JPH0897442A - Compound semiconductor epitaxial wafer and semiconductor device - Google Patents

Compound semiconductor epitaxial wafer and semiconductor device

Info

Publication number
JPH0897442A
JPH0897442A JP22768994A JP22768994A JPH0897442A JP H0897442 A JPH0897442 A JP H0897442A JP 22768994 A JP22768994 A JP 22768994A JP 22768994 A JP22768994 A JP 22768994A JP H0897442 A JPH0897442 A JP H0897442A
Authority
JP
Japan
Prior art keywords
type gaas
gaas layer
epitaxial wafer
carbon
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22768994A
Other languages
Japanese (ja)
Inventor
Harunori Sakaguchi
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22768994A priority Critical patent/JPH0897442A/en
Publication of JPH0897442A publication Critical patent/JPH0897442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To make an interfacial carrier profile of an p-n junction with an n-type GaAs layer by making an accepter in a p<+> type GaAs layer to be carbon. CONSTITUTION: A GaAs epitaxial wafer for VCD having a carbon-doped p<+> type GaAs layer is formed. High-purity hydrogen gas is made to flow inside a furnace as carrier gas, an n<+> type GaAs substrate 1 is placed in a furnace so as to raise a susceptor temperature up to 650 deg.C while making AsH3 gas to flow. TMG gas, AsH3 and Si2 H6 gases are made to flow so as to grow an n-type GaAs layer 2 on the GaAs substrate 1 at 650 deg.C. Thereby, the n-type GaAs layer, of which carrier concentration changes by 5×10<15> to 2×10<17> cm<-3> , is formed. Temperature is lowered down to 500 deg.C, TMG and AsH3 are made to flow so that the ratio of AsH3 /TMG may be 2 in order to grow a p<+> type GaAs layer 4 having acceptor concentration of 1×10<19> cm<-3> . Carbon has a smaller diffusion coefficient in GaAs as compared to zinc so as to make a carrier profile of a p-n junction interface with an n-type GaAs layer to be steep.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可変容量ダイオード用の
化合物半導体エピタキシャルウェハ及び半導体素子に係
り、特にpn界面の改善を図ったものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor epitaxial wafer and a semiconductor device for a variable capacitance diode, and more particularly to an improved pn interface.

【0002】[0002]

【従来の技術】従来の可変容量ダイオード(以下、VC
Dと略す)用GaAsエピタキシャルウェハの構造例を
図5に示す。n+ 型GaAs基板1上にSiドープのn
型GaAs層、さらにその上にZnドープのp+ 型Ga
As層を形成したものである。このように、従来は、p
+ 型GaAs層中のアクセプタ不純物として亜鉛(Z
n)をドープしていた。
2. Description of the Related Art A conventional variable capacitance diode (hereinafter referred to as VC
An example of the structure of a GaAs epitaxial wafer for (abbreviated as D) is shown in FIG. Si-doped n on n + type GaAs substrate 1
-Type GaAs layer and Zn-doped p + -type Ga on the GaAs layer
The As layer is formed. Thus, conventionally, p
As an acceptor impurity in the + type GaAs layer, zinc (Z
n) was doped.

【0003】[0003]

【発明が解決しようとする課題】しかし、アクセプタ不
純物のZnは、GaAs中での拡散係数が大きく、急峻
なキャリアプロファイルを有するpn接合が形成できな
いという問題があった。また、アクセプタ濃度が高濃度
になると結晶欠陥をp+ 型GaAs層中やpn接合界面
付近に形成しやすく、深い準位などのデバイス特性に悪
影響を及ぼすという問題があった。
However, Zn, which is an acceptor impurity, has a problem in that it has a large diffusion coefficient in GaAs and cannot form a pn junction having a steep carrier profile. Further, when the acceptor concentration becomes high, there is a problem that crystal defects are likely to be formed in the p + type GaAs layer or near the pn junction interface, which adversely affects device characteristics such as deep level.

【0004】本発明の目的は、上述した従来技術の問題
点を解消して、キャリアプロファイルが急峻なpn接合
を有する結晶欠陥の少ない化合物半導体エピタキシャル
ウェハを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a compound semiconductor epitaxial wafer having a pn junction with a sharp carrier profile and few crystal defects.

【0005】また、本発明の目的は、上述したエピタキ
シャルウェハを用いることによってVCD特性の向上し
た半導体素子を提供することにある。
Another object of the present invention is to provide a semiconductor device having improved VCD characteristics by using the above epitaxial wafer.

【0006】[0006]

【課題を解決するための手段】本発明の化合物半導体エ
ピタキシャルウェハは、n+ 型GaAs基板上に、キャ
リア濃度が厚さ方向に変化しているn型GaAs層と、
高濃度のp+ 型GaAs層とを順次積層した可変容量ダ
イオード用の化合物半導体エピタキシャルウェハにおい
て、p+ 型GaAs層中のアクセプタを炭素としたもの
である。
A compound semiconductor epitaxial wafer of the present invention comprises an n + type GaAs substrate, an n type GaAs layer having a carrier concentration varying in the thickness direction, and
In a compound semiconductor epitaxial wafer for a variable capacitance diode in which a high-concentration p + -type GaAs layer is sequentially laminated, carbon is used as an acceptor in the p + -type GaAs layer.

【0007】また、本発明の半導体素子は、上記ウェハ
を構成するp+ 型GaAs層側にショットキー電極を、
+ 型GaAs基板側にオーミック電極をそれぞれ設け
たものである。
In the semiconductor device of the present invention, a Schottky electrode is provided on the side of the p + type GaAs layer constituting the wafer,
Ohmic electrodes are provided on the n + type GaAs substrate side, respectively.

【0008】[0008]

【作用】炭素は亜鉛に比べ、GaAs中の拡散係数がは
るかに小さく、結晶欠陥も作りにくい。従って、p+
GaAs層中のアクセプタを炭素とすると、n型GaA
s層とのpn接合の界面のキャリアプロファイルを急峻
にできる。また、アクセプタ濃度が高濃度になっても結
晶欠陥がp+ 型GaAs層中やpn接合界面付近に形成
されにくため、深い準位などのデバイス特性に悪影響を
及ぼさず、p+ 型GaAs層の結晶品質が向上する。
Function: Carbon has a much smaller diffusion coefficient in GaAs than zinc, and it is hard to form crystal defects. Therefore, if the acceptor in the p + -type GaAs layer is carbon, n-type GaA
The carrier profile at the interface of the pn junction with the s layer can be made steep. Further, even if the acceptor concentration becomes high, crystal defects are unlikely to be formed in the p + type GaAs layer or in the vicinity of the pn junction interface, so that the device characteristics such as deep level are not adversely affected, and the p + type GaAs layer is not affected. Crystal quality is improved.

【0009】[0009]

【実施例】以下、本発明の化合物半導体エピタキシャル
ウェハ及び該ウェハを用いた半導体素子の実施例を実施
例1から実施例3で具体的に説明する。
EXAMPLES Examples of the compound semiconductor epitaxial wafer of the present invention and a semiconductor device using the wafer will be specifically described below with reference to Examples 1 to 3.

【0010】(実施例1)有機金属気相成長(MOVP
E)法により、炭素ドープp+ 型GaAs層を有するV
CD用GaAsエピタキシャルウェハを成長した。その
ウェハ構造を図1に示す。
Example 1 Metal Organic Chemical Vapor Deposition (MOVP)
V) having a carbon-doped p + -type GaAs layer by the method E)
A GaAs epitaxial wafer for CD was grown. The wafer structure is shown in FIG.

【0011】精製した高純度水素ガスをキャリアガスと
して、成長中は常時MOVPE反応炉に流し、炉中のグ
ラファイトサセプタ上にn+ 型GaAs基板1(面方位
は(100)である)を置き、アルシン(AsH3 )ガ
スを流しながらサセプタ温度を650℃に昇温した。
Purified high-purity hydrogen gas is used as a carrier gas during the growth and is constantly flown into a MOVPE reactor, and an n + type GaAs substrate 1 (having a plane orientation of (100)) is placed on the graphite susceptor in the furnace. The susceptor temperature was raised to 650 ° C. while flowing arsine (AsH 3 ) gas.

【0012】次に、650℃でトリメチルガリウム(T
MG)ガスとAsH3 とジシラン(Si2 6 )ガスを
流してGaAs基板1上にn型GaAs層2を2μmの
厚さまで成長した。この時、Si2 6 の流量を徐々に
変えてn型GaAs層2中のキャリアプロファイルが所
望の容量−電圧特性を満たすように制御した。これよ
り、キャリア濃度が厚さ方向に5×1015〜2×1017
cm-3変化するn型GaAs層を得た。
Next, at 650 ° C., trimethylgallium (T
MG) gas, AsH 3 and disilane (Si 2 H 6 ) gas were flown to grow an n-type GaAs layer 2 on the GaAs substrate 1 to a thickness of 2 μm. At this time, the flow rate of Si 2 H 6 was gradually changed to control the carrier profile in the n-type GaAs layer 2 so as to satisfy a desired capacitance-voltage characteristic. From this, the carrier concentration is 5 × 10 15 to 2 × 10 17 in the thickness direction.
An n-type GaAs layer having a cm −3 change was obtained.

【0013】次に、サセプタ温度を500℃に下げ(こ
の間、AsH3 を流した)、TMGとAsH3 をAsH
3 /TMGの比が2になるようにして流し、p+ 型Ga
As層4を0.2μm成長した。これよりアクセプタ濃
度が1×1019cm-3のp+ 型GaAs層を得た。このア
クセプタ濃度の制御はAsH3 /TMG比、成長温度、
成長圧力、ガスの炉内流速を変えることにより制御でき
る。
Next, the susceptor temperature was lowered to 500 ° C. (AsH 3 was flown during this time), and TMG and AsH 3 were transferred to AsH.
Flowing with the ratio of 3 / TMG to be 2, p + type Ga
The As layer 4 was grown to 0.2 μm. From this, a p + type GaAs layer having an acceptor concentration of 1 × 10 19 cm −3 was obtained. Control of the acceptor concentration is performed by the AsH 3 / TMG ratio, the growth temperature,
It can be controlled by changing the growth pressure and the gas flow rate in the furnace.

【0014】図2はこの炭素ドープp+ 型GaAs層を
有するVCD用GaAsエピタキシャルウェハをSIM
S(二次イオン質量分析法)分析して得た炭素の深さ方
向プロファイルを、ZnドープVCD用GaAsエピタ
キシャルウェハのZnのプロファイルと比較して示す。
FIG. 2 shows a GaAs epitaxial wafer for VCD having this carbon-doped p + -type GaAs layer as a SIM.
The depth profile of carbon obtained by S (secondary ion mass spectrometry) analysis is shown in comparison with the profile of Zn of the GaAs epitaxial wafer for Zn-doped VCD.

【0015】これにより、p+ 型GaAs層のアクセプ
タ不純物を炭素とすることにより、急峻なp+ n接合界
面が得られることがわかった。
From this, it was found that a steep p + n junction interface can be obtained by using carbon as the acceptor impurity of the p + type GaAs layer.

【0016】なお、上記のエピタキシャル成長の典型的
な条件は、水素流量20l/min、TMG流量2cc/min、
AsH3 流量4cc/min(p+ 型GaAs層成長時)、同
40cc/min(n型GaAs層成長時)、Si2 6 流量
は2×10-6cc/min〜2×10-4cc/minである。成長炉
は減圧縦型炉である。
The typical conditions for the above epitaxial growth are: hydrogen flow rate 20 l / min, TMG flow rate 2 cc / min,
AsH 3 flow rate of 4 cc / min (during p + type GaAs layer growth), 40 cc / min (during n type GaAs layer growth), Si 2 H 6 flow rate of 2 × 10 -6 cc / min to 2 × 10 -4 cc / min. The growth furnace is a vacuum vertical furnace.

【0017】むろん、これらの条件は、AsH3 とTM
Gの流量比(p+ 型GaAs層のキャリア濃度を制御し
ている)や、Si2 6 とTMGの流量比(n型GaA
s層のキャリア濃度を制御している)を適当に選べば、
広範囲で変えることができる。例えば、炉内の平均ガス
流速を速くすれば常圧でも成長可能である。
Of course, these conditions are AsH 3 and TM
G flow rate ratio (which controls the carrier concentration of the p + type GaAs layer) and Si 2 H 6 and TMG flow rate ratio (n type GaA
The carrier concentration of the s layer is controlled)
It can be changed over a wide range. For example, if the average gas flow rate in the furnace is increased, it is possible to grow even at normal pressure.

【0018】(実施例2)MOVPE法により、炭素ド
ープp+ 型GaAs層を有するVCDエピタキシャルウ
ェハ成長した。Si2 6 の流量を変えてn+ 型GaA
s基板上にn型GaAs層を成長するまでは実施例1と
同じである。
Example 2 A VCD epitaxial wafer having a carbon-doped p + -type GaAs layer was grown by MOVPE method. N + type GaA by changing the flow rate of Si 2 H 6
The process is the same as in Example 1 until the n-type GaAs layer is grown on the s substrate.

【0019】次に、Si2 6 の供給を止め、四塩化炭
素(CCl4 )を炭素のドーパントとして流し、p+
GaAs層を0.2μm成長した。これよりアクセプタ
濃度が1×1019cm-3のp+ 型GaAs層を得た。この
アクセプタ濃度の制御はCCl4 の流量を変えることに
より行った。
Then, the supply of Si 2 H 6 was stopped, carbon tetrachloride (CCl 4 ) was made to flow as a carbon dopant, and a p + type GaAs layer was grown to a thickness of 0.2 μm. From this, a p + type GaAs layer having an acceptor concentration of 1 × 10 19 cm −3 was obtained. The acceptor concentration was controlled by changing the flow rate of CCl 4 .

【0020】こうして成長したVCD用GaAsエピタ
キシャルウェハの構造およびキャリアプロファイルは図
1および図2と同じである。図3にSIMS分析して得
た炭素の深さ方向プロファイルを、ZnドープVCD用
GaAsエピタキシャルウェハのそれと比較して示す。
The structure and carrier profile of the GaAs epitaxial wafer for VCD thus grown are the same as those in FIGS. 1 and 2. FIG. 3 shows the depth profile of carbon obtained by SIMS analysis in comparison with that of a Zn-doped VCD GaAs epitaxial wafer.

【0021】これより、p+ 型GaAs層のアクセプタ
不純物を炭素とすることにより、急峻なp+ 型n接合界
面が得られることがわかった。
From this, it was found that a steep p + -type n-junction interface can be obtained by using carbon as the acceptor impurity of the p + -type GaAs layer.

【0022】なお、上記のエピタキシャル成長の典型的
な条件は、水素流量20l/min、TMG流量2cc/min、
AsH3 流量40cc/min、CCl4 流量は2cc/min、S
26 流量は2×10-6cc/min〜2×10-4cc/minで
ある。成長炉は常圧縦型炉である。
The typical conditions for the above epitaxial growth are as follows: hydrogen flow rate 20 l / min, TMG flow rate 2 cc / min,
AsH 3 flow rate 40cc / min, CCl 4 flow rate 2cc / min, S
The i 2 H 6 flow rate is 2 × 10 −6 cc / min to 2 × 10 −4 cc / min. The growth furnace is an atmospheric vertical furnace.

【0023】むろん、これらの条件は、CCl4 の流量
や、Si2 6 とTMGの流量比を適当に選べば、広範
囲で変えることができる。
Of course, these conditions can be changed over a wide range by appropriately selecting the flow rate of CCl 4 and the flow rate ratio of Si 2 H 6 and TMG.

【0024】また、四臭化炭素(CBr4 )を炭素のド
ーパントとして用いても同様な特性のエピタキシャルウ
ェハを得ることができる(N.I.Bucha et
c,Journal of Crystal Grow
th 110(1991)405−414参照)。上記
の成長条件でCBr4 の流量は1cc/minである。
An epitaxial wafer having similar characteristics can be obtained by using carbon tetrabromide (CBr 4 ) as a carbon dopant (NI Bucha et al.).
c, Journal of Crystal Grow
th 110 (1991) 405-414). The flow rate of CBr 4 is 1 cc / min under the above growth conditions.

【0025】(実施例3)図4に示すように、実施例
1、2に述べたVCD用GaAsエピタキシャルウェハ
を用いて半導体素子を製作した。p+ 型GaAs層4の
表面にショットキ電極であるAl電極5、n+ 型GaA
s基板1の表面にAuGeNi電極6を蒸着し、AuG
eNi電極6側を450℃、10分,N2 中でアロイし
てオーミック電極を形成した。その後、保護膜作成、ダ
イシング、パッケージング、ワイヤボンディング等の一
般的な素子作成プロセスを行ってVCD素子を作成し
た。作製したVCD素子は良好な特性を示した。
(Embodiment 3) As shown in FIG. 4, a semiconductor device was manufactured using the GaAs epitaxial wafer for VCD described in Embodiments 1 and 2. An Al electrode 5, which is a Schottky electrode, and an n + type GaA on the surface of the p + type GaAs layer 4.
s AuGeNi electrode 6 is vapor-deposited on the surface of substrate 1
The eNi electrode 6 side was alloyed in N 2 at 450 ° C. for 10 minutes to form an ohmic electrode. Then, a general device forming process such as forming a protective film, dicing, packaging, wire bonding and the like was performed to form a VCD device. The produced VCD element showed good characteristics.

【0026】[0026]

【発明の効果】本発明の化合物半導体エピタキシャルウ
ェハによれば、p+ 型GaAs層のドーパントを炭素に
したので、p+ 型GaAs層とn型GaAs層とのpn
接合界面のキャリアプロファイルを急峻にでき、結晶欠
陥を少なくしてp+ 型GaAs層の結晶品質を向上させ
ることができる。
According to the compound semiconductor epitaxial wafer of the present invention, since the dopant of the p + type GaAs layer is carbon, the pn of the p + type GaAs layer and the n type GaAs layer is formed.
The carrier profile at the junction interface can be made steep, crystal defects can be reduced, and the crystal quality of the p + -type GaAs layer can be improved.

【0027】本発明の半導体素子によれば、キャリアプ
ロファイルが急峻なpn接合界面を持ち、p+ 型GaA
s層の結晶品質が高いので、可変容量ダイオード特性を
向上することができる。
According to the semiconductor device of the present invention, the carrier profile has a pn junction interface having a steep profile, and p + -type GaA
Since the crystal quality of the s layer is high, the variable capacitance diode characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体エピタキシャルウェハの
実施例を説明するための炭素(C)ドープVCD用Ga
Asエピタキシャルウェハの構造を示す断面図。
FIG. 1 is a Ga for carbon (C) -doped VCD for explaining an example of a compound semiconductor epitaxial wafer of the present invention.
Sectional drawing which shows the structure of an As epitaxial wafer.

【図2】本実施例のCドープVCD用GaAsエピタキ
シャルウェハのキャリアプロファイルを示す図。
FIG. 2 is a diagram showing a carrier profile of a GaAs epitaxial wafer for C-doped VCD of this example.

【図3】本実施例のCドープVCDエピタキシャルウェ
ハのSIMS分析による炭素の深さ方向プロファイルを
示す図。
FIG. 3 is a diagram showing a carbon depth-direction profile of a C-doped VCD epitaxial wafer of this example by SIMS analysis.

【図4】本発明の半導体素子の実施例を示すVCDの断
面図。
FIG. 4 is a sectional view of a VCD showing an embodiment of a semiconductor device of the present invention.

【図5】従来のZnドープVCD用GaAsエピタキシ
ャルウェハの構造を示す断面図。
FIG. 5 is a sectional view showing the structure of a conventional GaAs epitaxial wafer for Zn-doped VCD.

【符号の説明】[Explanation of symbols]

1 n+ 型GaAs基板 2 Siドープn型GaAs層 4 Cドープp+ 型GaAs層 5 Al電極(ショットキー電極) 6 AuGeNi電極(オーミック電極)1 n + type GaAs substrate 2 Si-doped n-type GaAs layer 4 C-doped p + type GaAs layer 5 Al electrode (Schottky electrode) 6 AuGeNi electrode (ohmic electrode)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】n+ 型GaAs基板上に、キャリア濃度が
厚さ方向に変化しているn型GaAs層と、高濃度のp
+ 型GaAs層とを順次積層した可変容量ダイオード用
の化合物半導体エピタキシャルウェハにおいて、上記p
+ 型GaAs層中のアクセプタを炭素としたことを特徴
とする化合物半導体エピタキシャルウェハ。
1. An n-type GaAs layer having a carrier concentration varying in the thickness direction and a high-concentration p-type on an n + -type GaAs substrate.
In a compound semiconductor epitaxial wafer for a variable capacitance diode in which + type GaAs layers are sequentially stacked,
A compound semiconductor epitaxial wafer, wherein the acceptor in the + -type GaAs layer is carbon.
【請求項2】請求項1に記載の化合物半導体エピタキシ
ャルウェハにおいて、上記p+ 型GaAs層側にショッ
トキー電極を、n+ 型GaAs基板側にオーミック電極
をそれぞれ設けたことを特徴とする半導体素子。
2. A compound semiconductor epitaxial wafer according to claim 1, wherein a Schottky electrode is provided on the p + type GaAs layer side and an ohmic electrode is provided on the n + type GaAs substrate side. .
JP22768994A 1994-09-22 1994-09-22 Compound semiconductor epitaxial wafer and semiconductor device Pending JPH0897442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22768994A JPH0897442A (en) 1994-09-22 1994-09-22 Compound semiconductor epitaxial wafer and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22768994A JPH0897442A (en) 1994-09-22 1994-09-22 Compound semiconductor epitaxial wafer and semiconductor device

Publications (1)

Publication Number Publication Date
JPH0897442A true JPH0897442A (en) 1996-04-12

Family

ID=16864804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22768994A Pending JPH0897442A (en) 1994-09-22 1994-09-22 Compound semiconductor epitaxial wafer and semiconductor device

Country Status (1)

Country Link
JP (1) JPH0897442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516653A1 (en) * 2015-01-09 2016-07-15 Hans Höllwart - Forschungszentrum Für Integrales Bauwesen Ag Method of forming corners in profiles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516653A1 (en) * 2015-01-09 2016-07-15 Hans Höllwart - Forschungszentrum Für Integrales Bauwesen Ag Method of forming corners in profiles

Similar Documents

Publication Publication Date Title
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
JP2001127326A (en) Semiconductor substrate, method of manufacturing the same, solar cell using the same and manufacturing method thereof
US6476420B2 (en) P-N homojunction-based structures utilizing HVPE growth III-V compound layers
US5682040A (en) Compound semiconductor device having a reduced resistance
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
JP2010141037A (en) Gallium nitride based semiconductor electronic device and method of producing the same, and epitaxial substrate and method of producing the same
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
US6559467B2 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
JP5427623B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
US5400740A (en) Method of preparing compound semiconductor
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
JPWO2007114033A1 (en) Light emitting device manufacturing method, compound semiconductor wafer, and light emitting device
JPH0897442A (en) Compound semiconductor epitaxial wafer and semiconductor device
US20020047135A1 (en) P-N junction-based structures utilizing HVPE grown III-V compound layers
JP4770130B2 (en) Epitaxial wafer for field effect transistor and epitaxial wafer for high electron mobility transistor
JP3357724B2 (en) Compound semiconductor device
JPH11266009A (en) Manufacture of group iii compound semiconductor device
JPH11251329A (en) Semiconductor wafer and manufacture thereof
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors
JPH0722327A (en) Compound semiconductor device and manufacturing method therefor