JPH0897203A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0897203A
JPH0897203A JP23455794A JP23455794A JPH0897203A JP H0897203 A JPH0897203 A JP H0897203A JP 23455794 A JP23455794 A JP 23455794A JP 23455794 A JP23455794 A JP 23455794A JP H0897203 A JPH0897203 A JP H0897203A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
oxide film
field oxidation
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23455794A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamamoto
一弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23455794A priority Critical patent/JPH0897203A/en
Publication of JPH0897203A publication Critical patent/JPH0897203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent generation of deterioration of device characteristics like insufficient withstand voltage of an oxide film, at the time of field oxidation at 1050 deg.C or higher, when element isolation structure is formed, by forming a polysilicon film at a temperature higher than or equal to a specified value, and forming a silicon nitride film whose film thickness is in a specified range. CONSTITUTION: A Pad oxide film 2, a polysilicon film 3 and a silicon nitride film 4 are formed in order on a silicon substrate 1. The silicon nitride film 4 is used as a mask, and element isolation structure is formed by field oxidation. In this case, the polysilicon film 3 is formed at 600 deg.C or higher, and the silicon nitride film 4 is formed to be 100-180nm thick. The field oxidation is performed at 1050 deg.C or higher. For example, the Pad oxide film 2 is grown to be several nm thick on the silicon substrate 1, and the polysilicon film 3 is grown on the Pad oxide film 2 to be about 50nm thick by an LPCVD method at 624 deg.C. Further, an Si3 N4 film 4 whose thickness is in the range from 100nm to 180nm is grown by an LPCVD method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、より詳細にはポリバッファードLOCOSにより
素子分離構造を形成する工程を含んだ半導体装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device including a step of forming an element isolation structure by polybuffered LOCOS.

【0002】[0002]

【従来の技術】ポリバッファードLOCOSとは、ポリ
シリコン膜をPad酸化膜と窒化シリコン膜の間に挟む
構造にしてシリコンの選択酸化を行う技術である。該技
術は、フィールド酸化膜のエッジに発生するバーズビー
クを低減できる特徴を有している。
2. Description of the Related Art Poly-buffered LOCOS is a technique for selectively oxidizing silicon with a structure in which a polysilicon film is sandwiched between a pad oxide film and a silicon nitride film. This technique has a feature that bird's beaks generated at the edges of the field oxide film can be reduced.

【0003】以下、ポリバッファードLOCOSによる
従来の素子分離構造形成方法を図3に基づいて説明す
る。まず、シリコン基板1上にPad酸化膜2を20n
m程度形成し、その上にポリシリコン膜33をLPCV
D(Low Pressure Chemical Vapor Deposition)法によ
って50nm程度形成し、その上に窒化シリコン膜34
を同じくLPCVD法によって200nm程度形成する
(図3(a))。次に、窒化シリコン膜34上にレジス
トを塗布した後、パターニングを行ってレジストパター
ン5を形成する(図3(b))。次いで、レジストパタ
−ン5をマスクとしてドライエッチングにより開口部に
露出している窒化シリコン膜34のみをエッチング除去
する(図3(c))。その後、レジストパターン5を除
去し(図3(d))、1050℃程度の温度でポリシリ
コン膜33及びシリコン基板1を酸化してフィ−ルド酸
化膜6を形成する(図3(e))。
A conventional element isolation structure forming method using poly-buffered LOCOS will be described below with reference to FIG. First, a pad oxide film 2 of 20n is formed on the silicon substrate 1.
m film is formed, and a polysilicon film 33 is formed thereon by LPCV.
It is formed to a thickness of about 50 nm by the D (Low Pressure Chemical Vapor Deposition) method, and the silicon nitride film 34 is formed thereon.
Is similarly formed to a thickness of about 200 nm by the LPCVD method (FIG. 3A). Next, after applying a resist on the silicon nitride film 34, patterning is performed to form a resist pattern 5 (FIG. 3B). Then, only the silicon nitride film 34 exposed at the opening is removed by dry etching using the resist pattern 5 as a mask (FIG. 3C). After that, the resist pattern 5 is removed (FIG. 3D), and the polysilicon film 33 and the silicon substrate 1 are oxidized at a temperature of about 1050 ° C. to form a field oxide film 6 (FIG. 3E). .

【0004】[0004]

【発明が解決しようとする課題】上記図3(e)に示し
た工程において、1050℃より低温でフィ−ルド酸化
を行うと、図4に示したように、ポリシリコン膜33に
おける活性領域と素子分離領域とのエッジ部8にボイド
7が発生(凹凸あるいは穴等が発生)してしまう。ポリ
シリコン膜33のエッジ部8にボイド7が発生すると、
ポリシリコン膜33の除去時には、ボイド7下部に過剰
なオ−バ−エッチがかかり、シリコン基板1にダメ−ジ
を与えるので、後で形成するキャパシタ酸化膜の信頼性
が低下する等の問題が生じる。なお、図4は工程(e)
におけるポリシリコン膜33を概略的に示した上面図で
ある。これに対して、1050℃以上でフィ−ルド酸化
を行えば、高温酸化によりフィ−ルド酸化膜6の硬度を
低くすることができるので、ポリシリコン膜33のエッ
ジ部8に作用するストレスを緩和することができ、ボイ
ド7の発生を防止することが可能である。
When field oxidation is performed at a temperature lower than 1050 [deg.] C. in the step shown in FIG. 3 (e), as shown in FIG. Voids 7 (unevenness, holes, etc.) occur at the edge portion 8 with the element isolation region. When the void 7 is generated in the edge portion 8 of the polysilicon film 33,
At the time of removing the polysilicon film 33, excessive over-etching is applied to the lower portion of the void 7 to give damage to the silicon substrate 1, so that there is a problem that the reliability of a capacitor oxide film to be formed later is lowered. Occurs. Note that FIG. 4 shows the step (e)
3 is a top view schematically showing the polysilicon film 33 in FIG. On the other hand, if the field oxidation is performed at 1050 ° C. or higher, the hardness of the field oxide film 6 can be lowered by the high temperature oxidation, so that the stress acting on the edge portion 8 of the polysilicon film 33 is relaxed. It is possible to prevent the generation of the void 7.

【0005】しかし、1050℃より高温でフィールド
酸化を行う場合、窒化シリコン膜34の厚さによっては
デバイス特性の劣化を招く可能性がある。すなわち、窒
化シリコン膜34が厚すぎるとエッジ部8にストレスが
かかり過ぎ、酸化膜耐圧不良が生じるという課題があ
り、逆に窒化シリコン膜34が薄すぎると、窒化シリコ
ン膜34が選択酸化のマスクとして働かなかったり、エ
ッジ部8の形状、いわゆるバ−ズビ−ク形状が大きくな
ってしまうという課題がある。
However, when the field oxidation is performed at a temperature higher than 1050 ° C., the device characteristics may be deteriorated depending on the thickness of the silicon nitride film 34. That is, if the silicon nitride film 34 is too thick, there is a problem that stress is applied to the edge portion 8 too much and the oxide film withstand voltage defect occurs. On the contrary, if the silicon nitride film 34 is too thin, the silicon nitride film 34 becomes a mask for selective oxidation. There is a problem in that the shape of the edge portion 8, that is, the so-called bird's beak shape becomes large.

【0006】本発明はこのような課題に鑑み発明された
ものであって、素子分離構造を形成する際に、1050
℃以上の温度でフィ−ルド酸化を行っても酸化膜耐圧不
良等のデバイス特性の劣化を引き起こさない半導体装置
の製造方法を提供することを目的としている。
The present invention has been invented in view of the above problems, and when forming an element isolation structure, 1050
An object of the present invention is to provide a method of manufacturing a semiconductor device which does not cause deterioration of device characteristics such as defective oxide film withstand voltage even if field oxidation is performed at a temperature of ℃ or higher.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る半導体装置の製造方法は、シリコン基板
上に、Pad酸化膜、ポリシリコン膜及び窒化シリコン
膜を順次形成し、窒化シリコン膜をマスクとしてフィー
ルド酸化を行い素子分離構造を形成する工程を含んだ半
導体装置の製造方法であって、ポリシリコン膜を600
℃以上で形成する工程と、100nm〜180nmの膜
厚の窒化シリコン膜を形成する工程と、1050℃以上
でフィ−ルド酸化を行う工程とを含んでいることを特徴
としている。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention comprises a step of sequentially forming a pad oxide film, a polysilicon film and a silicon nitride film on a silicon substrate to form a silicon nitride film. A method of manufacturing a semiconductor device, comprising the step of forming an element isolation structure by performing field oxidation using a film as a mask, wherein a polysilicon film is
It is characterized in that it includes a step of forming the silicon nitride film having a film thickness of 100 nm to 180 nm and a step of performing field oxidation at 1050 ° C. or more.

【0008】[0008]

【作用】ポリシリコン膜を600℃以上で形成し、窒化
シリコン膜の厚みが100〜180nmであれば、フィ
−ルド酸化を1050℃以上の温度で行っても、素子分
離領域と活性領域とのエッジに働くストレスを緩和し、
酸化膜耐圧特性等のデバイス特性の劣化を抑制すること
が可能であることを実験で確認した。したがって、上記
方法に係る半導体装置の製造方法を用いれば、ポリシリ
コン膜の前記エッジ部にボイドを発生させることなく、
また酸化膜耐圧特性等のデバイス特性を劣化させること
なく素子分離構造を形成することが可能である。なお、
ポリシリコン膜を600℃を超えない温度で形成すると
酸化膜耐圧特性が著しく劣化することも実験で確認し
た。したがって、ポリシリコン膜は必ず600℃以上で
形成する必要がある。
If the polysilicon film is formed at a temperature of 600 ° C. or higher and the thickness of the silicon nitride film is 100 to 180 nm, even if the field oxidation is performed at a temperature of 1050 ° C. or higher, the element isolation region and the active region are not separated. Relieves the stress that acts on the edge,
It was confirmed by an experiment that deterioration of device characteristics such as oxide film withstand voltage characteristics can be suppressed. Therefore, by using the method for manufacturing a semiconductor device according to the above method, without generating a void in the edge portion of the polysilicon film,
Further, the element isolation structure can be formed without deteriorating the device characteristics such as the oxide film breakdown voltage characteristics. In addition,
It was also confirmed by experiments that if the polysilicon film is formed at a temperature not exceeding 600 ° C., the oxide film breakdown voltage characteristics are significantly deteriorated. Therefore, the polysilicon film must be formed at 600 ° C. or higher.

【0009】[0009]

【実施例】以下、本発明に係る半導体装置の製造方法の
実施例を図面に基づいて説明する。図1は実施例に係る
半導体装置の製造方法に基づいてポリバッファ−ドLO
COS素子分離構造を有するキャパシタを形成する場合
の各工程を模式的に示した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings. FIG. 1 shows a poly-buffered LO based on a method for manufacturing a semiconductor device according to an embodiment.
It is sectional drawing which showed each process typically when forming the capacitor which has a COS element isolation structure.

【0010】工程(a):シリコン基板1上にPad酸
化膜2を20nm程度成長させ、その上に624℃、L
PCVD法によってポリシリコン膜3を50nm程度成
長させる。さらに、窒化シリコン膜としてSi34
4をLPCVD法によって100nmから180nmの
範囲内で成長させる。
Step (a): A Pad oxide film 2 is grown on the silicon substrate 1 to a thickness of about 20 nm, and 624 ° C. and L are formed thereon.
The polysilicon film 3 is grown to a thickness of about 50 nm by the PCVD method. Further, a Si 3 N 4 film 4 as a silicon nitride film is grown by LPCVD in the range of 100 nm to 180 nm.

【0011】工程(b):Si34 膜4上にレジスト
を塗布した後、パターニングを行いレジストパタ−ン5
を形成する。 工程(c):レジスタパタ−ン5をマスクとして開口部
のSi34 膜4をエッチングする。 工程(d):レジストパタ−ン5を除去する。 工程(e):1050℃程度の温度でフィールド酸化を
行いフィ−ルド酸化膜6を形成する。
Step (b): After applying a resist on the Si 3 N 4 film 4, patterning is performed to form a resist pattern 5.
To form. Step (c): The Si 3 N 4 film 4 in the opening is etched using the register pattern 5 as a mask. Step (d): The resist pattern 5 is removed. Step (e): Field oxidation is performed at a temperature of about 1050 ° C. to form a field oxide film 6.

【0012】工程(f):活性領域に残っているSi3
4 膜4、ポリシリコン膜3及びPad酸化膜2を順次
除去する。 工程(g):シリコン基板1上に新たにキャパシタ酸化
膜9を形成した後、電極となる低抵抗ポリシリコン膜1
0を堆積させ、低抵抗ポリシリコン膜10をパターニン
グしてポリバッファ−ドLOCOS素子分離構造を有す
るキャパシタを形成する。
Step (f): Si 3 remaining in the active region
The N 4 film 4, the polysilicon film 3 and the Pad oxide film 2 are sequentially removed. Step (g): After forming a new capacitor oxide film 9 on the silicon substrate 1, a low resistance polysilicon film 1 to be an electrode
0 is deposited and the low resistance polysilicon film 10 is patterned to form a capacitor having a polybuffered LOCOS element isolation structure.

【0013】図2は上記工程に従って形成したキャパシ
タの酸化膜耐圧良品率のSi34膜厚依存性を示した
グラフである。図2において横軸はSi34 膜4の膜
厚(nm)を示し、縦軸は良品率(%)を示している。
また、△印は1000℃でフィ−ルド酸化を行った場合
を示し、○印は1050℃でフィ−ルド酸化を行った場
合を示し、□印は1070℃でフィ−ルド酸化を行った
場合を示している。
FIG. 2 is a graph showing the Si 3 N 4 film thickness dependency of the oxide film breakdown voltage non-defective rate of the capacitor formed according to the above process. In FIG. 2, the horizontal axis represents the film thickness (nm) of the Si 3 N 4 film 4, and the vertical axis represents the non-defective rate (%).
In addition, △ mark shows the case where the field oxidation was performed at 1000 ° C., ○ mark shows the case where the field oxidation was performed at 1050 ° C., and □ mark shows the case where the field oxidation was performed at 1070 ° C. Is shown.

【0014】Si34 膜4の膜厚が100〜180n
mである場合は、1000℃、1050℃及び1070
℃のいずれの温度でフィ−ルド酸化を行ってもほぼ10
0%の良品率となっている。Si34 膜4の膜厚が2
00nmの場合は、フィ−ルド酸化温度が1050℃で
は良品率が50%程度となり、1070℃では良品率が
30%程度となり、Si34 膜4の膜厚が100〜1
80nmの場合に比べて良品率が著しく低下している。
Si34 膜4の膜厚が200nmでもフィ−ルド酸化
温度が1000℃の時は良品率がほぼ100%となって
いる。しかしこの場合には、ポリシリコン膜3にボイド
が発生しており、後に形成するキャパシタ酸化膜9の信
頼性が低下するという不具合が生じる。
The Si 3 N 4 film 4 has a film thickness of 100 to 180 n.
m, 1000 ° C., 1050 ° C. and 1070
Approximately 10 even if field oxidation is performed at any temperature of ° C.
The yield rate is 0%. The thickness of the Si 3 N 4 film 4 is 2
In the case of 00 nm, the yield rate is about 50% when the field oxidation temperature is 1050 ° C., the yield rate is about 30% when the field oxidation temperature is 1070 ° C., and the film thickness of the Si 3 N 4 film 4 is 100 to 1
The non-defective rate is significantly lower than that in the case of 80 nm.
Even when the film thickness of the Si 3 N 4 film 4 is 200 nm, the yield rate is almost 100% when the field oxidation temperature is 1000 ° C. However, in this case, voids are generated in the polysilicon film 3 and the reliability of the capacitor oxide film 9 to be formed later is deteriorated.

【0015】以上説明したように、ポリシリコン膜3を
600℃以上の温度である624℃で形成し、窒化シリ
コン膜であるSi34 膜4の膜厚を100nm〜18
0nmに設定すれば、図1(e)の工程でフィールド酸
化を1050℃以上の高温で行ってもキャパシタ酸化膜
9に耐圧劣化が発生しない素子分離構造を有するキャパ
シタを形成することができる。
As described above, the polysilicon film 3 is formed at a temperature of 600 ° C. or higher at 624 ° C., and the film thickness of the Si 3 H 4 film 4 which is a silicon nitride film is 100 nm to 18 nm.
When the thickness is set to 0 nm, it is possible to form a capacitor having an element isolation structure in which the breakdown voltage does not deteriorate in the capacitor oxide film 9 even when the field oxidation is performed at a high temperature of 1050 ° C. or higher in the step of FIG.

【0016】[0016]

【発明の効果】以上詳述したように本発明に係る半導体
装置の製造方法においては、ポリシリコン膜を600℃
以上で形成し、窒化シリコン膜の膜厚を100nm〜1
80nmに設定するので、ポリシリコン膜にボイドが発
生しないように1050℃以上の高温でフィールド酸化
を行っても、酸化膜耐圧特性の劣化等デバイス特性の劣
化を引き起こさずに素子分離構造を形成することができ
る。
As described above in detail, in the method of manufacturing a semiconductor device according to the present invention, the polysilicon film is kept at 600 ° C.
The silicon nitride film having a thickness of 100 nm to 1 is formed as described above.
Since the thickness is set to 80 nm, the element isolation structure is formed without causing deterioration of device characteristics such as deterioration of oxide film withstand voltage characteristics even if field oxidation is performed at a high temperature of 1050 ° C. or higher so that a void is not generated in the polysilicon film. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る半導体装置の製造方法に
基づいてポリバッファ−ドLOCOS素子分離構造を有
するキャパシタを製造する場合の各工程を模式的に示し
た断面図である。
FIG. 1 is a cross-sectional view schematically showing each step in the case of manufacturing a capacitor having a poly-buffered LOCOS element isolation structure based on a method of manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】酸化膜耐圧良品率とSi34 膜厚との関係を
示したグラフである。
FIG. 2 is a graph showing the relationship between the yield ratio of oxide film non-defective products and the Si 3 N 4 film thickness.

【図3】従来の半導体装置の製造方法に基づいた素子分
離構造の形成方法を模式的に示した断面図である。
FIG. 3 is a cross-sectional view schematically showing a method of forming an element isolation structure based on a conventional method of manufacturing a semiconductor device.

【図4】ポリシリコン膜にボイドが発生した状態を概略
的に示した上面図である。
FIG. 4 is a top view schematically showing a state in which a void has occurred in a polysilicon film.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 Pad酸化膜 3 ポリシリコン膜 4 Si34 膜(窒化シリコン膜) 6 フィ−ルド酸化膜 8 (活性領域と素子分離領域との)エッジ部1 Silicon substrate 2 Pad oxide film 3 Polysilicon film 4 Si 3 N 4 film (silicon nitride film) 6 Field oxide film 8 Edge part (between active region and element isolation region)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/318 B 21/76 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/318 B 21/76

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に、Pad酸化膜、ポリ
シリコン膜及び窒化シリコン膜を順次形成し、該窒化シ
リコン膜をマスクとしてフィールド酸化を行い素子分離
構造を形成する工程を含んだ半導体装置の製造方法であ
って、ポリシリコン膜を600℃以上で形成する工程
と、100〜180nmの膜厚の窒化シリコン膜を形成
する工程と、1050℃以上でフィ−ルド酸化を行う工
程とを含んでいることを特徴とする半導体装置の製造方
法。
1. A semiconductor device including a step of sequentially forming a Pad oxide film, a polysilicon film and a silicon nitride film on a silicon substrate and performing field oxidation using the silicon nitride film as a mask to form an element isolation structure. The manufacturing method includes the steps of forming a polysilicon film at 600 ° C. or higher, forming a silicon nitride film having a film thickness of 100 to 180 nm, and performing field oxidation at 1050 ° C. or higher. A method for manufacturing a semiconductor device, comprising:
JP23455794A 1994-09-29 1994-09-29 Manufacture of semiconductor device Pending JPH0897203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23455794A JPH0897203A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23455794A JPH0897203A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0897203A true JPH0897203A (en) 1996-04-12

Family

ID=16972893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23455794A Pending JPH0897203A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0897203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455735B1 (en) * 1998-06-30 2005-01-13 주식회사 하이닉스반도체 Device Separating Method of Semiconductor Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455735B1 (en) * 1998-06-30 2005-01-13 주식회사 하이닉스반도체 Device Separating Method of Semiconductor Device

Similar Documents

Publication Publication Date Title
JPS61131467A (en) Separation of semiconductor element on silicon substrate
JPH0799189A (en) Manufacture of semiconductor device
US5512509A (en) Method for forming an isolation layer in a semiconductor device
JPS6228578B2 (en)
JP2874620B2 (en) Method for manufacturing semiconductor device
US4435446A (en) Edge seal with polysilicon in LOCOS process
JPH0897203A (en) Manufacture of semiconductor device
JP3080400B2 (en) Semiconductor device
US5348906A (en) Method for manufacturing semiconductor device
JPH06163528A (en) Fabrication of semiconductor device
JP2001110782A (en) Method of manufacturing semiconductor device
JPH0744214B2 (en) Method for manufacturing semiconductor device
JPH0258778B2 (en)
JPS61276343A (en) Manufacture of semiconductor device
JPS61219148A (en) Manufacture of semiconductor device
KR0139890B1 (en) Method for manufacturing field oxide film of semiconductor device
JPH04321228A (en) Manufacture of semiconductor device
JPH061785B2 (en) Method for manufacturing bipolar semiconductor integrated circuit device
JPS61216344A (en) Manufacture of semiconductor device
JPH06295888A (en) Fabrication of semiconductor device
JPH0117256B2 (en)
JPH05218193A (en) Manufacture of semiconductor device
JPH06334117A (en) Manufacture of semiconductor device
JPH05121401A (en) Manufacture of semiconductor device
JPS62112342A (en) Formation of element isolating region