JPH0896738A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH0896738A
JPH0896738A JP6234761A JP23476194A JPH0896738A JP H0896738 A JPH0896738 A JP H0896738A JP 6234761 A JP6234761 A JP 6234761A JP 23476194 A JP23476194 A JP 23476194A JP H0896738 A JPH0896738 A JP H0896738A
Authority
JP
Japan
Prior art keywords
current
magnetic field
sample
automatic focusing
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234761A
Other languages
Japanese (ja)
Other versions
JP3458481B2 (en
Inventor
Tatsuya Maeda
達哉 前田
Katsuhiro Sasada
勝弘 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23476194A priority Critical patent/JP3458481B2/en
Publication of JPH0896738A publication Critical patent/JPH0896738A/en
Application granted granted Critical
Publication of JP3458481B2 publication Critical patent/JP3458481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide high accuracy by performing a process of allowing a current, saturating a magnetic field of an objective lens, to flow in positive/ negative sides, before setting a proper current, so as to improve repeatability of the magnetic field by the same current value. CONSTITUTION: In accordance with a wafer information file, after a stage 8 is started to move to a measuring point, a positive exciting current, saturating a magnetic field of an objective lens 3, is set. After the excited magnetic field is stabilized, a negative current, saturating a magnetic field, is set. After control in the above, whether leading or not to in the vicinity of a stage target point is judged, to start a Z sensor when in the vicinity of the target point, and measuring height is performed, to obtain, from this result, an exciting current value set. A point of starting the Z sensor is set previously to the point where a time required for moving to the target point from the point of starting this Z sensor and a time required for stabilizing an obtained image by setting the current value from starting the Z sensor are generated in almost the same length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査電子顕微鏡における
自動焦点合わせに関する。
FIELD OF THE INVENTION The present invention relates to automatic focusing in a scanning electron microscope.

【0002】[0002]

【従来の技術】電子線測長装置と反射光の位置から試料
高さを求める高さ検出装置(以下Zセンサ)を用いた自
動焦点合わせ装置および従来の電子線測長装置の動作の
流れを説明する。
2. Description of the Related Art An automatic focusing device using an electron beam length measuring device and a height detecting device (hereinafter referred to as a Z sensor) for obtaining a sample height from the position of reflected light and a flow of operations of a conventional electron beam length measuring device are described. explain.

【0003】図1において、観察試料4へは、図示して
いない電子銃から発生される電子線1が対物レンズ3に
よって細く集束され、照射される。2X,2Yは、電子
線1を試料上で走査するための偏向コイルである。試料
4から発生した二次電子7は検出器5によって検出さ
れ、増幅器6からの出力信号を偏向コイル2X,2Yと
同期させて輝度変調して、走査電子顕微鏡の像を得てい
る。ただし、以上のコイル,レンズは電磁レンズで構成
される。また、ステージ8は、ステージ制御装置15に
より制御されるが、制御装置は外部記憶装置9に格納さ
れている、測定すべき点の座標が登録されているウェハ
情報ファイルより、測定点の座標データを受取り、しか
るべき測定点にウェハを移動することができる。このウ
ェハ情報ファイルは、ゲート作成あるいはコンタクトホ
ール作成プロセス等のウェハのプロセス毎、また、1M
メモリあるいは、4Mメモリウェハ等のウェハの種類毎
に登録しておき、測定するウェハに対応するファイルを
ウェハ毎に、測定時に操作者が外部記憶装置から呼び出
す。
In FIG. 1, an observation sample 4 is irradiated with an electron beam 1 generated from an electron gun (not shown) which is finely focused by an objective lens 3. Reference numerals 2X and 2Y are deflection coils for scanning the electron beam 1 on the sample. The secondary electrons 7 generated from the sample 4 are detected by the detector 5, and the output signal from the amplifier 6 is brightness-modulated in synchronization with the deflection coils 2X and 2Y to obtain an image of a scanning electron microscope. However, the above coils and lenses are electromagnetic lenses. The stage 8 is controlled by the stage controller 15. The controller stores the coordinate data of the measurement point from the wafer information file stored in the external storage device 9 in which the coordinates of the point to be measured are registered. Can be received and the wafer can be moved to the appropriate measurement point. This wafer information file is used for each wafer process such as gate creation or contact hole creation process
A memory or a 4M memory wafer or the like is registered for each type of wafer, and a file corresponding to a wafer to be measured is called for each wafer from an external storage device at the time of measurement.

【0004】次に、以上のような構成の装置におけるZ
センサを利用した自動焦点合わせ機構を述べる。
Next, Z in the apparatus having the above configuration
An automatic focusing mechanism using a sensor is described.

【0005】高さ検出装置は、発光ダイオードあるいは
レーザなどの光源11から放出したプローブ光を、角度
θで試料4上に集光しこの反射光の重心位置を、PSD
素子あるいは、CCDカメラなどの光位置検出器12で
検出する。PSD素子の場合、入射光の光強度の重心位
置を検出する。光学系の一例として、試料の前後に光学
レンズ13,14を配置した例を示す。この高さ検出装
置では、ウェハがあらかじめ設定した基準高さW0にあ
る時に光位置検出器に入射するプローブ光の位置w0に
対して、試料高さがδZWAF だけ変化すると、光位置検
出器に入射する光の位置がδZOPT だけ変化する。そこ
で、試料の高さ変化量δZWAF は、δZopt を検出し、
The height detector collects the probe light emitted from the light source 11 such as a light emitting diode or a laser on the sample 4 at an angle θ, and determines the position of the center of gravity of this reflected light by PSD.
It is detected by an element or an optical position detector 12 such as a CCD camera. In the case of a PSD element, the barycentric position of the light intensity of incident light is detected. As an example of the optical system, an example in which the optical lenses 13 and 14 are arranged in front of and behind the sample is shown. In this height detector, when the sample height changes by δZ WAF with respect to the position w0 of the probe light incident on the optical position detector when the wafer is at the preset reference height W0, the optical position detector changes The position of the incident light changes by δZ OPT . Therefore, the height change amount δZ WAF of the sample detects δZ opt ,

【0006】[0006]

【数1】 δZWAF =δZOPT /(M×2sinθ) …(数1) により求めることができる。ただし、Mは光学系の倍率
を示す。
## EQU1 ## δZ WAF = δZ OPT / (M × 2 sin θ) (Equation 1) However, M shows the magnification of the optical system.

【0007】一方、走査電子顕微鏡の焦点合わせは、対
物レンズ制御装置10により対物レンズ3に流す励磁電
流量を制御して、電子ビームの焦点高さを、対物レンズ
3を制御し観察試料面高さに合わせて行う。ウェハがδ
WAF の高さにある時、電子顕微鏡の像の焦点をこれに
合わせると、電子ビームの焦点位置もδZWAF になる
が、この電子ビームの焦点高さδZWAF と、対応する対
物レンズの励磁電流値δIとの関数を求めると、
On the other hand, in focusing of the scanning electron microscope, the objective lens controller 10 controls the amount of exciting current flowing through the objective lens 3 to control the focus height of the electron beam by controlling the objective lens 3 and the height of the observation sample surface. According to the situation. Wafer is δ
When the image of the electron microscope is focused on this at the height of Z WAF , the focus position of the electron beam is also δZ WAF , but the focus height of this electron beam δZ WAF and the corresponding excitation of the objective lens. When the function with the current value δI is calculated,

【0008】[0008]

【数2】 δI=f(δZWAF ) …(数2) 数1と数2の合成関数をgとすれば、高さ検出装置から
の出力δZOPT がわかれば、数3から対物レンズの励磁
電流値δIが求められる。
## EQU00002 ## .delta.I = f (.delta.Z WAF ) (Equation 2) If the composite function of Equations 1 and 2 is g, if the output .delta.Z OPT from the height detector is known, the excitation of the objective lens from Equation 3 The current value δI is obtained.

【0009】[0009]

【数3】 δI=g(δZOPT ) …(数3) そこで、数3を装置調整時に求め、保存しておけば、自
動焦点合わせ実行時に、δZopt を求め、対物電流δI
を算出し設定することで、処理が終了する。以上のZセ
ンサによる自動焦点合わせ装置の制御も対物レンズ制御
部10で行う。次に、以上のような構成の装置における
1枚の試料ウェハの従来の処理の流れを図2と以下に示
す。
Equation 3] δI = g (δZ OPT) ... ( Equation 3) Thus, determined the number 3 at the time of device adjustment, if saved, in the automatic focusing run, seeking .delta.Z opt, the objective current .delta.I
The process ends by calculating and setting. The objective lens control unit 10 also controls the automatic focusing device by the Z sensor. Next, the flow of the conventional processing of one sample wafer in the apparatus having the above configuration is shown in FIG. 2 and below.

【0010】1.試料ウェハを試料室に搬入する。1. The sample wafer is loaded into the sample chamber.

【0011】2.ウェハに対応するウェハ情報ファイル
をロードする。
2. Load the wafer information file corresponding to the wafer.

【0012】3.ウェハ情報ファイルに従いステージ座
標に対し原点補正,θ補正を行う 4.ウェハ情報に従い測定すべき座標点に移動する。
3. 3. Perform origin correction and θ correction for stage coordinates according to the wafer information file. It moves to the coordinate point to be measured according to the wafer information.

【0013】5.Zセンサによる自動焦点合わせを行
う。
5. Performs automatic focusing by the Z sensor.

【0014】(Zセンサにて高さ計測、数3にて対物電
流値を算出設定) 6.測定するパターンを見つけ測定倍率(例:5万倍以
上)に設定する。
(Height measurement by Z sensor, calculation and setting of objective current value by equation 3) 6. Find the pattern to be measured and set it to the measurement magnification (example: 50,000 times or more).

【0015】7.測定点の測長,観察を行う。7. Measure and observe the measurement points.

【0016】8.他に測定点があれば、4.〜8.を行
う。
8. If there are other measurement points, 4. ~ 8. I do.

【0017】9.ウェハを試料室から搬出する。9. The wafer is unloaded from the sample chamber.

【0018】[0018]

【発明が解決しようとする課題】本発明が解決しようと
している課題は、同一の対物電流値に対する磁場再現性
の改善と、ステージ停止後のZセンサ動作開始から動作
後、像が安定するまでの時間短縮である。
The problems to be solved by the present invention are to improve the magnetic field reproducibility for the same objective current value and to start the Z sensor operation after the stage is stopped until the image becomes stable after the operation. It saves time.

【0019】従来技術において、自動焦点合わせ精度
は、ウェハ高さ計測の精度と磁場再現性の精度に依存す
る。ここで、磁場再現性に関する問題として以下の点が
あげられた。
In the prior art, the automatic focusing accuracy depends on the accuracy of wafer height measurement and the accuracy of magnetic field reproducibility. Here, the following points were raised as problems regarding magnetic field reproducibility.

【0020】1.ウェハ高さ計測が精度良く行われたと
しても磁場再現性が良くないと、装置調整時に得られた
ウェハ高さと正焦点時の対物電流との関係(数3)が成
り立たず良好な性能が得られない。
1. Even if the wafer height is measured accurately, if the magnetic field reproducibility is not good, the relationship between the wafer height obtained when adjusting the device and the objective current at the positive focus (Equation 3) does not hold and good performance is obtained. I can't.

【0021】磁場再現性が悪くなる原因は、対物レンズ
に電磁石を応用した電磁レンズを用い、焦点合わせ時に
はこれに流れる励磁電流量を操作して、磁場制御するた
めに、磁気ヒステリシスが生じることである。
The reason why the magnetic field reproducibility is deteriorated is that a magnetic hysteresis is generated in order to control a magnetic field by using an electromagnetic lens applying an electromagnet as an objective lens and operating an exciting current amount flowing in the electromagnetic lens at the time of focusing. is there.

【0022】2.従来技術では、ウェハが測定点に停止
後、Zセンサにて高さ測定を行い、この結果から数3を
用いて設定すべき励磁電流値を算出,設定していたが、
本方法では自動焦点合わせ処理時間と,対物電流値設定
後、像が安定するまで、時間が数秒程度かかる。
2. In the prior art, after the wafer stopped at the measurement point, the height was measured by the Z sensor, and the exciting current value to be set was calculated and set from this result using Equation 3.
In this method, it takes about several seconds until the image becomes stable after the automatic focusing processing time and the setting of the objective current value.

【0023】ことが問題であった。これは自動焦点合わ
せ単体では短時間であるが、システムとして考えれば測
定点数だけ行う機能であり、処理時間の短縮を図ろうと
した場合には、大きな要素となり短縮化が強く望まれて
いることである。
That was a problem. Although this is a short time for autofocusing alone, it is a function to perform only the number of measurement points when considered as a system, and when trying to shorten the processing time, it becomes a big factor and shortening is strongly desired. is there.

【0024】[0024]

【課題を解決するための手段】以上の、第1の問題点に
おいて、磁気ヒステリシスを除去するための方法として
とられた本発明は 1.Zセンサの検出高さから算出された対物電流の設定
前に、対物レンズの磁場が飽和する励磁電流を正,負の
方向に流し、決まった磁気履歴をつくることを特徴とす
るものである。
SUMMARY OF THE INVENTION With respect to the above-mentioned first problem, the present invention adopted as a method for removing magnetic hysteresis is as follows. Before the objective current calculated from the detection height of the Z sensor is set, an exciting current that saturates the magnetic field of the objective lens is passed in the positive and negative directions to create a fixed magnetic history.

【0025】2.Zセンサの高さ検出値から求めた対物
電流値を流す前に、必ず対物レンズに対して焦点合わせ
に用いられる対物電流の可動範囲の最大値を次に最小値
を流す処理を行うこと(あるいは最初に最小値,次に最
大値)で、決まった磁気履歴をつくることを特徴とする
ものである。
2. Before passing the objective current value obtained from the height detection value of the Z sensor, be sure to perform the process of passing the maximum value of the movable range of the objective current used for focusing on the objective lens to the next minimum value (or It is characterized by creating a fixed magnetic history with the minimum value first and then the maximum value.

【0026】また、第2の問題点においてZセンサを用
いた自動焦点合わせ装置の実行時間短縮のためにとられ
た本発明は、ステージ移動中に決まった磁気履歴を形成
する上記1,2の処理を行い、ステージ停止直前に高さ
検出処理,対物電流設定まで完了し停止時には磁場が安
定な状態であり、安定した画像が得られることを特徴と
するものである。
In the second aspect of the present invention, which is taken to shorten the execution time of the automatic focusing apparatus using the Z sensor, the above-mentioned items 1 and 2 for forming a fixed magnetic history during the movement of the stage. This is characterized in that the processing is performed, the height detection processing and the objective current setting are completed immediately before the stage is stopped, and the magnetic field is in a stable state when the stage is stopped, and a stable image is obtained.

【0027】[0027]

【作用】試料高さを求めて、この高さに焦点が合うよう
に電磁レンズに励磁電流を設定する自動焦点合わせ装置
において、一定の履歴を通し磁場の再現性を良好にする
処理を行うことで、高精度化を図り、しかもこの処理を
ステージ移動中に行うことで、トータルでの処理時間を
短縮するものである。さらに、高さ検出,電磁レンズの
励磁電流設定をステージ停止直前に完了することで、処
理時間の短縮を図る。
Operation: To obtain the height of the sample and perform a process for improving the reproducibility of the magnetic field through a certain history in the automatic focusing device that sets the exciting current in the electromagnetic lens so that the height is focused. Therefore, the total processing time is shortened by improving the accuracy and performing this processing while the stage is moving. Further, the height detection and the setting of the exciting current of the electromagnetic lens are completed immediately before the stage is stopped, thereby shortening the processing time.

【0028】[0028]

【実施例】図3に、本発明の実施の手順例を示す。EXAMPLE FIG. 3 shows an example of a procedure for carrying out the present invention.

【0029】ウェハ情報ファイルに従い測定点にステー
ジを移動開始後、対物レンズの磁場が飽和する正の励磁
電流を設定する。励磁された磁場の安定後、磁場が飽和
する負の電流に設定する。この状態を図4に示す。
After moving the stage to the measurement point according to the wafer information file, a positive exciting current is set to saturate the magnetic field of the objective lens. After stabilizing the excited magnetic field, it is set to a negative current that saturates the magnetic field. This state is shown in FIG.

【0030】ただし、この方法の場合、 (1)励磁電流を設定した後に安定な磁場が得られるま
での時間がかかりすぎる。
However, in the case of this method, (1) it takes too much time until a stable magnetic field is obtained after setting the exciting current.

【0031】(2)装置に磁石が飽和する励磁電流が流
せる容量を持たせなければならないという制限がある。
(2) There is a limitation that the device must have a capacity capable of passing an exciting current to saturate the magnet.

【0032】そこで、この制御を以下のように行っても
良い。すなわち、測定点にステージを移動開始後、対物
レンズの励磁電流をレンズの制御範囲の最大値に設定
し、励磁された磁場の安定後、レンズの制御範囲の最小
値を設定する方法である。この場合、飽和磁場が得られ
る電流を設定する場合の制限項目はいずれも良好にな
る。この状態を図5に示す。
Therefore, this control may be performed as follows. That is, it is a method of setting the exciting current of the objective lens to the maximum value of the control range of the lens after starting the movement of the stage to the measurement point, and setting the minimum value of the control range of the lens after stabilizing the excited magnetic field. In this case, all the limiting items when setting the current that can obtain the saturation magnetic field are good. This state is shown in FIG.

【0033】また、いずれの場合でも電流を設定する順
番を逆にしてもかまわない。すなわち、負に設定した
後、正の電流を、あるいは最小値を設定した後最大値を
設定しても良い。ただし、この制御は、常に、同じ順に
行わなければならない。
In any case, the order of setting the currents may be reversed. That is, a positive current may be set after setting a negative value, or a maximum value may be set after setting a minimum value. However, this control must always be performed in the same order.

【0034】以上の制御後、ステージが目標点付近に到
達したかどうかを判断し、目標点付近であればZセンサ
を起動し、高さ計測を行い、この結果から、数3によ
り、励磁電流値を求め設定する。Zセンサを起動する点
は、その点から目標点に移動するのに要する時間と、Z
センサ起動から、電流値を設定し、得られる画像が安定
するのにかかる時間とがほぼ同じ程度になる点にあらか
じめ設定する。
After the above control, it is judged whether or not the stage has reached the vicinity of the target point, and if it is in the vicinity of the target point, the Z sensor is activated and the height is measured. Obtain and set the value. The point at which the Z sensor is activated is the time required to move from that point to the target point, and Z
The current value is set after the sensor is activated, and is set in advance to a point where the time required for the obtained image to stabilize becomes approximately the same.

【0035】[0035]

【発明の効果】本発明は、粒子線装置の自動焦点合わせ
装置において、対物レンズに同一励磁電流を流して得ら
れる磁場の再現性の向上による自動焦点合わせ装置の高
精度化と処理時間の短縮化が図れる。
As described above, according to the present invention, in the automatic focusing apparatus for the particle beam apparatus, the accuracy of the automatic focusing apparatus is improved and the processing time is shortened by improving the reproducibility of the magnetic field obtained by applying the same excitation current to the objective lens. Can be realized.

【0036】本発明を採用することで、自動焦点合わせ
実行時、同一の履歴を持たすことができるため、対物電
流と磁場間に一対一関係が成立し、高精度化が図れる。
By adopting the present invention, since the same history can be maintained during execution of automatic focusing, there is a one-to-one relationship between the objective current and the magnetic field, and high accuracy can be achieved.

【0037】また本発明のステージ移動中に履歴の同一
にする処理,高さ検出から自動焦点合わせまでをステー
ジ停止までに終了させる処理を行うことで従来の方法で
は、ステージが停止してから行っていたこれらの実行時
間を短縮できる。仮にこの実行時間に3秒要しており、
従来の装置で1枚のサンプル内5点の測長を行うのに3
分かかっていたとすれば、本発明により 3秒×5点=15秒,15秒/3分×100=8.3
(%) となり、約8%の処理時間の短縮化が図れる。
Further, according to the conventional method, the history is made the same during movement of the stage of the present invention, and the process from height detection to automatic focusing is completed before the stage is stopped. The execution time of these can be shortened. Assuming this execution time is 3 seconds,
3 to measure 5 points in one sample with conventional equipment
If it takes minutes, 3 seconds × 5 points = 15 seconds, 15 seconds / 3 minutes × 100 = 8.3 according to the present invention.
(%), And the processing time can be shortened by about 8%.

【図面の簡単な説明】[Brief description of drawings]

【図1】高さ検出装置を用いた自動焦点合わせ装置と走
査電子顕微鏡のブロック図。
FIG. 1 is a block diagram of an automatic focusing device using a height detection device and a scanning electron microscope.

【図2】従来の装置における1枚の試料ウェハの従来の
処理のフローチャート。
FIG. 2 is a flowchart of conventional processing of one sample wafer in a conventional apparatus.

【図3】本発明による1枚の試料ウェハの処理のフロー
チャート。
FIG. 3 is a flowchart of processing one sample wafer according to the present invention.

【図4】磁場が飽和するまで対物電流を流す場合の磁気
履歴特性図。
FIG. 4 is a magnetic hysteresis characteristic diagram when an objective current is passed until the magnetic field is saturated.

【図5】対物電流の可変範囲の最大,最小の電流を流す
場合の磁気履歴特性図。
FIG. 5 is a magnetic hysteresis characteristic diagram when the maximum and minimum currents in the variable range of the objective current are passed.

【符号の説明】[Explanation of symbols]

1…電子線、2X,2Y…X及びYの偏向コイル、3…
対物レンズ、4…試料、5…検出器、6…増幅器、7…
二次電子、8…ステージ、9…外部記憶装置、10…対
物レンズ制御装置、11…光源、12…光位置検出器、
13,14…光学レンズ、15…ステージ制御装置。
1 ... Electron beam, 2X, 2Y ... X and Y deflection coils, 3 ...
Objective lens, 4 ... Sample, 5 ... Detector, 6 ... Amplifier, 7 ...
Secondary electron, 8 ... Stage, 9 ... External storage device, 10 ... Objective lens control device, 11 ... Light source, 12 ... Optical position detector,
13, 14 ... Optical lens, 15 ... Stage control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】プローブ光を試料表面に照射し、反射光の
位置から試料高さを求める高さ検出装置を用いて検出し
た高さから、電磁コイルを用いた対物レンズに対してあ
らかじめ控えておいたテーブルあるいは近似式から適当
な励磁電流を求めて焦点合わせを行う自動焦点合わせ装
置において、適当な電流を設定する前に、必ず前記対物
レンズの磁場が飽和する電流を正側と負側に流す処理を
行うことで、同一電流値での磁場の再現性を良好にする
ことを特徴とする自動焦点合わせ装置。
1. A surface of a sample is irradiated with probe light and the height of the sample is determined from the position of the reflected light. In an automatic focusing device that performs focusing by obtaining an appropriate exciting current from the table or an approximate expression, be sure to set the current at which the magnetic field of the objective lens is saturated to the positive side and the negative side before setting the appropriate current. An automatic focusing device characterized by improving the reproducibility of a magnetic field at the same current value by performing a flowing process.
【請求項2】請求項1において、前記検出装置の高さ検
出値から求めた対物電流値を流す前に、必ず前記対物レ
ンズに対して焦点合わせに用いられる対物電流の可動範
囲の最大値と最小値を流す処理を行うことで、同一励磁
電流での磁場の再現性を良好にする自動焦点合わせ装
置。
2. The maximum value of the movable range of the objective current used for focusing with respect to the objective lens, before flowing the objective current value obtained from the height detection value of the detection device according to claim 1. An automatic focusing device that improves the reproducibility of the magnetic field with the same excitation current by performing the process of flowing the minimum value.
【請求項3】請求項1において、この動作を試料が測定
点へ移動している最中に行い完了する自動焦点合わせ装
置。
3. The automatic focusing device according to claim 1, wherein the operation is completed while the sample is moving to the measurement point.
【請求項4】請求項1または2において、高さ検出動作
を、試料が測定点付近まで移動した時に開始し、終了さ
せ、測定点に到達した時点で、対物電流に流す適切な励
磁電流値の計算と設定とを完了する自動焦点合わせ装
置。
4. The height detection operation according to claim 1, which is started and ended when the sample moves to the vicinity of the measurement point, and when the measurement point is reached, an appropriate excitation current value to be supplied to the objective current. An auto-focusing device that completes the calculations and settings of.
JP23476194A 1994-09-29 1994-09-29 Automatic focusing device Expired - Lifetime JP3458481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23476194A JP3458481B2 (en) 1994-09-29 1994-09-29 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23476194A JP3458481B2 (en) 1994-09-29 1994-09-29 Automatic focusing device

Publications (2)

Publication Number Publication Date
JPH0896738A true JPH0896738A (en) 1996-04-12
JP3458481B2 JP3458481B2 (en) 2003-10-20

Family

ID=16975947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23476194A Expired - Lifetime JP3458481B2 (en) 1994-09-29 1994-09-29 Automatic focusing device

Country Status (1)

Country Link
JP (1) JP3458481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108079A (en) * 1998-02-06 2000-08-22 Hitachi, Ltd. Method for measuring crystal defect and equipment using the same
JP2007073380A (en) * 2005-09-08 2007-03-22 Hitachi High-Technologies Corp Scanning electron microscope and method of controlling focus thereof
JP2008192521A (en) * 2007-02-07 2008-08-21 Hitachi High-Technologies Corp Charged particle beam device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845623B1 (en) * 2011-02-17 2016-12-21 Mitsubishi Electric Corporation Particle beam therapy system
US20230230796A1 (en) 2020-07-03 2023-07-20 Hitachi High-Tech Corporation Charged particle beam device, and method for adjusting image capturing conditions in said charged particle beam device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108079A (en) * 1998-02-06 2000-08-22 Hitachi, Ltd. Method for measuring crystal defect and equipment using the same
JP2007073380A (en) * 2005-09-08 2007-03-22 Hitachi High-Technologies Corp Scanning electron microscope and method of controlling focus thereof
JP4537297B2 (en) * 2005-09-08 2010-09-01 株式会社日立ハイテクノロジーズ Scanning electron microscope and focus control method for scanning electron microscope
JP2008192521A (en) * 2007-02-07 2008-08-21 Hitachi High-Technologies Corp Charged particle beam device
US7847249B2 (en) 2007-02-07 2010-12-07 Hitachi High-Technologies Corporation Charged particle beam apparatus

Also Published As

Publication number Publication date
JP3458481B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JPH09184714A (en) Pattern dimension measuring method
US10566172B2 (en) Charged particle beam apparatus and method for adjusting imaging conditions for the same
US7705298B2 (en) System and method to determine focus parameters during an electron beam inspection
JP2001052642A (en) Scanning electron microscope and micro-pattern measuring method
JP3458481B2 (en) Automatic focusing device
JP5134826B2 (en) Charged particle beam equipment
TWI384216B (en) Checking method of charged particle line and inspection method of charged particle
CN207020390U (en) One kind scanning particle beam microscopy system
JPH0353439A (en) Electron optical lens barrel
JP2001076634A (en) Focused ion beam device
JP3218466B2 (en) Exposure method and apparatus
CN107329246A (en) One kind scanning particle beam microscopy system and focusing controlling method
JPH1031969A (en) Scanning electron microscope with automatic focusing function
KR20070121524A (en) Electron-beam size measuring apparatus and size measuring method with electron beams
JPS589545B2 (en) How to get the most out of your day
JP4106707B2 (en) Hysteresis correction method for scanning electron microscope and scanning electron microscope
JP2582151B2 (en) Electron beam center axis automatic adjustment device
JP3488075B2 (en) Thin film sample preparation method and system
JPS6388741A (en) Automatic focus device
JP2005010665A (en) Automatic focusing device for microscope and automatic focusing method for microscope
JPH04522Y2 (en)
JPS62110241A (en) Probe current controlling method for electron microscope and device thereof
JPH0314219A (en) Electron beam lithography device
JPH0370340B2 (en)
JPH0274027A (en) Pattern drawing process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

EXPY Cancellation because of completion of term