JPH0897139A - Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus - Google Patents

Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus

Info

Publication number
JPH0897139A
JPH0897139A JP22769094A JP22769094A JPH0897139A JP H0897139 A JPH0897139 A JP H0897139A JP 22769094 A JP22769094 A JP 22769094A JP 22769094 A JP22769094 A JP 22769094A JP H0897139 A JPH0897139 A JP H0897139A
Authority
JP
Japan
Prior art keywords
temperature distribution
temperature
furnace
measured
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22769094A
Other languages
Japanese (ja)
Inventor
Shoji Nakamori
昌治 中森
Naoki Nakajo
直樹 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22769094A priority Critical patent/JPH0897139A/en
Publication of JPH0897139A publication Critical patent/JPH0897139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To achieve stable crystal growth excellent in yield rate by enabling the temperature distribution adjustment within a furnace to be performed without manual operation, and enabling the temperature distribution with little distribution excellent in reproductivity to be made. CONSTITUTION: The temperature distribution within a high-temperature furnace 1 is measured with the thermocouple of a profiler 8. A personal computer 9 for control where measured temperature distribution is inputted determines the difference between the measured temperature distribution and the objective temperature distribution, and judges whether the difference is in the tolerable range or not. When the difference is not within the tolerable range, the personal computer 9 for control operates the temperature distribution modification data proportionate to the difference. It controls a temperature adjuster 6, according to this operated temperature distribution modification data. The temperature distribution adjusted by this control is measured again, and the control is repeated until the measured temperature distribution becomes the objective temperature distribution. This way, the temperature distribution of a hightemperature furnace is controlled to an objective value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボート法による化合物
半導体単結晶の製造方法および製造装置に係り、特に高
温炉内の温度分布の調整法を改善したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a compound semiconductor single crystal by the boat method, and more particularly to an improved method for adjusting the temperature distribution in a high temperature furnace.

【0002】[0002]

【従来の技術】ボート法による化合物半導体単結晶の製
造方法としては、これまで水平ブリッジマン(HB)
法、温度傾斜(GF)法等が提案され、低転位で、大型
かつ長尺な単結晶が得られるようになった。図4にGF
法を実施する化合物半導体単結晶の製造装置の従来例を
示す。高温炉1と蒸気圧制御炉2からなる電気炉を有
し、電気炉内に原料及び石英ボート3を載置された石英
アンプル4を設置する。高温炉1を加熱するヒータ5は
炉長に沿って複数の領域に分割されており、各領域で温
度調節器6によって独立した温度調節ができるようにな
っている。
2. Description of the Related Art As a method for producing a compound semiconductor single crystal by the boat method, a horizontal Bridgman (HB) method has hitherto been used.
Method, temperature gradient (GF) method, etc. have been proposed, and large and long single crystals with low dislocation have been obtained. GF in Figure 4
The conventional example of the manufacturing apparatus of the compound semiconductor single crystal which implements the method is shown. An electric furnace including a high temperature furnace 1 and a vapor pressure control furnace 2 is provided, and a quartz ampoule 4 on which a raw material and a quartz boat 3 are mounted is installed in the electric furnace. The heater 5 for heating the high-temperature furnace 1 is divided into a plurality of regions along the length of the furnace, and the temperature controller 6 can independently control the temperature in each region.

【0003】単結晶の製造は、高温炉1内を図5に示す
様な温度分布に調整した後に温度を均一に下げて行う。
この際、温度分布の調整は、図4に示す様に高温炉1内
に分布測定用熱電対7を挿入し、温度分布測定用プロフ
ァイラ8により高温炉1内を一定速度で走行させ、炉長
方向の温度をレコーダにて記録させる。この記録と希望
する温度分布形状が異なる場合には、人手により各領域
の温度調節器7の設定を変えて、再度測定を行い、希望
の温度分布形状になるまでこれを繰り返す。
The production of a single crystal is carried out by adjusting the temperature distribution in the high temperature furnace 1 as shown in FIG. 5 and then uniformly lowering the temperature.
At this time, the temperature distribution is adjusted by inserting a distribution measuring thermocouple 7 into the high temperature furnace 1 as shown in FIG. 4 and causing the temperature distribution measuring profiler 8 to travel inside the high temperature furnace 1 at a constant speed. Record the temperature in the direction with a recorder. When this recording and the desired temperature distribution shape are different, the setting of the temperature controller 7 in each area is changed manually, the measurement is performed again, and this is repeated until the desired temperature distribution shape is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
技術では、高温炉の温度分布の調整は、記録した測定結
果と、希望の温度分布形状との相違を人が判断し、経験
に基づき温度調節器の設定を調整してやらなければなら
いため、次のような欠点があった。
However, in the above-mentioned prior art, the temperature distribution of the high temperature furnace is adjusted by a person who judges the difference between the recorded measurement result and the desired temperature distribution shape, and the temperature is adjusted based on experience. Since the setting of the adjuster had to be adjusted, there were the following drawbacks.

【0005】(1)温度調整中、人が付いていなければ
ならず、煩雑で時間的ロスが大きい。 (2)温度の調整は、測定者の経験に基づくものであ
り、測定者間のバラツキが大きくなる。
(1) A person must be present during temperature adjustment, which is complicated and causes a large loss in time. (2) The adjustment of the temperature is based on the experience of the measurers, and the variation among the measurers becomes large.

【0006】(3)上記バラツキにより、結晶成長異常
の発生が生じ、歩留、品質に大きな影響を及ぼす。
(3) Due to the above variation, abnormal crystal growth occurs, which greatly affects the yield and quality.

【0007】本発明の目的は、上記した従来技術の欠点
を解消し、炉内の温度分布調整を人手をかけず行え、か
つ、再現性の良好なバラツキの少ない温度分布形成がで
き、これにより歩留の良い安定な結晶成長が得られる化
合物半導体単結晶の製造方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to adjust the temperature distribution in the furnace without human labor, and to form a temperature distribution with good reproducibility and little variation. It is an object of the present invention to provide a method for producing a compound semiconductor single crystal capable of obtaining stable crystal growth with good yield.

【0008】また、本発明の目的は、演算手段と制御手
段を設けるという簡単な構成により、炉内の温度分布の
修正を正確かつ自動で行うことができる化合物半導体単
結晶の製造装置を提供することにある。
Another object of the present invention is to provide an apparatus for producing a compound semiconductor single crystal capable of accurately and automatically correcting the temperature distribution in the furnace with a simple structure of providing a calculation means and a control means. Especially.

【0009】[0009]

【課題を解決するための手段】本発明の化合物半導体単
結晶の製造方法は、高温炉に沿って複数に分割されたヒ
ータのそれぞれに接続された各温度調節器を制御するこ
とによって高温炉内に所定の温度分布を形成する工程を
備えたボート法による化合物半導体単結晶の製造方法に
おいて、上記温度分布を調整する際に、上記高温炉の温
度分布を測定し、この測定温度分布と目標温度分布との
差が許容範囲内に入っているかどうかを判定し、許容範
囲内に入っていない場合は差に比例した温度分布修正デ
ータを演算し、上記温度分布修正データに応じて上記温
度調節器を制御するものである。
A method for producing a compound semiconductor single crystal according to the present invention comprises: controlling a temperature controller connected to each of a plurality of heaters divided along a high-temperature furnace to control the temperature inside the high-temperature furnace. In the method for producing a compound semiconductor single crystal by the boat method, which comprises a step of forming a predetermined temperature distribution, in adjusting the temperature distribution, the temperature distribution of the high temperature furnace is measured, and the measured temperature distribution and the target temperature are measured. It is determined whether the difference from the distribution is within the allowable range, and if it is not within the allowable range, temperature distribution correction data proportional to the difference is calculated, and the temperature controller is adjusted according to the temperature distribution correction data. Is to control.

【0010】本発明の化合物半導体単結晶の製造装置
は、高温炉と、高温炉に沿って複数に分割されたヒータ
の各温度を調節する温度調節器と、高温炉の温度分布を
測定する測定器と、高温炉の目標温度分布を設定する温
度設定手段と、温度分布修正データ演算手段と、上記温
度調節器を制御する制御手段とを備えた化合物半導体単
結晶の製造装置であって、上記演算手段は、上記測定器
で測定された高温炉の測定温度分布が入力され、該測定
温度分布と上記温度設定手段で設定された目標温度分布
との差が許容範囲内に入っていない場合は、上記差に比
例した値を温度分布修正データとして出力するものであ
り、上記制御手段は、上記温度分布修正データに基づい
て温度調節器を制御するものである。
The apparatus for producing a compound semiconductor single crystal according to the present invention comprises a high temperature furnace, a temperature controller for adjusting the temperature of each of the heaters divided along the high temperature furnace, and a measurement for measuring the temperature distribution of the high temperature furnace. And a temperature setting means for setting a target temperature distribution of a high temperature furnace, a temperature distribution correction data calculating means, and a control means for controlling the temperature controller, the manufacturing apparatus for a compound semiconductor single crystal, comprising: The calculation means inputs the measured temperature distribution of the high temperature furnace measured by the measuring device, and when the difference between the measured temperature distribution and the target temperature distribution set by the temperature setting means is not within the allowable range, A value proportional to the difference is output as the temperature distribution correction data, and the control means controls the temperature controller based on the temperature distribution correction data.

【0011】[0011]

【作用】測定器によって高温炉内の温度分布を測定す
る。この測定された測定温度分布を入力された演算手段
は、測定温度分布と温度設定手段によって予め設定され
ている目標温度分布との差求め、その差が許容範囲内に
入っているかどうかを判定する。
[Operation] The temperature distribution in the high temperature furnace is measured by the measuring device. The arithmetic means, to which the measured measured temperature distribution is input, finds the difference between the measured temperature distribution and the target temperature distribution preset by the temperature setting means, and determines whether the difference is within the allowable range. .

【0012】上記差が許容範囲内に入っている場合は、
測定温度分布が目標温度分布内に入っているとして温度
分布の修正は行わない。上記差が許容範囲内に入ってい
ない場合は、演算手段は上記差に比例した温度分布修正
データを演算する。この演算された温度分布修正データ
が入力された制御手段は、この温度分布修正データに応
じて温度調節器を制御する。
If the difference is within the allowable range,
The temperature distribution is not corrected because the measured temperature distribution is within the target temperature distribution. If the difference is not within the allowable range, the calculating means calculates the temperature distribution correction data proportional to the difference. The control means to which the calculated temperature distribution correction data is input controls the temperature controller according to the temperature distribution correction data.

【0013】この制御によって調節された温度分布は再
び測定され、測定温度分布が目標温度分布になるまで上
記制御は繰返される。このようにして高温炉の温度分布
は自動的に目標値に制御される。
The temperature distribution adjusted by this control is measured again, and the above control is repeated until the measured temperature distribution reaches the target temperature distribution. In this way, the temperature distribution of the high temperature furnace is automatically controlled to the target value.

【0014】[0014]

【実施例】以下、本発明の化合物半導体単結晶の製造方
法および製造装置の実施例を図面を用いて説明する。図
1は本実施例による化合物半導体単結晶の製造装置を示
す。 製造装置は、高温炉1と蒸気圧制御炉2からなる
電気炉を有し、電気炉内に原料及び石英ボート3を載置
された石英アンプル4を設置する。高温炉1を加熱する
ヒータ5は炉長に沿って複数の領域に分割されており、
各領域で温度調節器6(#1、#2、…#n)による独
立した温度調節ができるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the method and apparatus for manufacturing a compound semiconductor single crystal of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus for producing a compound semiconductor single crystal according to this example. The manufacturing apparatus has an electric furnace including a high temperature furnace 1 and a vapor pressure control furnace 2, and a quartz ampoule 4 on which a raw material and a quartz boat 3 are mounted is installed in the electric furnace. The heater 5 for heating the high temperature furnace 1 is divided into a plurality of regions along the furnace length,
In each area, the temperature controller 6 (# 1, # 2, ... #n) can independently control the temperature.

【0015】また、高温炉1内の温度分布を測定する温
度分布測定用プロファイラ8が備えられ、その分布測定
用熱電対7を高温炉1内に挿入した状態で、一定速度で
炉長方向に走行させることにより、炉長方向の温度を検
出することができるようになっている。このプロファイ
ラ8は、後述する制御用パソコン9により制御される。
また、高温炉の目標温度分布を設定する温度設定手段
であり、温度分布修正データ演算手段であり、かつ温度
調節器6を制御する制御手段でもある制御用パソコン9
が設けられる。温度分布測定用プロファイラ8および温
度調節器6はGP−IB(General Purpo
se−Interface Bus)等のインターフェ
ースを介して制御用パソコン9に接続される。なお、温
度設定手段は制御用パソコンに外付けするようにしても
よい。
Further, a temperature distribution measuring profiler 8 for measuring the temperature distribution in the high temperature furnace 1 is provided, and the thermocouple 7 for measuring the distribution is inserted in the high temperature furnace 1, and in the furnace length direction at a constant speed. By traveling, the temperature in the furnace length direction can be detected. The profiler 8 is controlled by a control personal computer 9 described later.
The control personal computer 9 is a temperature setting means for setting a target temperature distribution of the high temperature furnace, a temperature distribution correction data calculating means, and a control means for controlling the temperature controller 6.
Is provided. The profiler 8 for temperature distribution measurement and the temperature controller 6 are GP-IB (General Purpo).
It is connected to the control personal computer 9 via an interface such as a se-interface bus). The temperature setting means may be externally attached to the control personal computer.

【0016】制御用パソコン9は、温度分布測定用プロ
ファイラ8で測定された高温炉1の測定温度分布が入力
され、測定温度分布と目標温度分布との差が許容範囲内
に入っていない場合は、差に比例した値を温度分布修正
データとして各温度調節器6に出力し、温度分布修正デ
ータに基づいて温度調節器を制御するものである。
When the measured temperature distribution of the high temperature furnace 1 measured by the temperature distribution measurement profiler 8 is input to the control personal computer 9 and the difference between the measured temperature distribution and the target temperature distribution is not within the allowable range, A value proportional to the difference is output as temperature distribution correction data to each temperature controller 6, and the temperature controller is controlled based on the temperature distribution correction data.

【0017】次に、上記製造装置の機能を図2のフロー
チャートを用いて説明する。制御用パソコン9の指令に
基づいて動作した温度分布測定用プロファイラ8にて炉
内温度分布測定を開始すると、熱電対が一定の距離移動
するか、もしくは一定の時間経過する毎に温度分布測定
値を制御用パソコン9に送信し、記録し、パソコン画面
上に図3のように表示させる(ステップ201)。
Next, the function of the manufacturing apparatus will be described with reference to the flowchart of FIG. When in-furnace temperature distribution measurement is started by the temperature distribution measurement profiler 8 that has been operated based on a command from the control personal computer 9, the temperature distribution measurement value is obtained every time the thermocouple moves a fixed distance or a fixed time elapses. Is transmitted to the control personal computer 9, is recorded, and is displayed on the personal computer screen as shown in FIG. 3 (step 201).

【0018】このとき、測定点を複数の領域A、B、C
に分割可能とし、領域毎に測定点から最小2乗法により
直線近似し、その傾きを求める(ステップ202)。図
3中、黒丸はサンプリングデータであり、一点鎖線は測
定値、直線は近似値である。領域毎に目標とする傾き及
びその許容範囲は、予め制御用パソコン9により設定す
るようにしてある。目標値と測定値との差を演算し(ス
テップ203)、その差により温度分布形状の良否判定
を行う(ステップ204)。
At this time, the measurement points are set to a plurality of areas A, B, C.
Can be divided into two areas, and a linear approximation is performed for each area from the measurement points by the least squares method, and the inclination is obtained (step 202). In FIG. 3, black circles are sampling data, a chain line is a measured value, and a straight line is an approximate value. The target inclination and its allowable range for each area are set in advance by the control personal computer 9. The difference between the target value and the measured value is calculated (step 203), and the quality of the temperature distribution shape is determined based on the difference (step 204).

【0019】判定が否である場合には、制御用パソコン
9により上記差に比例した温度分布修正データを演算
し、この温度分布修正データに応じて温度調節器6を制
御して、各温度調節器6の設定温度を修正する(ステッ
プ205)。
When the determination is negative, the control personal computer 9 calculates temperature distribution correction data proportional to the difference, and the temperature controller 6 is controlled according to the temperature distribution correction data to adjust each temperature. The set temperature of the vessel 6 is corrected (step 205).

【0020】上記測定と設定温度修正とを繰り返し、目
標の傾きの温度分布形状を得た後、各ヒータの温度を徐
々に降温させて、ボートの一端に置かれた種結晶側から
ボート内の融液を単結晶化する。
After the above measurement and correction of the set temperature are repeated to obtain the temperature distribution shape of the target inclination, the temperature of each heater is gradually lowered, and the temperature inside each boat is gradually lowered from the seed crystal side placed at one end of the boat. Crystallize the melt.

【0021】このように本実施例によれば、従来のプロ
ファイラと各領域の温度調節器とを制御用パソコンに接
続し、温度分布測定結果をパソコンで記録すると共に、
パソコン内で演算し、その演算結果に応じて制御するよ
うにしたので、希望の温度分布に人手をかけずに自動で
調整することができる。
As described above, according to this embodiment, the conventional profiler and the temperature controller of each area are connected to the control personal computer, and the temperature distribution measurement result is recorded on the personal computer.
Since the calculation is performed in the personal computer and the control is performed according to the calculation result, the desired temperature distribution can be automatically adjusted without manpower.

【0022】したがって、温度調整中、無人でよいため
時間的ロスがなくなり、また温度の調整はコンピュータ
に基づくものであるからパラツキがなく、したがって、
結晶成長が正常に行われるため、歩留、品質が大幅に向
上する。
Therefore, during temperature adjustment, unattended operation eliminates time loss, and since temperature adjustment is computer-based, there is no variability.
Since the crystal growth is performed normally, the yield and quality are greatly improved.

【0023】[0023]

【発明の効果】本発明方法によれば、炉内の温度分布調
整を人手をかけず行え、かつ、再現性の良好なバラツキ
の少ない温度分布形成ができ、これにより歩留の良い安
定な結晶成長が得られる。
According to the method of the present invention, the temperature distribution in the furnace can be adjusted without human labor, and the temperature distribution can be formed with good reproducibility and with little variation. As a result, stable crystals with good yield can be obtained. Growth is obtained.

【0024】本発明装置によれば、演算手段と制御手段
を設けるという簡単な構成により、炉内の温度分布の修
正を正確かつ自動で行うことができる。
According to the apparatus of the present invention, the temperature distribution in the furnace can be corrected accurately and automatically with a simple structure in which the calculation means and the control means are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体単結晶の製造方法を実施
するための製造装置の一実施例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a manufacturing apparatus for carrying out a method for manufacturing a compound semiconductor single crystal according to the present invention.

【図2】本実施例の高温炉内の測定温度の近似値を求め
る説明図。
FIG. 2 is an explanatory diagram for obtaining an approximate value of a measured temperature in a high temperature furnace of this embodiment.

【図3】本実施例による製造装置の自動温度調節を説明
するフローチャート。
FIG. 3 is a flowchart illustrating automatic temperature adjustment of the manufacturing apparatus according to the present embodiment.

【図4】従来例の化合物半導体単結晶の製造装置の概略
構成図。
FIG. 4 is a schematic configuration diagram of an apparatus for producing a compound semiconductor single crystal of a conventional example.

【図5】従来例の炉内温度分布測定を示す説明図。FIG. 5 is an explanatory view showing a conventional temperature distribution measurement in a furnace.

【符号の説明】 1 高温炉 2 蒸気圧制御炉 3 石英ボート 4 石英アンプル 5 ヒータ 6 温度調節器 7 分布測定用熱電対 8 温度分布測定用プロファイラ(測定器) 9 制御用パソコン(温度設定手段、演算器、制御手
段)
[Explanation of Codes] 1 high temperature furnace 2 vapor pressure control furnace 3 quartz boat 4 quartz ampoule 5 heater 6 temperature controller 7 thermocouple for distribution measurement 8 profiler (measurement device) for temperature distribution measurement 9 control PC (temperature setting means, Computing unit, control means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高温炉に沿って複数に分割されたヒータの
それぞれに接続された各温度調節器を制御することによ
って高温炉内に所定の温度分布を形成する工程を備えた
ボート法による化合物半導体単結晶の製造方法におい
て、上記温度分布を調整する際に、上記高温炉の温度分
布を測定し、この測定温度分布と目標温度分布との差が
許容範囲内に入っているかどうかを判定し、許容範囲内
に入っていない場合は差に比例した温度分布修正データ
を演算し、上記温度分布修正データに応じて上記温度調
節器を制御することを特徴とする化合物半導体単結晶の
製造方法。
1. A compound by the boat method, which comprises a step of forming a predetermined temperature distribution in a high temperature furnace by controlling each temperature controller connected to each of a plurality of heaters divided along the high temperature furnace. In the method of manufacturing a semiconductor single crystal, when adjusting the temperature distribution, the temperature distribution of the high temperature furnace is measured, and it is determined whether the difference between the measured temperature distribution and the target temperature distribution is within the allowable range. A method for producing a compound semiconductor single crystal, wherein temperature distribution correction data proportional to the difference is calculated when the temperature does not fall within the allowable range, and the temperature controller is controlled according to the temperature distribution correction data.
【請求項2】高温炉と、高温炉に沿って複数に分割され
たヒータの各温度を調節する温度調節器と、高温炉の温
度分布を測定する測定器と、高温炉の目標温度分布を設
定する温度設定手段と、温度分布修正データ演算手段
と、上記温度調節器を制御する制御手段とを備えた化合
物半導体単結晶の製造装置であって、上記演算手段は、
上記測定器で測定された高温炉の測定温度分布が入力さ
れ、該測定温度分布と上記温度設定手段で設定された目
標温度分布との差が許容範囲内に入っていない場合は、
上記差に比例した値を温度分布修正データとして出力す
るものであり、上記制御手段は、上記温度分布修正デー
タに基づいて温度調節器を制御するものであることを特
徴とする化合物半導体単結晶の製造装置。
2. A high temperature furnace, a temperature controller for adjusting each temperature of a heater divided into a plurality of parts along the high temperature furnace, a measuring device for measuring a temperature distribution of the high temperature furnace, and a target temperature distribution of the high temperature furnace. A compound semiconductor single crystal manufacturing apparatus comprising temperature setting means for setting, temperature distribution correction data calculating means, and control means for controlling the temperature controller, wherein the calculating means comprises:
When the measured temperature distribution of the high temperature furnace measured by the measuring device is input, and the difference between the measured temperature distribution and the target temperature distribution set by the temperature setting means is not within the allowable range,
A value proportional to the difference is output as temperature distribution correction data, and the control means controls the temperature controller based on the temperature distribution correction data. Manufacturing equipment.
JP22769094A 1994-09-22 1994-09-22 Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus Pending JPH0897139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22769094A JPH0897139A (en) 1994-09-22 1994-09-22 Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22769094A JPH0897139A (en) 1994-09-22 1994-09-22 Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPH0897139A true JPH0897139A (en) 1996-04-12

Family

ID=16864822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22769094A Pending JPH0897139A (en) 1994-09-22 1994-09-22 Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0897139A (en)

Similar Documents

Publication Publication Date Title
US5223078A (en) Conical portion growth control method and apparatus
JPH03252388A (en) Automatic control of neck part growth of single crystal by cz method
KR101874712B1 (en) Ingot growth control apparatus and control method thereof
JPS63242991A (en) Method for controlling crystal diameter
KR101623644B1 (en) Temperature control module of the ingot growth apparatus and a control method for it
EP0294311B1 (en) Automatic control of crystal rod diameter
KR950004788B1 (en) System for controlling apparatus for growing tubular crystalline bodies
EP2071060B1 (en) Single crystal manufacturing method
US5164039A (en) Apparatus for controlling the diameter of silicon single crystal
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JPH0897139A (en) Method for manufacturing compound semiconductor single crystal and its manufacturing apparatus
KR102064617B1 (en) Ingot growing controller and ingot growing control method for it
CN112857297B (en) Single crystal rod diameter measuring device, single crystal rod growth system and method
JPH04219388A (en) Control of diameter of silicon single crystal and apparatus therefor
KR102051024B1 (en) Ingot growing temperature controller and ingot growing apparatus with it
JP2001146496A (en) Single crystal pulling method
JP2813439B2 (en) Single crystal outer diameter control method
JPH01313385A (en) Method for controlling diameter of semiconductor single crystal
JPS61122187A (en) Apparatus for pulling up single crystal
KR20170051441A (en) Single crystal production method
JPH09118585A (en) Apparatus for pulling up single crystal and method for pulling up single crystal
JP2005035823A (en) Single crystal production apparatus and single crystal production method
RU2023063C1 (en) Method of growing crystals from melt in automatic mode
JPS58145692A (en) Production of single crystal
JP2537605B2 (en) Method for producing compound semiconductor single crystal