JPH0896637A - Electric wire covering device having composite vertical type cooling device - Google Patents

Electric wire covering device having composite vertical type cooling device

Info

Publication number
JPH0896637A
JPH0896637A JP23163494A JP23163494A JPH0896637A JP H0896637 A JPH0896637 A JP H0896637A JP 23163494 A JP23163494 A JP 23163494A JP 23163494 A JP23163494 A JP 23163494A JP H0896637 A JPH0896637 A JP H0896637A
Authority
JP
Japan
Prior art keywords
cooling
electric wire
water
tank
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23163494A
Other languages
Japanese (ja)
Other versions
JP3060361B2 (en
Inventor
Shuji Mimuro
修二 三室
Hiroaki Ichikawa
寛明 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6231634A priority Critical patent/JP3060361B2/en
Publication of JPH0896637A publication Critical patent/JPH0896637A/en
Application granted granted Critical
Publication of JP3060361B2 publication Critical patent/JP3060361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE: To make possible reduction in the occupying area of an equipment and small lot multi-production by towing and moving a hot melt covering-applied conductor in a noncontact condition to a constitutive member in a composite vertical type cooling device, and performing cooling processing by cooling water. CONSTITUTION: A conductor 36 is passed through a hopper 32 to store a resin material 36 by a first roller 33, and is sent to an extruder 30, and is formed as a covered electric wire 40 by performing hot melt covering work, and is sent to a composite vertical type cooling device 2. In this device 2, first of all, the covered electric wire 40 is sent to a cylindrical first cooling tank 3 having a water reservoir by a first pulley 6, and is sent to a second cooling tank 4 storing cooling water 4A through a restriction nozzle. At this time, the conductor 36 and the covered electric wire 40 are towed and moved in a noncontact condition to a constitutive member by the first roller 33 and the first pulley 6. Next, the covered electric wire 40 is upward reversed by a third pulley 8, and is sent to an upper water remover 11 through the second cooling tank 4 by a second pulley 7 after the cooling water is jetted by a shower 9, and the covered electric wire 40 dried by the water remover 11 is sent to a winder through a second roller 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は押出し加工により導体を
被覆する電線被覆装置、とりわけ複数個の冷却槽から構
成される複合縦型冷却装置を備えた電線被覆装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric wire coating apparatus for coating a conductor by extrusion processing, and more particularly to an electric wire coating apparatus equipped with a composite vertical cooling device composed of a plurality of cooling tanks.

【0002】[0002]

【従来の技術】従来、電線被覆工程においては熱溶融被
覆の内でも押出被覆が一般的に採用されている。これは
熱可塑性樹脂を加熱溶融状態で導体の表面に塗着させ、
これを冷却凝固させて連続した被覆面を形成させるもの
である。当初におけるこのような電線被覆装置は、被覆
電線の冷却槽に横形、すなわち水平方向に伸びた冷却水
槽を採用し、高温の被覆電線を横形冷却槽中に水平方向
に渡して水平移動させ、冷却していた。しかし、横形冷
却槽は設置スペースが大きく、経済効率において極めて
不利であった。そこで、スペース低減を主たる目的とし
て、横形冷却槽の一部を縦形冷却槽(すなわち垂直方向
に伸びた冷却水槽)に置き換えた構成が提案された(特
開平2−278617号公報)。このような構成による
従来の電線被覆装置の側面図を、図6に示す。
2. Description of the Related Art Heretofore, extrusion coating has been generally adopted among heat melting coatings in the electric wire coating process. This is because the thermoplastic resin is applied to the surface of the conductor in a molten state by heating,
This is cooled and solidified to form a continuous coated surface. Initially, such a wire coating device adopted a horizontal type, that is, a cooling water tank extending in the horizontal direction in the cooling tank of the coated wire, and horizontally moving the high-temperature coated wire in the horizontal cooling tank by horizontally moving it. Was. However, the horizontal cooling tank has a large installation space and is extremely disadvantageous in terms of economic efficiency. Therefore, for the main purpose of reducing the space, a configuration has been proposed in which a part of the horizontal cooling tank is replaced with a vertical cooling tank (that is, a cooling water tank extending in the vertical direction) (JP-A-2-278617). FIG. 6 shows a side view of a conventional electric wire coating device having such a configuration.

【0003】同図に示す電線被覆装置では、導体36が
エクストルーダ30に導入される。エクストルーダ30
では、クロスヘッド31にて図示しないホッパーから投
入された熱可塑性樹脂を加熱溶融状態にして、導体36
表面に塗着させて押出被覆を行なう。被覆処理後の高温
状態(例えば摂氏170度前後)の電線は、給水管56
から給水される柱状の縦型水槽55で1次冷却される。
ついで電線はプーリ59を経て方向変換され、長尺の横
型水槽57に導入され、この横型水槽57に貯溜された
冷却水58中を横方向に移動する間に2次冷却されて、
被覆が凝固定着された被覆電線40が製造される構成に
なっている。
In the electric wire coating device shown in FIG. 1, a conductor 36 is introduced into the extruder 30. Extruder 30
Then, the cross head 31 heats and melts the thermoplastic resin charged from the hopper (not shown), and the conductor 36
It is applied to the surface and extrusion coated. The electric wire in the high temperature state (for example, around 170 degrees Celsius) after the coating treatment is the water supply pipe 56.
Primary cooling is performed in a columnar vertical water tank 55 supplied with water.
Then, the electric wire is redirected through the pulley 59, introduced into the long horizontal water tank 57, and secondarily cooled while moving laterally in the cooling water 58 stored in the horizontal water tank 57,
The coated electric wire 40 having the coating solidified and fixed is manufactured.

【0004】[0004]

【発明が解決しようとする課題】前記のように従来の電
線被覆装置では、押出成形後の高温度の被覆電線を、縦
型および横型冷却水槽に浸し、該冷却水槽内をそれぞれ
垂直および水平方向に移動させる過程で冷却していた。
しかしながら、最近、押出速度が上昇するにつれて、そ
れに伴いさらに長寸法の横型冷却水槽が要求されるに至
り、よって電線被覆装置の設置占有面積が増大してコス
ト増加の原因となっていた。
As described above, in the conventional electric wire coating apparatus, the high temperature coated electric wire after extrusion is dipped in the vertical and horizontal cooling water tanks, and the inside of the cooling water tank is vertically and horizontally oriented, respectively. It was cooled in the process of moving to.
However, in recent years, as the extrusion speed has increased, a horizontal cooling water tank having a longer dimension has been required accordingly, so that the installation occupying area of the electric wire coating device increases, which causes a cost increase.

【0005】さらに、水平方向に冷却距離が伸びる結果
として、電線を撓ませることなく張り続けるためにより
強力な電線牽引を行わねばならず、強力な駆動源を備え
たキャプスタンが、しかも複数基必要となり、設備コス
トとともに運転コストも増加するという欠点があった。
加えて前記の強力な電線牽引の結果、十分に冷却定着し
ていない被覆部に強力な力がかかることによる、被覆部
の変形という好ましくない事態をまねくおそれもあっ
た。また一方において、最近市場から多種少量生産が要
求される場合が増大しているが、従来の構成は多種少量
生産に伴う操業条件の頻繁な変更に必ずしも適するもの
とはいえなかった。
Further, as a result of the extension of the cooling distance in the horizontal direction, stronger electric wire pulling must be performed in order to keep the electric wire stretched without being bent, and a plurality of capstans having a strong drive source are required. Therefore, there is a drawback that the operating cost increases together with the equipment cost.
In addition, as a result of the above-mentioned strong electric wire pulling, a strong force is applied to the covering portion that has not been sufficiently cooled and fixed, which may lead to an undesirable situation of deformation of the covering portion. On the other hand, recently, there are increasing cases where various kinds of small-quantity production are required from the market, but it cannot be said that the conventional configuration is not always suitable for frequent changes of operating conditions accompanying the various kinds of small-quantity production.

【0006】すなわち、従来の縦形冷却水槽と横型冷却
水槽のコンビネーション構成においては、設備コストや
運転コストをはじめ設置面積の増大を抑えることが難し
い。また電線の変形を回避することが困難である。さら
に、多種少量生産に対応して操業条件を変更するのに困
難が伴うものであった。そこで1基の縦型冷却水槽から
なる構成が試みられたが、このような従来の縦型冷却水
槽にあっては、十分な冷却効果が期待できず、結局縦型
冷却水槽が巨大化して、本来の目的である設置面積減少
の実現が困難といった問題があった。
That is, in the conventional combination structure of the vertical cooling water tank and the horizontal cooling water tank, it is difficult to suppress an increase in installation area including facility cost and operating cost. In addition, it is difficult to avoid deformation of the electric wire. Furthermore, it has been difficult to change the operating conditions in response to a variety of small-quantity production. Therefore, a configuration consisting of one vertical cooling water tank was tried, but in such a conventional vertical cooling water tank, a sufficient cooling effect cannot be expected, and eventually the vertical cooling water tank becomes huge, There was a problem that it was difficult to achieve the original purpose of reducing the installation area.

【0007】本発明は上記状況に鑑みてなされたもの
で、複合縦型冷却装置を備え、設置占有面積の減少と多
品種少量生産を可能とする、高処理能力の電線被覆装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a wire coating device having a high processing capacity, which is provided with a composite vertical cooling device and which enables a reduction in the installation occupation area and a high-mix low-volume production. With the goal.

【0008】[0008]

【課題を解決するための手段】上記課題を達成するため
本発明に係る複合縦型冷却装置を備えた電線被覆装置
は、導体に被覆を施して被覆電線とする電線被覆手段
と、前記被覆電線が垂直方向に通過可能な水溜を備えた
第1冷却手段と、該第1冷却手段下端に配設された絞り
込み手段と、前記第1冷却手段を経由した被覆電線が垂
直方向に通過可能な冷却水を貯溜した第2冷却手段と、
前記導体ならびに被覆電線を前記各手段の構成部材に無
接触に支持して垂直方向に移動させる電線支持移動手段
とを備え、前記第1冷却手段ならびに前記第2冷却手段
を備えて複合縦型冷却装置を構成したことを特徴とす
る。
In order to achieve the above object, an electric wire coating device provided with a composite vertical cooling device according to the present invention is an electric wire coating means for coating a conductor to form a coated electric wire, and the coated electric wire. A first cooling means having a water passage through which the vertical passage can pass, a narrowing means disposed at the lower end of the first cooling means, and a cooling through which the covered electric wire passing through the first cooling means can pass in the vertical direction. Second cooling means for storing water,
An electric wire supporting and moving means for supporting the conductor and the covered electric wire on the constituent members of the respective means in a non-contact manner and moving the electric wire in the vertical direction. It is characterized in that the device is configured.

【0009】あるいは、前記第1冷却手段ならびに第2
冷却手段を同一容器内に配設して構成したことを特徴と
する。さらに、前記電線被覆手段をエクストルーダで、
前記第1冷却手段を第1冷却槽で、前記絞り込み手段を
ノズルで、前記第2冷却手段を第2冷却槽で、前記電線
支持移動手段を第1ローラおよび第1プーリで、それぞ
れ構成したことを特徴とする。あるいは、前記第1ロー
ラおよび前記第1プーリ間に前記第1冷却手段を配設
し、該第1冷却手段と該第1プーリ間に被覆電線を縦方
向に保持する電線保持手段を設けて構成したことを特徴
とする。
Alternatively, the first cooling means and the second cooling means
The cooling means is arranged in the same container. Further, the electric wire coating means is an extruder,
The first cooling means is a first cooling tank, the narrowing means is a nozzle, the second cooling means is a second cooling tank, and the wire supporting and moving means is a first roller and a first pulley. Is characterized by. Alternatively, the first cooling means is arranged between the first roller and the first pulley, and wire holding means for holding the covered wire in the vertical direction is provided between the first cooling means and the first pulley. It is characterized by having done.

【0010】また、前記第2冷却手段から出た被覆電線
を、牽引する牽引手段を設けて構成したことを特徴とす
る。また、第1プーリが、前記第1冷却手段を経由した
被覆電線を周縁溝で巻支する大径プーリであり、かつ該
第1プーリは少なくとも一部分が前記第2冷却手段の貯
溜する冷却水に浸漬されて回転可能に構成されたことを
特徴とする。
Further, it is characterized in that a traction means for tracting the covered electric wire coming out of the second cooling means is provided. Further, the first pulley is a large-diameter pulley that winds the covered electric wire passing through the first cooling means in a peripheral groove, and at least a part of the first pulley is used for cooling water stored in the second cooling means. It is characterized in that it is immersed and rotatable.

【0011】さらに、被覆電線を、第2冷却槽に複数回
浸漬して通過させ冷却する構成としたことを特徴とす
る。また、前記第1冷却槽を経由した水を第2冷却槽に
注入する構成としたことを特徴とする。あるいは、第3
冷却手段を経由した水を第2冷却槽に注入する構成とし
たことを特徴とする。また、前記第2冷却槽に並設さ
れ、該第2冷却槽の貯留する冷却水を抽出して冷却した
のち該第2冷却槽に還流させる冷却水冷却器を備えたこ
とを特徴とする。また、前記第1冷却槽を経由した水を
第2冷却槽に注入せず複合縦型冷却装置外に放出させる
構成としたことを特徴とする。
Further, the invention is characterized in that the covered electric wire is immersed in the second cooling tank a plurality of times and passed therethrough to be cooled. Further, it is characterized in that the water that has passed through the first cooling tank is injected into the second cooling tank. Alternatively, the third
It is characterized in that the water that has passed through the cooling means is injected into the second cooling tank. In addition, a cooling water cooler that is provided in parallel with the second cooling tank and that recirculates to the second cooling tank after extracting and cooling the cooling water stored in the second cooling tank is provided. Further, it is characterized in that the water that has passed through the first cooling tank is discharged to the outside of the composite vertical cooling device without being injected into the second cooling tank.

【0012】[0012]

【作用】本発明に係る複合縦型冷却装置を備えた電線被
覆装置では、まず導体がエクストルーダによって熱溶融
被覆加工を施され、熱溶融被覆加工直後の高温の被覆電
線が、まず複合縦型冷却装置内の上下に伸びる第1冷却
槽の上方から、該第1冷却槽の壁部に接触せぬよう導入
される。ついで高温の被覆電線が、第1冷却槽内の水柱
内を下方に移動される過程で冷却され、下端部に設けた
ノズルの開口から装置底部の第2冷却槽側に導出され
る。さらに装置底部の第2冷却槽においても、被覆電線
は水槽中で上下方向に移動されて、冷却が続行される。
さらに第3冷却手段によっても、上下方向に展索された
被覆電線が水の噴射や滴下を受けて冷却される。すなわ
ち、高温の被覆電線の冷却は、電線の上下方向移動にお
いて実行される構成となっている。この構成によって、
電線は重力にしたがい最小限の動力で撓むことなく上下
方向に配索されるから、強力な電線牽引の必要がなくな
る。ゆえに未だ十分に冷却定着されていない被覆部に強
力な力がかかることがないから、被覆部を変形させるこ
とがない。さらに少ないスペースにも拘わらず、高温の
被覆電線の冷却が効果的になされ、よって縦型冷却水槽
を用いた高効率の冷却効果が実現される。
In the wire coating apparatus equipped with the composite vertical cooling device according to the present invention, the conductor is first subjected to the hot melt coating process by the extruder, and the high temperature coated wire immediately after the hot melt coating process is first subjected to the composite vertical cooling. It is introduced from above the first cooling tank extending vertically in the apparatus so as not to contact the wall portion of the first cooling tank. Then, the high-temperature covered electric wire is cooled in the process of moving downward in the water column in the first cooling tank, and is led out to the second cooling tank side at the bottom of the device from the opening of the nozzle provided at the lower end. Further, also in the second cooling tank at the bottom of the apparatus, the covered electric wire is moved vertically in the water tank to continue cooling.
Further, also by the third cooling means, the covered electric wire extended in the vertical direction is cooled by the jetting or dropping of water. That is, the cooling of the high-temperature covered electric wire is performed in the vertical movement of the electric wire. With this configuration,
The wires are routed vertically with minimum force according to gravity without bending, so that strong wire traction is not required. Therefore, a strong force is not applied to the covering portion that has not been sufficiently cooled and fixed, so that the covering portion is not deformed. Despite the smaller space, the high-temperature coated electric wire is effectively cooled, so that a highly efficient cooling effect using the vertical cooling water tank is realized.

【0013】[0013]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。先ず、この発明に係る複合縦型冷却装置を
備えた電線被覆装置各部分の構成を説明し、ついでそれ
らの作用を説明する。図1は本発明に係る複合縦型冷却
装置を備えた電線被覆装置の一実施例の全体構成を示す
断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, the configuration of each part of the electric wire coating device provided with the composite vertical cooling device according to the present invention will be described, and then the actions thereof will be described. FIG. 1 is a cross-sectional view showing the overall configuration of an embodiment of an electric wire coating device including a composite vertical cooling device according to the present invention.

【0014】同図で、複合縦型冷却装置を備えた電線被
覆装置1は、導体36が巻かれたサプライドラム35
と、導体36をガイドする第1ローラ33と、樹脂材3
8が投入貯溜されるホッパー32ならびに導体36に被
覆を施す縦形クロスヘッド31を有するエクストルーダ
30を備える。エクストルーダ30は電線被覆手段の具
現例である。またエクストルーダ30下端の出口から下
方には、エクストルーダ30から放出された被覆電線4
0の外径をチェックする外測計37が配設されている。
さらに、被覆電線40を冷却する複合縦型冷却装置2
と、複合縦型冷却装置2から出た、冷却水で濡れた状態
の被覆電線を導入して乾燥させる除水器11と、乾燥後
の被覆電線をガイドする第2ローラ34を備える。
In FIG. 1, the electric wire coating device 1 equipped with the composite vertical cooling device has a supply drum 35 around which a conductor 36 is wound.
, The first roller 33 for guiding the conductor 36, and the resin material 3
An extruder 30 having a vertical crosshead 31 for coating a hopper 32 in which 8 is charged and stored and a conductor 36 is provided. The extruder 30 is an example of an electric wire coating means. In addition, from the outlet at the lower end of the extruder 30, downwardly, the covered electric wire 4 discharged from the extruder 30
An external measuring instrument 37 for checking the outer diameter of 0 is provided.
Further, the composite vertical cooling device 2 for cooling the covered electric wire 40
And a water remover 11 for introducing and drying the covered electric wire wet from the composite vertical cooling device 2 in the cooling water, and a second roller 34 for guiding the dried covered electric wire.

【0015】図2は、複合縦型冷却装置2の一部切欠斜
視図である。同図において、複合縦型冷却装置2は直方
体の容器であり、該容器内に、被覆電線40を通過させ
る水溜を内部に備え、垂直に立設された筒状(円管状)
の第1冷却槽3(第1冷却手段)と、該第1冷却槽3下
端に配設されたノズル3A(絞り込み手段)と、前記第
1冷却槽3の下方側に形成され、冷却水4Aを貯溜する
第2冷却槽4(第2冷却手段)と、この冷却水4Aに少
なくとも一部分が浸された同心からなる大径の第1プー
リ6ならびに比較的小径の第2プーリ7と、前記両プー
リ上方に対向して配設された、第2プーリ7と略同径の
第3プーリ8を備える。さらに容器上方から容器内の各
プーリ6、7並びに各プーリ6、7に係合された被覆電
線40に冷却水を噴射させるシャワー9(第3冷却手
段)を備える。ここで、前記第1冷却槽3は第1冷却手
段の、また前記ノズル3Aは絞り込み手段の、また前記
第2冷却槽4は第2冷却手段の、それぞれ具現例であ
る。
FIG. 2 is a partially cutaway perspective view of the composite vertical cooling device 2. In the figure, the composite vertical cooling device 2 is a rectangular parallelepiped container, and a vertically-arranged cylindrical (circular tubular) container is provided with a water reservoir for passing the covered electric wire 40 therein.
Of the first cooling tank 3 (first cooling means), a nozzle 3A (narrowing means) arranged at the lower end of the first cooling tank 3, and a cooling water 4A formed below the first cooling tank 3. A second cooling tank 4 (second cooling means) for storing water, a large-diameter first pulley 6 and a relatively small-diameter second pulley 7 which are concentric and at least partially immersed in the cooling water 4A; A third pulley 8 having a diameter substantially the same as that of the second pulley 7 is provided so as to be opposed to the upper side of the pulley. Further, a shower 9 (third cooling means) for spraying cooling water from above the container to the pulleys 6 and 7 in the container and the covered electric wire 40 engaged with the pulleys 6 and 7 is provided. Here, the first cooling tank 3 is a first cooling means, the nozzle 3A is a narrowing means, and the second cooling tank 4 is a second cooling means.

【0016】第1冷却槽3は、垂直に立ち上げられた筒
状体で、その軸方向略中央の縦壁に冷却水給水管10が
取付けられて給水され、この結果、第1冷却槽3内に水
溜が形成されている。第2冷却槽4は、複合縦型冷却装
置2を形成する容器の下底部を槽壁として容器と一体に
形成されている。したがって第1プーリ6と第2プーリ
7の軸は、複合縦型冷却装置2を形成する容器の縦壁に
よって支持されている。また前記第2冷却槽4は、複合
縦型冷却装置2を形成する容器と別体に、上端が開放さ
れた直方体槽として形成することも可能である。この別
体構成の場合には、直方体槽が複合縦型冷却装置2の容
器底部に配設される。このように本実施例では、第1冷
却槽3と第2冷却槽4が同一容器内に配設されて成る。
The first cooling tank 3 is a cylindrical body which is vertically raised, and a cooling water supply pipe 10 is attached to a vertical wall approximately in the center in the axial direction to supply water. As a result, the first cooling tank 3 is provided. A water reservoir is formed inside. The second cooling tank 4 is formed integrally with the container with the lower bottom portion of the container forming the composite vertical cooling device 2 as a tank wall. Therefore, the shafts of the first pulley 6 and the second pulley 7 are supported by the vertical wall of the container forming the composite vertical cooling device 2. The second cooling tank 4 can also be formed as a rectangular parallelepiped tank having an open upper end, separately from the container forming the composite vertical cooling device 2. In the case of this separate structure, a rectangular parallelepiped tank is arranged at the bottom of the container of the composite vertical cooling device 2. Thus, in this embodiment, the first cooling tank 3 and the second cooling tank 4 are arranged in the same container.

【0017】第1冷却槽3底部に配設される前記ノズル
3Aは、挿通される被覆電線よりも径の大なる開口をそ
の上下端に有する。多種少量生産に適合性を持たせるた
めに、ノズル3Aは種々の径の電線に対応できる構成で
あることが望ましい。図3は、このような構成のノズル
の一実施例を示すもので、ノズルは複数枚のノズル板を
積層して構成される。同図で、ノズル3Aは下端開口4
3Bから上端開口42Bに向かい徐々に径を狭めるノズ
ル孔44Bを有するノズル板41Bの上に、下端開口4
3Aから上端開口42Aに向かい徐々に径を狭めるノズ
ル孔44Aを有するノズル板41Aが重ねられる。ここ
でノズル板41Bの上端開口42Bの径と、ノズル板4
1Aの下端開口43Aの径とは等しく構成される。
The nozzle 3A arranged at the bottom of the first cooling tank 3 has openings at the upper and lower ends thereof having a diameter larger than that of the covered electric wire to be inserted. It is desirable that the nozzle 3A has a configuration capable of supporting electric wires of various diameters in order to have compatibility with various types of small-quantity production. FIG. 3 shows an example of a nozzle having such a configuration, and the nozzle is constructed by laminating a plurality of nozzle plates. In the figure, the nozzle 3A has a lower end opening 4
3B to the upper end opening 42B, the lower end opening 4 is provided on the nozzle plate 41B having the nozzle hole 44B whose diameter is gradually narrowed.
A nozzle plate 41A having a nozzle hole 44A whose diameter gradually decreases from 3A toward the upper end opening 42A is superposed. Here, the diameter of the upper end opening 42B of the nozzle plate 41B and the nozzle plate 4
The diameter is equal to that of the lower end opening 43A of 1A.

【0018】太い電線を挿通させる場合は、上にあるノ
ズル板41Aを除去して構成し、逆に細い電線を挿通さ
せる場合は、ノズル板41Bの上にノズル板41Aを取
付けて構成する。ノズル板41Bへのノズル板41Aの
取付けは、ネジ49をノズル板41Aの螺孔48Aおよ
びノズル板41Bの螺孔48Bに螺挿してなされる。こ
のように、それぞれ開口径が異なる複数枚のノズル板を
組み合わせるノズル構成とすることで、任意の太さの電
線に対応させることが可能になる。
When a thick electric wire is inserted, the nozzle plate 41A located above is removed, and when a thin electric wire is inserted, the nozzle plate 41A is attached on the nozzle plate 41B. The nozzle plate 41A is attached to the nozzle plate 41B by screwing a screw 49 into the screw hole 48A of the nozzle plate 41A and the screw hole 48B of the nozzle plate 41B. In this way, by adopting a nozzle configuration in which a plurality of nozzle plates having different opening diameters are combined, it is possible to correspond to an electric wire having an arbitrary thickness.

【0019】図1に戻って、前記第1ローラ33は、後
述する第1プーリ6と対になり、導体36ならびに被覆
電線40をエクストルーダ30ならびに第1冷却槽3の
構成部材に無接触に支持移動させる電線支持移動手段を
構成している。また、被覆電線40を牽引する牽引手段
は、プーリ付きモータで実現され、第2冷却槽4から出
た被覆電線40を牽引するよう構成される。本実施例で
は、図2のようにモータ12付きの第3プーリ8が 被
覆電線40を牽引する牽引手段である。あるいは図1の
ように、モータ39付きの第2ローラ34を牽引手段と
して構成することもできる。尚、前記モータは減速機や
回転速調節機構等を付加させることもできる。
Returning to FIG. 1, the first roller 33 is paired with a first pulley 6 which will be described later, and supports the conductor 36 and the covered electric wire 40 without contacting the extruder 30 and the constituent members of the first cooling tank 3. It constitutes an electric wire support moving means for moving. Further, the pulling means for pulling the covered electric wire 40 is realized by a motor with a pulley, and is configured to pull the covered electric wire 40 coming out of the second cooling tank 4. In this embodiment, as shown in FIG. 2, the third pulley 8 with the motor 12 is a pulling means for pulling the covered electric wire 40. Alternatively, as shown in FIG. 1, the second roller 34 with the motor 39 may be configured as the pulling means. The motor may be added with a speed reducer, a rotation speed adjusting mechanism, or the like.

【0020】第2冷却槽4は、その側部に複数個のアウ
トレット5を、順次縦方向の異なる位置に備える。ま
た、第2冷却槽4には冷却水冷却器であるクーラー15
(図2参照)を併設してもよい。
The second cooling tank 4 is provided with a plurality of outlets 5 on its side portion at different positions in the vertical direction in sequence. The second cooling tank 4 has a cooler 15 as a cooling water cooler.
(See FIG. 2) may be installed side by side.

【0021】なお本発明に係る複合縦型冷却装置を備え
た電線被覆装置を形成する前記の各手段の前記構成は一
例にすぎず、本発明は前記構成に限定されるものではな
い。
The above-mentioned constitutions of the respective means for forming the electric wire coating device provided with the composite vertical cooling device according to the present invention are merely examples, and the present invention is not limited to the constitutions.

【0022】次に前記各手段や部分の作用を説明する。
図1で、サプライドラム35から繰り出された導体36
は、第1ローラ33を経てエクストルーダ30のクロス
ヘッド31に送られる。エクストルーダ30は、漏斗状
のホッパー32から投入された熱可塑性樹脂材38のペ
レットや粉体をクロスヘッド31に送る。クロスヘッド
31では、導入された導体36外周に溶融状態の樹脂を
被覆させ、さらに余分の樹脂を掻取して型成ののち、高
温状態の被覆電線40を垂下させ、外測計37をへて下
方の複合縦型冷却装置2に送り込む。
Next, the operation of each of the above means and parts will be described.
In FIG. 1, the conductor 36 fed from the supply drum 35
Is sent to the crosshead 31 of the extruder 30 via the first roller 33. The extruder 30 sends the pellets or powder of the thermoplastic resin material 38, which is input from the funnel-shaped hopper 32, to the crosshead 31. In the cross head 31, the outer periphery of the introduced conductor 36 is coated with a molten resin, and the excess resin is scraped off to form a molded wire. And sends it to the composite vertical cooling device 2 below.

【0023】複合縦型冷却装置2内では、冷却のため被
覆電線40は以下のように配索される。エクストルーダ
30から出た被覆電線40は、第1冷却槽3の上端から
非接触で入り、ノズル3Aを非接触で経由して、大径の
第1プーリ6の周縁によって巻導されて第1プーリ6周
縁を巡り、ついで第3プーリ8の周縁を巡り、さらに第
2プーリ7の周縁を巡って複合縦型冷却装置2天井の孔
から排出される。
In the composite vertical cooling device 2, the covered electric wire 40 is arranged as follows for cooling. The covered electric wire 40 coming out of the extruder 30 enters from the upper end of the first cooling tank 3 in a non-contact manner, passes through the nozzle 3A in a non-contact manner, and is wound around by the peripheral edge of the large-diameter first pulley 6 to form the first pulley. 6 around the periphery, then around the periphery of the third pulley 8, and further around the periphery of the second pulley 7, and discharged from the hole in the ceiling of the composite vertical cooling device 2.

【0024】すなわち、導体36の下方側へのガイドで
ある第1ローラ33と、被覆電線40の上方側へのガイ
ドである第1プーリ6により、導体36の縦型クロスヘ
ッド31内の位置決めならびに第1冷却槽3内の被覆電
線40の位置決めがなされる。これによって、導体36
および被覆電線40の、縦型クロスヘッド31ならびに
第1冷却槽3の壁部への抵触を避けることができる。
That is, the conductor 36 is positioned in the vertical crosshead 31 by the first roller 33 which is a downward guide of the conductor 36 and the first pulley 6 which is an upward guide of the covered electric wire 40. The coated electric wire 40 in the first cooling tank 3 is positioned. This allows the conductor 36
It is possible to prevent the covered electric wire 40 from touching the vertical crosshead 31 and the wall of the first cooling tank 3.

【0025】つぎに、複合縦型冷却装置2の作動を説明
する。熱溶融被覆加工直後の高温の被覆電線40が、ま
ず複合縦型冷却装置2内に垂直に立設され、上下に伸び
る第1冷却槽3の上方から、壁部に接触せぬよう導入さ
れる。ついで高温の被覆電線40が、第1冷却槽3内の
水溜内を下方に移動し、この過程で冷却され、下端部に
設けたノズル3Aの開口から、第1プーリ6に引かれて
導出される。第1冷却槽3内の水は上端からオーバーフ
ロー3Bとなり流下するか、あるいは下端のノズル3A
の開口と被覆電線40とが形成する空隙からアンダーフ
ロー3Cとなり流出する。この流出水の流下過程におい
ても、水と下方に移動する被覆電線40とで熱交換がな
され、被覆電線40が冷却される。オーバーフロー3
B、アンダーフロー3Cいずれの場合も、複合縦型冷却
装置2の容器底部に形成されている第2冷却槽4の冷却
水4Aと合流する。
Next, the operation of the composite vertical cooling device 2 will be described. The high-temperature coated electric wire 40 immediately after the hot-melt coating process is first erected vertically in the composite vertical cooling device 2 and introduced from above the vertically extending first cooling tank 3 so as not to contact the wall portion. . Then, the high-temperature coated electric wire 40 moves downward in the water reservoir in the first cooling tank 3, is cooled in this process, and is drawn out by being drawn to the first pulley 6 from the opening of the nozzle 3A provided at the lower end portion. It The water in the first cooling tank 3 becomes an overflow 3B from the upper end and flows down, or the nozzle 3A at the lower end.
Underflow 3C flows out from the gap formed by the opening of the above and the covered electric wire 40. Also in the process of flowing the outflow water, heat is exchanged between the water and the covered electric wire 40 moving downward, and the covered electric wire 40 is cooled. Overflow 3
In either case of B and underflow 3C, the cooling water 4A of the second cooling tank 4 formed at the bottom of the container of the composite vertical cooling device 2 joins.

【0026】第1プーリ6に引かれた被覆電線40は、
装置底部の第2冷却槽4の冷却水4Aに浸され、冷却さ
れながらさらに第1プーリ6周縁溝を巡り、冷却水4A
中から360°方向転換されながら垂直方向に立ち上が
って、対向する上方の第3プーリ8に向かう。ついで第
3プーリ8周縁溝を巡り、この過程でシャワー9から噴
出される水によってさらに冷却される。こののち被覆電
線40は、対向する下方の第2プーリ7に引かれて再び
冷却水4Aに浸される。被覆電線40は冷却水4A内で
再び冷却されながら、第2プーリ7周縁溝を巡り、冷却
水4A中から360°方向転換されながら垂直方向に立
ち上がって、複合縦型冷却装置2を脱し、上方の除水器
11に至る。
The covered electric wire 40 pulled by the first pulley 6 is
The cooling water 4A is immersed in the cooling water 4A in the second cooling tank 4 at the bottom of the apparatus, and while cooling, further circulates the peripheral groove of the first pulley 6 to obtain the cooling water 4A.
While turning 360 degrees from the inside, it rises in the vertical direction toward the upper third pulley 8 facing the vertical direction. Then, it goes around the peripheral groove of the third pulley 8 and is further cooled by the water jetted from the shower 9 in this process. After this, the covered electric wire 40 is pulled by the second pulley 7 located below and covered with the cooling water 4A again. The covered electric wire 40 goes around the peripheral groove of the second pulley 7 while being cooled again in the cooling water 4A, rises in the vertical direction while being turned by 360 ° from the inside of the cooling water 4A, exits the combined vertical cooling device 2, and moves upward. To the water remover 11.

【0027】前記のように、複合縦型冷却装置2内では
被覆電線40は第1冷却槽3内で垂直に降下しながら冷
却され、さらに第2冷却槽4内でも上下方向に移動しな
がら冷却が続行される。さらにシャワー9から噴出され
た水も、第3プーリ8と第2プーリ7間に上下方向に展
索された被覆電線40を被濡させるから、ここでも冷却
がなされる。すなわち高温の被覆電線40の冷却は、被
覆電線40の上下方向移動において繰り返し実行される
構成となっている。
As described above, in the combined vertical cooling device 2, the covered electric wire 40 is cooled while vertically descending in the first cooling tank 3, and is further cooled in the second cooling tank 4 while moving vertically. Will continue. Further, the water ejected from the shower 9 also wets the covered electric wire 40 which is vertically extended between the third pulley 8 and the second pulley 7, so that the cooling is performed here. That is, the cooling of the coated electric wire 40 having a high temperature is repeatedly performed in the vertical movement of the coated electric wire 40.

【0028】ここで、被覆電線を牽引する牽引手段は、
第2冷却槽4から出た被覆電線40を牽引するよう構成
されているから、途中の電線の弛みや非同調の起きるこ
とがない。また被覆電線40を第2冷却槽4内に最初に
導入させる第1プーリ6は非駆動であり、よって電線の
弛みや非同調は発生しない。また、被覆電線40を第2
冷却槽4内に最初に導入させる第1プーリ6の径は前記
のように大径であるので、電線に与える曲率は緩やかで
あり、よって電線にひびやクラックを発生させることが
ない。
Here, the pulling means for pulling the covered electric wire is
Since it is configured to pull the covered electric wire 40 coming out of the second cooling tank 4, there is no slack in the electric wire or non-tuning in the middle of the electric wire. In addition, the first pulley 6 that first introduces the covered electric wire 40 into the second cooling tank 4 is not driven, so that slack or non-synchronization of the electric wire does not occur. In addition, the covered electric wire 40 is
Since the diameter of the first pulley 6 that is first introduced into the cooling tank 4 is large as described above, the curvature applied to the electric wire is gentle, so that the electric wire is not cracked or cracked.

【0029】また、シャワー9から噴出する水が、第2
冷却槽4の冷却水4Aに加わるので、冷却水4A温度を
比較的低温度に維持することができる。尚、第3冷却手
段であるシャワー9に代えて、下方にノズル部を設けた
中空筐体の水槽に被覆電線を通過させたり、または通過
させながら中空筐体の底面に多数の小孔を形成し、プー
リ上にシャワーとして滴下(自然落下)させてもよい。
The water ejected from the shower 9 is the second
Since the cooling water 4A is added to the cooling water 4A, the temperature of the cooling water 4A can be maintained at a relatively low temperature. Incidentally, instead of the shower 9 which is the third cooling means, the covered electric wire is passed through the water tank of the hollow housing having the nozzle portion below, or a large number of small holes are formed on the bottom surface of the hollow housing while passing the covered electric wire. Alternatively, it may be dropped (spontaneously dropped) as a shower on the pulley.

【0030】ところで、第2冷却槽4の側部縦方向の異
なる位置に備えられた複数個の前記アウトレット5のい
ずれかが開放されると、冷却水は開放されたアウトレッ
トのうち最も下側のものから外に排出される。したがっ
て第2冷却槽4内の水位を、開放するアウトレットによ
って規定できる。この構成により、冷却すべき被覆電線
から除去すべき熱量に適した深さの水柱を形成させるこ
とができる。
By the way, when any of the plurality of outlets 5 provided at different positions in the longitudinal direction of the side of the second cooling tank 4 is opened, the cooling water is at the bottom of the opened outlets. It is discharged from things. Therefore, the water level in the second cooling tank 4 can be defined by the outlet that opens. With this configuration, it is possible to form a water column having a depth suitable for the amount of heat to be removed from the covered electric wire to be cooled.

【0031】また、第2冷却槽4に併設された前記クー
ラー15は、被覆電線の冷却で温度の上昇した冷却水4
Aを抽出パイプ5Aで抽出して冷却し、これを注入パイ
プ5Bを経て戻し、これによって第2冷却槽4内の冷却
水4Aの温度を所定温度に保つ。このように、本実施例
では冷却水循環経路が構成される。この構成により、冷
却水が常時補給できない場所等でも、バッチ式の運転が
可能になり、適用範囲はさらに拡大されることになる。
またクーラー15は、前記抽出パイプ5Aで抽出した
冷却水4Aが、例えば樹脂充填材や可塑剤等の溶出で汚
染が進んだ状態にあれば、アウトレット5Cから排水処
理装置(図示せず)に送り出すこともできる。
The cooler 15 provided in the second cooling tank 4 is provided with the cooling water 4 whose temperature has risen due to the cooling of the covered electric wire.
A is extracted by the extraction pipe 5A, cooled, and returned through the injection pipe 5B, whereby the temperature of the cooling water 4A in the second cooling tank 4 is maintained at a predetermined temperature. Thus, in this embodiment, the cooling water circulation path is configured. With this configuration, the batch type operation can be performed even in a place where the cooling water cannot be constantly replenished, and the applicable range is further expanded.
Further, the cooler 15 sends out the cooling water 4A extracted by the extraction pipe 5A from the outlet 5C to a wastewater treatment device (not shown) if the cooling water 4A is in a state of being contaminated due to elution of a resin filler, a plasticizer or the like. You can also

【0032】前記のようにして複合縦型冷却装置2内で
冷却され、被覆を凝固定着させた被覆電線40は、図1
に示すように複合縦型冷却装置2を脱して上方の除水器
11に導入され、除水器11で乾燥された被覆電線40
は、モータ39で駆動される第2ローラ34を経由し
て、図示しない被覆電線巻取器で回収される。
The coated electric wire 40 cooled in the composite vertical cooling device 2 as described above and having the coating solidified and fixed is shown in FIG.
As shown in FIG. 4, the combined vertical cooling device 2 is removed to be introduced into the upper water remover 11, and the coated electric wire 40 dried by the water remover 11
Is collected by a covered wire winder (not shown) via the second roller 34 driven by the motor 39.

【0033】図4は、図1の第1冷却槽の別の構成を示
す斜視図である。同図にて中空管状の第1冷却槽3の下
端には皿状の排水トレイ45が設けられ、排水トレイ4
5側部に排水管47が取付けられている。冷却水給水管
10をへて第1冷却槽3に流入した水は高温の被覆電線
40に接して加温され、第1冷却槽3上部から溢流46
Aとなり、流下して排水トレイ45上に高温水46Bと
して溜まり、排水管47から排水される。前記のように
本実施例の構成では、第1冷却槽3を経由した高温の水
を、図1の構成とは異なり、第2冷却槽4に注入せず複
合縦型冷却装置2外に放出させる構成とするものである
から、冷却水の温度管理が容易になり、また熱除去量の
制御を容易とするものである。
FIG. 4 is a perspective view showing another structure of the first cooling tank of FIG. In the figure, a dish-shaped drain tray 45 is provided at the lower end of the hollow tubular first cooling tank 3, and
The drainage pipe 47 is attached to the 5 side part. The water flowing into the first cooling tank 3 through the cooling water supply pipe 10 is heated by coming into contact with the high-temperature covered electric wire 40 and overflows 46 from the upper part of the first cooling tank 3.
It becomes A, flows down, collects as high temperature water 46B on the drainage tray 45, and is drained from the drainage pipe 47. As described above, in the configuration of the present embodiment, unlike the configuration of FIG. 1, the high-temperature water that has passed through the first cooling tank 3 is not injected into the second cooling tank 4 and is discharged to the outside of the composite vertical cooling device 2. Since the configuration is such that the cooling water temperature can be easily controlled, and the heat removal amount can be easily controlled.

【0034】図5は、本発明に係る複合縦型冷却装置を
備えた電線被覆装置の別の実施例の断面正面図である。
同図で、複合縦型冷却装置を備えた電線被覆装置1A
は、第1冷却槽13として略5角形の中空筐体を有し、
水溜を形成している。給水管10から第1冷却槽13に
注入される水の一部は、高温の被覆電線40に接して蒸
気化するが、水の大部分は第1冷却槽13下端の開口部
13Aから自然流下する。ここで開口部13Aから流れ
出した水は、同様に第1冷却槽13を通過して下方に移
動する被覆電線40の表面を伝わって流下することにな
り、この過程においても被覆電線40と水との間で熱移
動がなされ、被覆電線40をさらに冷却する効果が生じ
る。このようにして流下した水は、第2冷却槽4に貯溜
される。
FIG. 5 is a sectional front view of another embodiment of an electric wire coating device having a composite vertical cooling device according to the present invention.
In the figure, a wire coating device 1A equipped with a composite vertical cooling device.
Has a substantially pentagonal hollow casing as the first cooling tank 13,
It forms a puddle. A part of the water injected from the water supply pipe 10 into the first cooling tank 13 comes into contact with the high-temperature covered electric wire 40 to be vaporized, but most of the water naturally flows down from the opening 13A at the lower end of the first cooling tank 13. To do. Here, the water flowing out from the opening 13A will flow down along the surface of the covered electric wire 40 that also passes through the first cooling tank 13 and moves downward, and in this process as well, Heat is transferred between them, and the effect of further cooling the covered electric wire 40 is produced. The water thus flowing down is stored in the second cooling tank 4.

【0035】また、被覆電線40の第1冷却槽13から
第1プーリ6にいたる経路途中に、被覆電線40を縦方
向に保持する電線保持手段G1が設けられている。電線
保持手段G1は例えば回動自在のローラが2個、左右に
接して配設されたピンチローラや、複数個のガイドプー
リで構成される。この電線保持手段G1の作用は、前記
のように上方の第1ローラ33と下方の第1プーリ6に
よって規定されている被覆電線40の位置が、例えば大
径の第1プーリ6の真円からの偏心によるブレで左右に
変動するのを規制するものである。また、被覆電線を牽
引するモータ14は、第2プーリ7に連結されている。
したがってモータ14は、導体36をサプライドラム3
5から第2プーリ7まで一挙に牽引する。なお第2プー
リ7から下流の被覆電線は、図示を省略した巻取手段に
よって巻き取られる。さらに、上方の第3プーリ8は前
記第1冷却槽13と略同じ高さに、第1冷却槽13に並
んで容器内に配設される。
An electric wire holding means G1 for holding the covered electric wire 40 in the vertical direction is provided in the middle of the path of the covered electric wire 40 from the first cooling tank 13 to the first pulley 6. The electric wire holding means G1 is composed of, for example, two rotatable rollers, a pinch roller arranged in contact with the left and right, and a plurality of guide pulleys. The action of the electric wire holding means G1 is that the position of the covered electric wire 40 defined by the upper first roller 33 and the lower first pulley 6 is, for example, from the perfect circle of the large diameter first pulley 6 as described above. It regulates the lateral movement due to the eccentricity. Further, the motor 14 that pulls the covered electric wire is connected to the second pulley 7.
Therefore, the motor 14 connects the conductor 36 to the supply drum 3
Pull from 5 to the second pulley 7 all at once. The covered electric wire downstream from the second pulley 7 is wound by a winding means (not shown). Further, the upper third pulley 8 is arranged in the container at the same height as the first cooling tank 13 and side by side with the first cooling tank 13.

【0036】[0036]

【発明の効果】以上説明した様に、本発明に係る複合縦
型冷却装置を備えた電線被覆装置は、まず導体にエクス
トルーダによって熱溶融被覆を施す。さらに、熱溶融被
覆直後の高温の被覆電線を、複合縦型冷却装置内の上下
に伸びる第1冷却槽の上方から、第1冷却槽の壁部に接
触せぬよう導入し、第1冷却槽内の水溜内を下方に移動
させる過程で冷却する。この後、下端部に設けたノズル
の開口から第2冷却槽側に導出する。さらに第2冷却槽
においても、被覆電線を水槽中で上下方向に移動させつ
つ、冷却を続行する構成としたものである。このよう
に、本発明では高温の被覆電線の冷却は、電線の上下方
向移動において繰り返し実行される構成となっている。
As described above, in the electric wire coating apparatus equipped with the composite vertical cooling device according to the present invention, the conductor is first subjected to the hot melt coating by the extruder. Further, the high-temperature coated electric wire immediately after the heat-melt coating is introduced from above the first cooling tank extending vertically inside the composite vertical cooling device so as not to come into contact with the wall of the first cooling tank. Cooling is performed in the process of moving the inside of the water reservoir downward. After this, it is led out to the second cooling tank side from the opening of the nozzle provided at the lower end. Further, also in the second cooling tank, the coated electric wire is moved vertically in the water tank while continuing cooling. As described above, in the present invention, the cooling of the high-temperature coated electric wire is repeatedly performed in the vertical movement of the electric wire.

【0037】この構成の結果、設置面積が節約でき、し
かも高冷却効率のうえ、設備コストおよび運転コストの
低減と、操業条件の容易な変更による多品種少量生産へ
の効果的対応が実現でき、さらに移動容易の電線被覆装
置を提供することが可能になる。しかも本発明によれ
ば、電線の移動は大部分が縦方向の上下垂直移動とな
る。すなわち電線の牽引と移動は垂直方向となるから、
前記運転コストの低減に加えるに、電線に変形を与える
ことがなく、製品の品質に優れるばかりか、品質管理コ
ストも大幅に削減できるという効果もあり、よってその
産業上効果きわめて大なるものである。
As a result of this structure, the installation area can be saved, the cooling efficiency can be reduced, the equipment cost and the operating cost can be reduced, and the production conditions can be easily changed to effectively cope with the small-lot production of a wide variety of products. Further, it becomes possible to provide an electric wire coating device that is easy to move. Moreover, according to the present invention, most of the movement of the electric wire is vertical and vertical movement in the vertical direction. That is, the electric wire is pulled and moved vertically,
In addition to the reduction of the operation cost, there is an effect that not only the electric wire is not deformed but the quality of the product is excellent, but also the quality control cost can be significantly reduced, and thus the industrial effect is extremely large. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合縦型冷却装置を備えた電線被
覆装置の一実施例の断面正面図である。
FIG. 1 is a cross-sectional front view of an embodiment of an electric wire coating device including a composite vertical cooling device according to the present invention.

【図2】図1に示された複合縦型冷却装置の一部切欠斜
視図である。
FIG. 2 is a partially cutaway perspective view of the composite vertical cooling device shown in FIG.

【図3】図2に示されたノズルの分解斜視図である。FIG. 3 is an exploded perspective view of the nozzle shown in FIG.

【図4】図1に示された第1冷却槽の別の構成を示す斜
視図である。
FIG. 4 is a perspective view showing another configuration of the first cooling tank shown in FIG.

【図5】本発明に係る複合縦型冷却装置を備えた電線被
覆装置の別の実施例の断面正面図である。
FIG. 5 is a sectional front view of another embodiment of the electric wire coating device including the composite vertical cooling device according to the present invention.

【図6】従来の縦横並設型冷却水槽を用いた電線被覆装
置の断面図である。
FIG. 6 is a cross-sectional view of a wire coating device using a conventional vertical and horizontal juxtaposed cooling water tank.

【符号の説明】[Explanation of symbols]

1 電線被覆装置 2 複合縦型冷却装置 3 第1冷却槽(第1冷却手段) 3A ノズル 3B オーバーフロー 3C アンダーフロー 4 第2冷却槽(第2冷却手段) 4A 冷却水 5 アウトレット 6 第1プーリ 7 第2プーリ 8 第3プーリ 9 シャワー(第3冷却手段) 10 冷却水給水管 10A、 10B バルブ 11 除水器 12 モータ(牽引手段) 30 エクストルーダ 31 クロスヘッド 32 ホッパー 33 第1ローラ 34 第2ローラ 35 サプライドラム 36 導体 37 外測計 38 樹脂材 39 モータ 40 被覆電線 1 Wire Covering Device 2 Composite Vertical Cooling Device 3 First Cooling Tank (First Cooling Means) 3A Nozzle 3B Overflow 3C Underflow 4 Second Cooling Tank (Second Cooling Means) 4A Cooling Water 5 Outlet 6 First Pulley 7th 2 pulley 8 3rd pulley 9 shower (third cooling means) 10 cooling water supply pipe 10A, 10B valve 11 water remover 12 motor (traction means) 30 extruder 31 crosshead 32 hopper 33 first roller 34 second roller 35 supply Drum 36 Conductor 37 External measuring instrument 38 Resin material 39 Motor 40 Coated electric wire

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 導体に被覆を施して被覆電線とする電線
被覆手段と、前記被覆電線が垂直方向に通過可能な水溜
を備えた第1冷却手段と、該第1冷却手段下端に配設さ
れた絞り込み手段と、前記第1冷却手段を経由した被覆
電線が垂直方向に通過可能な冷却水を貯溜した第2冷却
手段と、前記導体ならびに被覆電線を前記各手段の構成
部材に無接触に支持して垂直方向に移動させる電線支持
移動手段とを備え、前記第1冷却手段ならびに前記第2
冷却手段を備えて複合縦型冷却装置を構成したことを特
徴とする複合縦型冷却装置を備えた電線被覆装置。
1. An electric wire covering means for covering a conductor to form a covered electric wire, a first cooling means having a water pool through which the covered electric wire can pass in a vertical direction, and a first cooling means provided at a lower end of the first cooling means. The narrowing means, the second cooling means that stores cooling water through which the covered electric wire passing through the first cooling means can pass in the vertical direction, and the conductor and the covered electric wire are supported in a non-contact manner with the constituent members of the respective means. And a wire supporting moving means for vertically moving the first cooling means and the second cooling means.
An electric wire coating device having a composite vertical cooling device, characterized in that a composite vertical cooling device is provided with cooling means.
【請求項2】 前記第1冷却手段ならびに第2冷却手段
を同一容器内に配設して構成したことを特徴とする請求
項1記載の複合縦型冷却装置を備えた電線被覆装置。
2. The electric wire coating device having a composite vertical cooling device according to claim 1, wherein the first cooling means and the second cooling means are arranged in the same container.
【請求項3】 前記電線被覆手段をエクストルーダで、
前記第1冷却手段を第1冷却槽で、前記絞り込み手段を
ノズルで、前記第2冷却手段を第2冷却槽で、前記電線
支持移動手段を第1ローラおよび第1プーリで、それぞ
れ構成したことを特徴とする請求項1乃至2記載の複合
縦型冷却装置を備えた電線被覆装置。
3. The electric wire coating means is an extruder,
The first cooling means is a first cooling tank, the narrowing means is a nozzle, the second cooling means is a second cooling tank, and the wire supporting and moving means is a first roller and a first pulley. An electric wire coating device comprising the composite vertical cooling device according to claim 1.
【請求項4】 前記第1ローラおよび前記第1プーリ間
に前記第1冷却手段を配設し、該第1冷却手段と該第1
プーリ間に被覆電線を縦方向に保持する電線保持手段を
設けて構成したことを特徴とする請求項1乃至3記載の
複合縦型冷却装置を備えた電線被覆装置。
4. The first cooling means is arranged between the first roller and the first pulley, and the first cooling means and the first cooling means.
4. An electric wire coating device having a composite vertical cooling device according to claim 1, wherein an electric wire holding means for holding the covered electric wire in a vertical direction is provided between the pulleys.
【請求項5】 前記第2冷却手段から出た被覆電線を牽
引する牽引手段を設けて構成したことを特徴とする請求
項1乃至4記載の複合縦型冷却装置を備えた電線被覆装
置。
5. An electric wire coating apparatus having a composite vertical cooling device according to claim 1, wherein the electric wire coating device comprises a pulling means for pulling the covered electric wire which has come out of the second cooling means.
【請求項6】 第1プーリが、前記第1冷却手段を経由
した被覆電線を周縁溝で巻支する大径プーリであり、か
つ該第1プーリは少なくとも一部分が前記第2冷却手段
の貯溜する冷却水に浸漬されて回転可能に構成されたこ
とを特徴とする請求項3乃至5記載の複合縦型冷却装置
を備えた電線被覆装置。
6. The first pulley is a large-diameter pulley that winds a covered electric wire passing through the first cooling means in a peripheral groove, and at least a part of the first pulley is stored in the second cooling means. The electric wire coating device provided with the composite vertical cooling device according to claim 3, wherein the electric wire coating device is immersable in cooling water so as to be rotatable.
【請求項7】 被覆電線を、第2冷却槽に複数回浸漬し
て通過させ冷却する構成としたことを特徴とする請求項
3乃至6記載の複合縦型冷却装置を備えた電線被覆装
置。
7. The electric wire coating apparatus provided with the composite vertical cooling device according to claim 3, wherein the coated electric wire is immersed in the second cooling tank a plurality of times to pass therethrough to be cooled.
【請求項8】 前記第1冷却槽を経由した水を第2冷却
槽に注入する構成としたことを特徴とする請求項3乃至
7記載の複合縦型冷却装置を備えた電線被覆装置。
8. An electric wire coating apparatus having a composite vertical cooling device according to claim 3, wherein water having passed through the first cooling tank is injected into the second cooling tank.
【請求項9】 第3冷却手段を第2冷却槽の上方に設
け、該第3冷却手段を経由した水を前記第2冷却槽に注
入する構成としたことを特徴とする請求項3乃至8記載
の複合縦型冷却装置を備えた電線被覆装置。
9. The structure according to claim 3, wherein the third cooling means is provided above the second cooling tank, and the water that has passed through the third cooling means is injected into the second cooling tank. An electric wire coating device provided with the composite vertical cooling device described.
【請求項10】 前記第2冷却槽に並設され、該第2冷
却槽の貯留する冷却水を抽出して冷却したのち該第2冷
却槽に還流させる冷却水冷却器を備えたことを特徴とす
る請求項3乃至9記載の複合縦型冷却装置を備えた電線
被覆装置。
10. A cooling water cooler, which is installed in parallel with the second cooling tank, extracts the cooling water stored in the second cooling tank, cools the cooling water, and then returns the cooling water to the second cooling tank. An electric wire coating device comprising the composite vertical cooling device according to claim 3.
【請求項11】 前記第1冷却槽を経由した水を第2冷
却槽に注入せず複合縦型冷却装置外に放出させる構成と
したことを特徴とする請求項3乃至7および9乃至10
記載の複合縦型冷却装置を備えた電線被覆装置。
11. A structure in which water that has passed through the first cooling tank is discharged to the outside of the composite vertical cooling device without being injected into the second cooling tank.
An electric wire coating device provided with the composite vertical cooling device described.
JP6231634A 1994-09-27 1994-09-27 Wire covering device with combined vertical cooling device Expired - Lifetime JP3060361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231634A JP3060361B2 (en) 1994-09-27 1994-09-27 Wire covering device with combined vertical cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231634A JP3060361B2 (en) 1994-09-27 1994-09-27 Wire covering device with combined vertical cooling device

Publications (2)

Publication Number Publication Date
JPH0896637A true JPH0896637A (en) 1996-04-12
JP3060361B2 JP3060361B2 (en) 2000-07-10

Family

ID=16926585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231634A Expired - Lifetime JP3060361B2 (en) 1994-09-27 1994-09-27 Wire covering device with combined vertical cooling device

Country Status (1)

Country Link
JP (1) JP3060361B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086424A (en) * 2001-08-07 2001-09-12 권오직 electric wire manufacture method and apparatus thereof
JP2002246254A (en) * 2001-02-14 2002-08-30 Toyo Denso Co Ltd Winding device
JP2011258377A (en) * 2010-06-08 2011-12-22 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing small-diameter wire
CN103482416A (en) * 2013-09-16 2014-01-01 无锡市长城电线电缆有限公司 Combined guide roller device in cooling water tank for extrusion process of cable insulating and sheath layers
CN106167280A (en) * 2016-08-26 2016-11-30 德清凯斯达线缆有限公司 Cable envelope curve produces water circle device
CN113724939A (en) * 2021-07-09 2021-11-30 皖缆集团股份有限公司 High-efficient cooling device is used in cable manufacture
CN114093569A (en) * 2021-10-09 2022-02-25 安徽富悦达电子有限公司 Wire and cable core wire cladding device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246254A (en) * 2001-02-14 2002-08-30 Toyo Denso Co Ltd Winding device
KR20010086424A (en) * 2001-08-07 2001-09-12 권오직 electric wire manufacture method and apparatus thereof
JP2011258377A (en) * 2010-06-08 2011-12-22 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing small-diameter wire
CN103482416A (en) * 2013-09-16 2014-01-01 无锡市长城电线电缆有限公司 Combined guide roller device in cooling water tank for extrusion process of cable insulating and sheath layers
CN106167280A (en) * 2016-08-26 2016-11-30 德清凯斯达线缆有限公司 Cable envelope curve produces water circle device
CN113724939A (en) * 2021-07-09 2021-11-30 皖缆集团股份有限公司 High-efficient cooling device is used in cable manufacture
CN113724939B (en) * 2021-07-09 2023-02-28 皖缆集团股份有限公司 High-efficient cooling device is used in cable manufacture
CN114093569A (en) * 2021-10-09 2022-02-25 安徽富悦达电子有限公司 Wire and cable core wire cladding device

Also Published As

Publication number Publication date
JP3060361B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JPH0896637A (en) Electric wire covering device having composite vertical type cooling device
US5316561A (en) Apparatus for manufacturing a composite strand formed of reinforcing fibers and of organic thermoplastic material
KR100724656B1 (en) Wire Insulating Line
US2868159A (en) Wire coating apparatus
JP3032936B2 (en) Wire covering method and apparatus using vertical cooling water tank
KR100358829B1 (en) Coating plant
JP4438596B2 (en) Linear object cooling device
CN109234824B (en) Spinning process of regenerated polyester fiber
US5249427A (en) Method and device for cooling coated wire
KR101068505B1 (en) Apparatus for forming the lead wires
US3924424A (en) Apparatus for treating cloth with liquid
JP2012121252A (en) Resin coating apparatus and resin coating method
JPS6143175B2 (en)
KR100493085B1 (en) Cooling device for high-speed drawing
DE2136168A1 (en) Method and device for the production of hoses
US3604392A (en) Apparatus for manufacturing a plastic insulated wire
KR101932610B1 (en) Production equipment for packing vinyl and manufacturing method of packaging vinyl using the same
JP4426947B2 (en) Covered wire take-up machine
KR0137041Y1 (en) Dies setting system for the continuous tin coating apparatus
JP4015140B2 (en) Method for manufacturing self-supporting optical fiber cable with extra length
JP4234760B2 (en) Method for manufacturing self-supporting optical fiber cable with extra length
KR102093488B1 (en) apparatus for coating talc on optical fiber cable
JP2590386B2 (en) Pipe continuous casting method
JP2006272868A (en) Cooling device for continuous fiber-reinforced thermoplastic resin rod
CN208247420U (en) It is a kind of for producing the cooling device of optical cable