養物を除去した培養終了後の#R
AM培地の残液を得た。次に、本#RAM培地の浸透圧
を測り、5〜120mOSMOL/Kgの範囲であることを確認し、
本液をバイオ幼体の貯蔵液#CRAMとして冷室(5
℃)内に保存した。必要時に、保存#CRAMを取り出
し、幼植物体の貯蔵液として用いた。
[Example 1] (Preparation of bio-larvae to be tested and preparation of stock solution of bio-larvae) Callus was induced from the scutellum of mature rice seeds, and this callus was proliferated and passaged to give a seedling. Regeneration method (two-stage liquid regeneration method for rice) [Japanese Journal of Breeding , 4
2 ( 3), 583-594 (1992)] (the culture vessel used is a 100 ml Erlenmeyer flask, the culture period is 3 weeks in the first half, and the third period in the second half is 3 weeks). #
RIM) was inoculated, and in the middle of the culture, the medium was replaced with a fresh medium (late redifferentiation medium, #RAM) to continue the culture to obtain rice redifferentiated seedlings (biolarvae). At the same time, the regenerated seedlings and the callus mass and other cultures were removed, and then #R after the culture was completed.
A residual solution of AM medium was obtained. Next, measure the osmotic pressure of this #RAM medium and confirm that it is in the range of 5 to 120 mOSMOL / Kg.
This solution is used as a storage solution #CRAM for bio-larvae in a cold room (5
(° C). When necessary, the stored #CRAM was taken out and used as a stock solution for seedlings.

【0050】貯蔵液の浸透圧が5〜120mOSMOL/Kgの範囲
内である場合に貯蔵効果が発揮されることを確認するた
め、浸透圧の異なる#CRAMを用いて貯蔵試験を行
い、その結果を表7に示した。浸透圧の調整は、前述の
イネの2段階液体再分化方法においては、前期3週間の
培養後に、♯RAM培地で後期3週間の培養を行うのが
標準とされる培養期間であるが、この後期3週間の基本
培養期間を短縮することによって任意の浸透圧を有する
♯RAM残液を得ることができる。例えば、後期2及び
3週間の培養で、それぞれ80〜100及び50〜70mOSMOL/Kg
の♯CRAMが得られる。浸透圧の微調整は、♯CRA
Mに純水(脱塩し、蒸留した浸透圧0の水)を適宜加え
ることにより行った。本試験は、供試バイオ幼体の芽長
を5〜10mm、貯蔵温度を15℃、貯蔵時の照度・日長を10
000Lux・12時間とし、貯蔵液貯蔵法により3、6または
8週間の貯蔵を行った。その後、前述の貯蔵技術水準評
価判定法に従い3週間の育苗を行い貯蔵性評価値を求
め、その結果を表7に示した。
In order to confirm that the storage effect is exhibited when the osmotic pressure of the stock solution is within the range of 5 to 120 mOSMOL / Kg, a storage test was conducted using #CRAM having different osmotic pressures, and the results were The results are shown in Table 7. In the rice two-step liquid regeneration method described above, the osmotic pressure is adjusted by culturing in the #RAM medium for 3 weeks in the latter half after the first 3 weeks in culturing. By shortening the basic culture period of the latter 3 weeks, the #RAM residual liquid having an arbitrary osmotic pressure can be obtained. For example, in the latter two and three weeks of culture, 80-100 and 50-70 mOSMOL / Kg, respectively.
#CRAM is obtained. For fine adjustment of osmotic pressure, use #CRA
Pure water (desalted and distilled water having an osmotic pressure of 0) was appropriately added to M. In this test, the bud length of the test biolarvae was 5 to 10 mm, the storage temperature was 15 ° C, and the illuminance / day length during storage was 10 mm.
It was stored at 000Lux for 12 hours and stored for 3, 6 or 8 weeks by the storage solution storage method. After that, seedlings were raised for 3 weeks according to the above-mentioned storage technology level evaluation and determination method, and the storability evaluation value was obtained. The results are shown in Table 7.

【0051】なお、芽長の長いバイオ幼体が必要なとき
には、再分化培養容器としてファーメンター(1または
2L容)を用い、培養期間を延長調節することによっ
て、準備できる。
When a biolarva with a long bud length is required, it can be prepared by using a fermenter (1 or 2 L volume) as a redifferentiation culture vessel and extending the culture period.

【0052】[0052]

【表7】 [Table 7]

【0053】上表に示す通り、バイオ幼体の貯蔵後生残
率(活着率)は、貯蔵期間が長くなるにつれて減少する
が、浸透圧が5未満では6週間貯蔵で、120以上では8
週間貯蔵で、それぞれゼロになった。同様に、純水や#
RAMに6週間以上貯蔵しても生残率はゼロとなった。
これらに対し、浸透圧が5〜120の#CRAMでは、8
週間貯蔵でも生残率が認められ、本液がバイオ幼体の貯
蔵液として有効であることを再確認した。
As shown in the above table, the survival rate (survival rate) of the biolarvae after storage decreases as the storage period increases, but when the osmotic pressure is less than 5, it is stored for 6 weeks, and when it is 120 or more, it is 8
With the weekly storage, it became zero. Similarly, pure water or #
Even if stored in RAM for 6 weeks or longer, the survival rate became zero.
On the other hand, in #CRAM with an osmotic pressure of 5 to 120, 8
The survival rate was observed even after weekly storage, and it was reconfirmed that this solution is effective as a storage solution for biolarvae.

【0054】〔実施例2〕(貯蔵時光照射の必要性) バイオ幼体の貯蔵性に及ぼす光照射の強度及び日長の影
響を次の方法で調べた。供試バイオ幼体の芽長を5〜10
mmとし、貯蔵液を#CRAMとし、貯蔵温度を20℃と
し、貯蔵時の照度を変えて、貯蔵液貯蔵法によって8週
間の貯蔵を行った。その後、前述の貯蔵技術水準評価判
定法に従って3週間の育苗行い、表8に示す貯蔵性評価
値をえた。
[Example 2] (Necessity of light irradiation during storage) The effects of light irradiation intensity and photoperiod on the storability of biolarvae were examined by the following method. The bud length of the test biolarvae is 5-10
mm, the storage solution was #CRAM, the storage temperature was 20 ° C., the illuminance during storage was changed, and the storage solution was stored for 8 weeks. Then, the seedlings were raised for 3 weeks according to the above-mentioned storage technology level evaluation judgment method, and the storage property evaluation values shown in Table 8 were obtained.

【0055】[0055]

【表8】 [Table 8]

【0056】上表に示す通り、バイオ幼体の貯蔵には光
照射が不可欠である。必要とされる照度は、日長との関
係において定まる。即ち、連続照明のときには比較的弱
照度(約200〜3000Lux)で良く、12時間照明のときには
比較的中照度(約1000〜20000Lux)が良く、3時間照明
のときは比較的高照度(約10000〜20000Lux)が適当で
ある。
As shown in the above table, light irradiation is indispensable for the storage of bio juveniles. The required illuminance is determined in relation to the photoperiod. That is, relatively low illuminance (about 200 to 3000 Lux) is required for continuous illumination, relatively medium illuminance (about 1000 to 20000 Lux) for 12 hours illumination, and relatively high illuminance (about 10000 Lux) for 3 hours illumination. ~ 20000Lux) is suitable.

【0057】バイオ幼体の貯蔵液として、#CRAMの
適していることを認めたが、バイオ幼体の生理状態によ
っては、希に8週間以上の長期貯蔵では大凡20%以下の
生残率となる場合も認められ、一層安定度を高めるため
の技術開発が必要とされた。そこで、バイオ幼体の貯蔵
性、殊に貯蔵期間8週間以上での生残率を高める目的
で、貯蔵液#CRAMにPGSを添加し、バイオ幼体の
貯蔵性に及ぼす影響を調べた。
It was confirmed that #CRAM was suitable as a storage solution for bio-larvae, but depending on the physiological condition of the bio-larvae, the survival rate of about 20% or less was rarely obtained after long-term storage for 8 weeks or longer. Was also recognized, and technological development was needed to further improve stability. Then, PGS was added to the storage solution #CRAM for the purpose of increasing the storability of the biolarvae, particularly the survival rate after storage for 8 weeks or more, and the effect on the storability of the biolarvae was investigated.

【0058】〔実施例3〕(貯蔵液PGS添加貯蔵液貯
蔵法) 再分化培養槽をファーメンター(1L容)として、芽長
10〜15mmのバイオ幼体を準備した。各種PGSを所定濃
度に含む#CRAMに、準備したバイオ幼体を入れて、
貯蔵温度15℃、照度(日長)10000Lux(12時間)で、8
・10・12週間貯蔵した。その後、前述の貯蔵技術水準評
価判定法に示した貯蔵性調査のための育苗法に従い、3
週間の育苗を行い、表9に示す結果を得た。
[Example 3] (Storage method for adding PGS storage fluid) [0058] Using a regeneration tank as a fermenter (1 L), the bud length was increased.
A 10-15 mm biolarva was prepared. Put the prepared larvae in #CRAM containing various PGS in a predetermined concentration,
8 at storage temperature 15 ℃, illuminance (day length) 10000Lux (12 hours)
・ Stored for 10 to 12 weeks. After that, according to the seedling raising method for storage quality investigation shown in the above-mentioned storage technology level evaluation judgment method, 3
The seedlings were raised for a week and the results shown in Table 9 were obtained.

【0059】[0059]

【表9】 [Table 9]

【0060】上表より、#CRAM単独で貯蔵しても生
残率は得られるが、#CRAMにPGSを添加して貯蔵
した方がより高い生残率が得られることが判る。付け加
えるならば、純水中や#RAM中に貯蔵したのでは、全
く貯蔵効果の無いことも明白である。上表と同様な結果
は、貯蔵時の温度と照度を変えても認められた。
From the above table, it can be seen that although the survival rate can be obtained by storing #CRAM alone, a higher survival rate can be obtained by storing PGS in #CRAM. In addition, it is clear that there is no storage effect when stored in pure water or #RAM. The same results as in the above table were observed even when the temperature and illuminance during storage were changed.

【0061】〔実施例4〕(貯蔵性向上培養処理後貯蔵
液貯蔵法) バイオ幼体の貯蔵性は、貯蔵環境条件以外に、バイオ幼
体それ自身の生理的状態によって、影響を受ける。そこ
で、再分化させた幼植物体を糖を含まない無機塩液体培
地で培養処理した後、♯CRAM中で貯蔵した(貯蔵性
向上培養処理後貯蔵液貯蔵法)。
[Example 4] (Stored liquid storage method after storability-enhancing culture treatment) The storability of the biolarvae is affected by the physiological condition of the biolarvae itself in addition to the storage environmental conditions. Therefore, the redifferentiated seedlings were cultured in a sugar-free inorganic salt liquid medium and then stored in #CRAM (storage solution storage method after storability-enhancing culture treatment).

【0062】試験は、以下の通り行った。まず、#RI
Mと#RAMの2段液体再分化法により、芽長8〜12mm
のバイオ幼体を得た。次に、これを3等分して、以下の
(1)、(2)又は(3)の処理を行った。
The test was conducted as follows. First, #RI
By the two-stage liquid regeneration method of M and #RAM, the bud length is 8-12mm
I got a bio-nanny. Next, this was divided into three equal parts and the following treatment (1), (2) or (3) was performed.

【0063】(1)バイオ幼体を、新鮮#RAMに移し
換えて(容器、500mL容の三角フラスコ)無通気状態で
1週間振盪培養(40rpm、照度200Lux、温度27℃)し
た。 (2)バイオ幼体を、アンシミドールを添加していない
液体#PAMの入ったファメンター(1L 容)内に移し
換え、照度(日長)5000Lux(12時間)・温度27℃・炭
酸ガス富化通気量0.2vvmの条件下で、1週間培養した。 (3)バイオ幼体を、アンシミドールを5×10-8〔M〕
となるように添加した液体#PAMの入ったファメンタ
ー(1L 容)内に移し換え、照度(日長)5000Lux(12
時間)・温度27℃・炭酸ガス富化通気量0.2vvmの条件下
で、1週間培養した。
(1) The biolarvae were transferred to fresh #RAM (container, 500 mL Erlenmeyer flask) and shake-cultured (40 rpm, illuminance 200 Lux, temperature 27 ° C.) for 1 week in a non-aerated state. (2) Transfer the larvae of biotechnology to a fermenter (1 L volume) containing liquid #PAM containing no ancimidol, and illuminance (day length) 5000 Lux (12 hours), temperature 27 ° C, carbon dioxide rich The cells were cultured for 1 week under the condition that the aeration rate was 0.2 vvm. (3) 5 × 10 -8 [M] of bio-juvenile and ansimidol
The liquid #PAM was added to the fermenter (1 L volume) and the illuminance (day length) 5000 Lux (12 L).
Cultivation was carried out for 1 week under the conditions of temperature) 27 ° C., carbon dioxide enriched aeration rate of 0.2 vvm.

【0064】以上3通りの培養処理により、バイオ幼体
の芽長は共に12〜17mmとなった。ここに準備したこれら
3通りのバイオ幼体のそれぞれを、貯蔵液#CRAMに
入れて、照度(日長)10000Lux(12時間)・温度15℃
で、8・10・12週間貯蔵した。貯蔵後に#PAMGに置
床して、前述の貯蔵技術水準評価判定法に従って、3週
間の育苗を行い、貯蔵性評価値を求め、これを表10に
示した。
By the above three culture treatments, the bud lengths of the biolarvae were both 12 to 17 mm. Each of these 3 kinds of bio juveniles prepared here was put in the storage solution #CRAM, and the illuminance (day length) 10000Lux (12 hours) and temperature 15 ° C.
It was stored for 8/10/12 weeks. After storage, it was placed on #PAMG, and seedlings were raised for 3 weeks according to the above-mentioned storage technology level evaluation and determination method, and a storage property evaluation value was obtained, which is shown in Table 10.

【0065】[0065]

【表10】 [Table 10]

【0066】上表に明らかなごとく、バイオ幼体を貯蔵
性向上培養処理後に貯蔵することによって、8週間以上
の長期貯蔵でも可成り高い生残率が得られた。
As is clear from the above table, by storing the biolarvae after the storage-enhancing culture treatment, a considerably high survival rate was obtained even after long-term storage for 8 weeks or longer.

【0067】〔実施例5〕(貯蔵後バイオ幼体の活着促
進及び生育促進法試験) 芽長10±2mmのバイオ幼体を#CRAMに入れて、温度
15℃・照度(日長)5000Lux(24時間)の条件下で、10
週間貯蔵した。貯蔵後のバイオ幼体を、♯PAMGに置
床して、3週間の育苗を行った。この際、#PAMG
に、予め活着・生育を促進すると推定される薬剤を加え
ておき、有効薬剤の探索を行った。その結果を纏めたの
が表11である。
[Example 5] (Test of method for promoting survival and growth promotion of bio-larvae after storage) A bio-larvae having a bud length of 10 ± 2 mm was placed in #CRAM and the temperature was increased.
10 under the condition of 15 ℃ and illuminance (day length) 5000 Lux (24 hours)
Stored for a week. The stored biolarvae were placed on #PAMG and seedlings were raised for 3 weeks. At this time, #PAMG
A drug presumed to promote survival / growth was added in advance, and an effective drug was searched for. Table 11 summarizes the results.

【0068】[0068]

【表11】 [Table 11]

【0069】上表より、10週間の長期貯蔵後のバイオ幼
体を育苗し、バイオ苗にする段階において、育苗培地に
活着・生育促進剤を添加しておくことによって、長期貯
蔵による貯蔵障害から速く快復させることができ、同時
に長期貯蔵後の歩留まりを向上させることができる。
From the above table, at the stage of raising seedlings of bio-young plants after long-term storage for 10 weeks to prepare bio-seedlings, by adding a rooting / growth promoting agent to the seedling-growing medium, the storage failure due to long-term storage can be accelerated. It can be recovered and at the same time the yield after long-term storage can be improved.

【0070】[0070]

【発明の効果】本発明により、組織培養技術によって再
分化させたイネの幼植物体を、長期間貯蔵し、貯蔵後に
水田に移植可能な苗にすることが出来る。無貯蔵技術世
代に比べ、再分化装置の稼働率を飛躍的に高め、その結
果として、より安価で計画的な再分化イネ苗の供給を実
現させた。また、本発明の貯蔵技術は、組織培養によっ
て増殖もしくは再分化させたイネ以外の幼植物体の貯蔵
にも直接・間接に適用・応用されうる原理的・基礎的な
知見を提供した。
INDUSTRIAL APPLICABILITY According to the present invention, seedlings of rice that have been redifferentiated by the tissue culture technique can be stored for a long period of time and used as seedlings that can be transplanted to paddy fields after storage. Compared to the non-storage technology generation, the operating rate of the redifferentiation device has been dramatically increased, and as a result, a cheaper and systematic supply of redifferentiated rice seedlings has been realized. Further, the storage technology of the present invention provided the principle and basic knowledge that can be directly or indirectly applied / applied to the storage of seedlings other than rice grown or redifferentiated by tissue culture.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも無機塩類からなり、その浸透
圧が5〜120mOSMOL/Kgであることを特徴とするイネ幼植
物体の貯蔵液。
1. A storage solution for rice seedlings, which comprises at least an inorganic salt and has an osmotic pressure of 5 to 120 mOSMOL / Kg.
【請求項2】 貯蔵液がイネ再分化培養終了後の培地残
液であることを特徴とする請求項1記載のイネ幼植物体
の貯蔵液。
2. The stock solution of rice seedlings according to claim 1, wherein the stock solution is a residual medium solution after completion of the rice redifferentiation culture.
【請求項3】 伸長生長抑制作用を有する植物生長調節
剤を含有することを特徴とする請求項1又は2記載のイ
ネ幼植物体の貯蔵液。
3. The stock solution of rice seedlings according to claim 1 or 2, which contains a plant growth regulator having a growth inhibitory effect.
【請求項4】 伸長生長抑制作用を有する植物生長調節
剤が、アンシミドール、ウニコナゾール、イナベンフィ
ド、アブシジン酸、又はコリンクロライドであることを
特徴とする請求項3記載のイネ幼植物体の貯蔵液。
4. The stock solution of rice seedlings according to claim 3, wherein the plant growth regulator having a growth inhibitory effect is ansimidol, uniconazole, inabenfide, abscisic acid, or choline chloride. .
【請求項5】 請求項1〜4記載の貯蔵液中でイネ幼植
物体を貯蔵することを特徴とするイネ幼植物体の貯蔵
法。
5. A method for storing rice seedlings, which comprises storing rice seedlings in the storage solution according to any one of claims 1 to 4.
【請求項6】 貯蔵時の温度条件が10〜20℃であり、光
条件が照度200〜30000Luxで光周期日長が3〜24時間で
あることを特徴とする請求項5記載のイネ幼植物体の貯
蔵法。
6. The rice seedling according to claim 5, wherein the temperature condition during storage is 10 to 20 ° C., the light condition is illuminance of 200 to 30,000 Lux, and the photoperiod day length is 3 to 24 hours. How to store the body.
【請求項7】 貯蔵前に、イネ幼植物体を糖を含まない
無機塩液体培地に入れ、光照射・炭酸ガス富化通気条件
下で培養処理をすることを特徴とする請求項5又は6記
載のイネ幼植物体の貯蔵法。
7. The rice seedlings are placed in a sugar-free inorganic salt liquid medium prior to storage and subjected to a culture treatment under light irradiation / carbon dioxide enriched aeration conditions. The method for storing rice seedlings described.
【請求項8】 糖を含まない無機塩液体培地が、アンシ
ミドールを含むことを特徴とする請求項7記載のイネ幼
植物体の貯蔵法。
8. The method for storing rice seedlings according to claim 7, wherein the sugar-free inorganic salt liquid medium contains ansimidol.
【請求項9】 請求項5〜8記載のイネ幼植物体の貯蔵
法により貯蔵されたイネ幼植物体を、糖を含まない無機
塩培地に入れ、光照射・炭酸ガス富化通気条件下で苗化
することを特徴とする貯蔵後イネ幼植物体の育苗法。
9. The rice seedlings stored by the method for storing rice seedlings according to claim 5 are placed in a sugar-free inorganic salt medium and subjected to light irradiation and carbon dioxide enriched aeration conditions. A method for raising seedlings of rice seedlings after storage, which is characterized by forming seedlings.
【請求項10】 糖を含まない無機塩培地が、活着及び
生育促進作用を有する剤を含有することを特徴とする請
求項9記載の貯蔵後イネ幼植物体の育苗法。
10. The method for raising seedlings of post-storage rice seedlings according to claim 9, wherein the sugar-free inorganic salt medium contains an agent having a rooting and growth promoting action.
【請求項11】 活着及び生育促進作用を有する剤が、
1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジ
アミノオクタン、1,9-ジアミノノナン、α−カロチン、
β−カロチン、γ−カロチン、セホタキシム、アンホテ
リシンB、α−サイクロデキストリン、β−サイクロデ
キストリン、又はγ−サイクロデキストリンであること
を特徴とする請求項10記載の貯蔵後イネ幼植物体の育
苗法。
11. An agent having a survival and growth promoting action,
1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, α-carotene,
The method for raising seedlings of rice seedlings after storage according to claim 10, which is β-carotene, γ-carotene, cefotaxime, amphotericin B, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin.
JP15245794A 1994-07-04 1994-07-04 Storage of young rice plant and raising seedling of stored young rice plant Pending JPH089811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15245794A JPH089811A (en) 1994-07-04 1994-07-04 Storage of young rice plant and raising seedling of stored young rice plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15245794A JPH089811A (en) 1994-07-04 1994-07-04 Storage of young rice plant and raising seedling of stored young rice plant

Publications (1)

Publication Number Publication Date
JPH089811A true JPH089811A (en) 1996-01-16

Family

ID=15540940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15245794A Pending JPH089811A (en) 1994-07-04 1994-07-04 Storage of young rice plant and raising seedling of stored young rice plant

Country Status (1)

Country Link
JP (1) JPH089811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086236A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Seedling producing method having storage process
CN102986528A (en) * 2012-11-13 2013-03-27 云南农业大学 Seedling enhancing and rooting method of lavandula pinnata and seedling enhancing and rooting culture medium thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086236A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Seedling producing method having storage process
CN102986528A (en) * 2012-11-13 2013-03-27 云南农业大学 Seedling enhancing and rooting method of lavandula pinnata and seedling enhancing and rooting culture medium thereof

Similar Documents

Publication Publication Date Title
EP0107141B2 (en) Method of vegetally propagating plants and analog to natural botanic seed for implementing said method
US7901922B2 (en) Nutrient medium used for ex vitro sowing, germination, growth and conversion of plant somatic embryos or germinants
WO2011071114A1 (en) Method for producing clone seedlings
JPH089811A (en) Storage of young rice plant and raising seedling of stored young rice plant
US7625754B2 (en) Continuous culture of conifer embryogenic tissue
US20030182696A1 (en) Method for producing somatic embryos of pine trees (genus pinus)
Chandler et al. Somatic embryogenesis in Pinus radiata Don.
JP3318037B2 (en) Mass growth method of birch
Saito et al. In vitro propagation from axillary buds of Acacia mangium, a legume tree in the tropics
AU4571797A (en) Method for large-scale propagation of trees of genus swietenia
Praveen et al. Somatic embryogenesis and plant regeneration in Kinnow mandarin
JPH07155081A (en) Production of seed and seedling of dwarfed eustoma resselianum g. don
Lin et al. Effect of medium physical support, shoot length and genotype on in vitro rooting and plantlet morphology of Sweetgum
JP2007089487A (en) Method of large-scale proliferation of limonium sinuatum by tissue culture
JP2002238385A (en) Method for regrowing plant body from callus of peronema canescens jack
JPH07123881A (en) Production of tuber for preserving cyclamen and method for preservation of the same
US20030113916A1 (en) Method for producing somatic embryos of scot pine (p sylvestris)
Rounsaville et al. Micropropagation of Mahonia ‘Soft Caress’
RU2333633C2 (en) Method of obtaining high crops of zygotic-type cotyledonous blastemals of pine with use of mediums containing disaccharide and glucose (versions)
CA2293945A1 (en) Culturing method for somatic embryos of coniferous trees
JPH07170870A (en) Production of seed and stock of prairie gentian
Schwarz et al. TISSUE CULTURE MICROPROPAGATION OF CONIFERS¹
JPH09107830A (en) Preparation of artificial seed
Krystyna et al. Advances in Conifer Somatic Embryogenesis since Year 2000
Hayashi et al. Evidence for commitment of flowers on the mother plant to floral regeneration in Nicotiana plumbaginifolia V IV