JP4015140B2 - Method for manufacturing self-supporting optical fiber cable with extra length - Google Patents

Method for manufacturing self-supporting optical fiber cable with extra length Download PDF

Info

Publication number
JP4015140B2
JP4015140B2 JP2004197812A JP2004197812A JP4015140B2 JP 4015140 B2 JP4015140 B2 JP 4015140B2 JP 2004197812 A JP2004197812 A JP 2004197812A JP 2004197812 A JP2004197812 A JP 2004197812A JP 4015140 B2 JP4015140 B2 JP 4015140B2
Authority
JP
Japan
Prior art keywords
cable
sheave
self
surplus length
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004197812A
Other languages
Japanese (ja)
Other versions
JP2006018143A (en
Inventor
広祐 吉川
恭宏 仲
潔 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004197812A priority Critical patent/JP4015140B2/en
Publication of JP2006018143A publication Critical patent/JP2006018143A/en
Application granted granted Critical
Publication of JP4015140B2 publication Critical patent/JP4015140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Description

本発明は余長付自己支持型光ファイバケーブルの製造方法に関するものであり、主に余長付自己支持型ケーブルの一括被覆の冷却を効率良く行う製造方法に関するものである。 The present invention relates to a method for manufacturing a self-supporting optical fiber cable with a surplus length, and mainly relates to a manufacturing method for efficiently cooling a batch coating of a self-supporting cable with a surplus length.

図7は余長付自己支持型ケーブルの概略を示す斜視図である。余長付自己支持型ケーブル13は、図7で示すように支持線2に対してケーブル14が長く、即ち余長が入り、両者を首部15と呼ぶ間欠的部分で接続するものである。 FIG. 7 is a perspective view schematically showing a self-supporting cable with extra length. As shown in FIG. 7, the extra-length self-supporting cable 13 is such that the cable 14 is longer than the support wire 2, that is, the extra length is inserted, and both are connected by an intermittent portion called a neck portion 15.

図8は自己支持型ケーブルの概略を示す斜視図である。余長付自己支持型ケーブルの製造方法としては、まず、支持線2とケーブル14に被覆機で一括被覆16が施されると、図8で示すような自己支持型ケーブル17が形成され、押出される。 FIG. 8 is a perspective view schematically showing a self-supporting cable. As a manufacturing method of a self-supporting cable with a surplus length, first, when the support wire 2 and the cable 14 are collectively coated 16 with a coating machine, a self-supporting cable 17 as shown in FIG. Is done.

図9は余長付与シーブの概略を示す断面図である。図9で示す余長付与シーブの周面には、自己支持型ケーブル17の支持線2とケーブル14とが収容される溝18及び19が付いている。余長付与シーブ11の周上に接触した自己支持型ケーブル17の支持線2の中心を通る円の半径をRとし、ケーブル14の中心をを通る円の半径を(R+α)とすれば、幾何学的には、(R/(R+α))×100%が余長率となる。 FIG. 9 is a cross-sectional view showing an outline of a surplus length imparting sheave. Grooves 18 and 19 in which the support wire 2 of the self-supporting cable 17 and the cable 14 are accommodated are provided on the peripheral surface of the surplus length giving sheave shown in FIG. If the radius of the circle passing through the center of the support line 2 of the self-supporting cable 17 in contact with the circumference of the surplus length imparting sheave 11 is R and the radius of the circle passing through the center of the cable 14 is (R + α), the geometric Scientifically, (R / (R + α)) × 100% is the extra length ratio.

図9で示す余長付与シーブ11を用いて、自己支持型ケーブル17の支持線側よりケーブル側を大きい速度で引張り、余長付与シーブ11のRと(R+α)との周長差によって支持線2に対してケーブル14に余長を入れるという方法が知られている。 Using the surplus length imparting sheave 11 shown in FIG. 9, the cable side is pulled at a higher speed than the support line side of the self-supporting cable 17, and the support line is determined by the difference in circumferential length between R and (R + α) of the surplus length imparting sheave 11. For example, a method of adding an extra length to the cable 14 with respect to 2 is known.

この方法は例えば、特開平7−230028号公報(特許文献1)、特開平8−75969号公報(特許文献2)に開示されるように、余長付与機能のあるキャプスタンにケーブルを巻き付けて引取り、該キャプスタンを内臓する水槽によってケーブルを冷却する方法である。   In this method, for example, as disclosed in JP-A-7-230028 (Patent Document 1) and JP-A-8-75969 (Patent Document 2), a cable is wound around a capstan having an extra length providing function. It is a method of taking out and cooling a cable by a water tank containing the capstan.

また、特許文献1や特許文献2とは別の例で、例えば3個の余長付与シーブ11を用いて、各余長付与シーブ11にケーブル14を略90度ずつ接触させて引取り、該余長付与シーブ11を内臓する水槽によってケーブル14を冷却する方法がある。ケーブル14と余長付与シーブ11(或いはキャプスタン)の接点以降では、余長付与シーブ11(或いはキャプスタン)でケーブル14と支持線2との被覆である一括被覆が未硬化状態である場合、余長付与シーブ11との接触による圧迫によって潰れてしまう。このため、水槽などの冷却装置が必要となる。冷却能力を高める手段は水槽の長さや水温の調整などが知られている。   Also, in another example different from Patent Document 1 and Patent Document 2, for example, using three surplus length imparting sheaves 11, the cable 14 is brought into contact with each surplus length imparting sheave 11 by approximately 90 degrees and taken up. There is a method in which the cable 14 is cooled by a water tank in which the extra length imparting sheave 11 is incorporated. After the contact between the cable 14 and the surplus length imparting sheave 11 (or capstan), when the collective covering that covers the cable 14 and the support wire 2 is uncured in the surplus length imparting sheave 11 (or capstan), It will be crushed by the compression by contact with the surplus length imparting sheave 11. For this reason, a cooling device such as a water tank is required. As means for increasing the cooling capacity, adjustment of the length of the water tank and the water temperature is known.

その他の冷却手段として、特開2001−266678号公報(特許文献4)は、冷却水槽内においてケーブルに対して垂直方向にノズルで噴水流を噴出し、冷却を妨げ、外観不良を起こす気泡を吹き飛ばす手段を開示している。また、この特許文献4では、気泡を飛ばす手段として交互に片面ずつ水冷ノズルから水流を当てる手段を開示している。   As another cooling means, Japanese Patent Laid-Open No. 2001-266678 (Patent Document 4) blows out a bubble that causes a fountain flow with a nozzle in a direction perpendicular to a cable in a cooling water tank, impedes cooling, and causes appearance defects. Means are disclosed. Moreover, this patent document 4 discloses a means for applying a water flow from a water-cooled nozzle alternately one side at a time as a means for blowing bubbles.

水槽内の流量と長手方向の距離は水槽の冷却効果に大きく関係する。特開2002−207146号公報(特許文献5)は、入れ子になった可動水槽を伸縮することによって冷却区間の長さを調整することを開示している。また、特開平11−305093号公報(特許文献3)は、水槽の前後のせき止め側面が長手方向へ平行移動して、断面積分布を一定に保つことを開示している。
特開平7−230028号公報 特開平8−75969号公報 特開平11−305093号公報 特開2001−266678号公報 特開2002−207146号公報
The flow rate in the water tank and the distance in the longitudinal direction are greatly related to the cooling effect of the water tank. Japanese Patent Application Laid-Open No. 2002-207146 (Patent Document 5) discloses adjusting the length of a cooling section by expanding and contracting a nested movable water tank. Japanese Patent Laid-Open No. 11-305093 (Patent Document 3) discloses that the damming side surfaces before and after the water tank are translated in the longitudinal direction to keep the cross-sectional area distribution constant.
Japanese Patent Laid-Open No. 7-230028 JP-A-8-75969 Japanese Patent Laid-Open No. 11-305093 JP 2001-266678 A JP 2002-207146 A

しかしながら、上述の手法では以下ような問題点があった。 However, the above method has the following problems.

まず初めに、余長付与シーブを用いて余長を行う場合、余長付与シーブとの接点で一括被覆が潰れ或いは扁平しないためには、余長付与シーブとの接点の少し前で、一括被覆温度を硬化温度以下にしなければならない。 First of all, when performing surplus length using surplus length imparting sheaves, in order to prevent the collective coating from being crushed or flattened at the contact point with the surplus length imparting sheave, the collective covering is performed just before the contact point with the surplus length imparting sheave. The temperature must be below the curing temperature.

余長付与シーブとの接点以降では、余長付与シーブでケーブルと支持線との線速差をつけて引張り、余長をつけるためある程度一括被覆表面温度を上げ再度軟化しなくてはならない。 After the contact with the surplus length imparting sheave, the surplus length imparting sheave must be pulled with a difference in wire speed between the cable and the support wire, and the surplus length must be increased by raising the collective coating surface temperature to some extent.

ところが、従来の水槽の長さや水温の調節による冷却装置では、冷却能力は長手方向に一定であるため、一括被覆表面温度は長手方向に対して減衰曲線分布となる。平均的冷却機能力は調整できても、余長付与シーブ接点とそれ以降の部分の温度設定は自由にできない。 However, in the conventional cooling device by adjusting the length of the water tank or the water temperature, the cooling capacity is constant in the longitudinal direction, so that the collective coating surface temperature has a decay curve distribution in the longitudinal direction. Even if the average cooling function force can be adjusted, the temperature setting of the surplus contact sheave contact and the subsequent portions cannot be freely performed.

従来装置では、冷却能力不足であると、余長付与シーブとの接点での接触で一括被覆が潰れる。逆に冷却長の増加や水温を下げることで、冷却能力が過剰であると、余長付与シーブ以降で余長を安定に制御することができない。   In the conventional apparatus, if the cooling capacity is insufficient, the collective coating is crushed by contact with the contact with the surplus length imparting sheave. Conversely, if the cooling capacity is excessive by increasing the cooling length or lowering the water temperature, the surplus length cannot be stably controlled after the surplus length imparting sheave.

さらに、従来の水槽では断面積が均一なため、水流が規則正しく均一に流れ、ケーブル周囲の冷却水に一括被覆の熱がたまり冷却効率が悪い。   Furthermore, since the cross-sectional area is uniform in the conventional water tank, the water flow flows regularly and uniformly, and the heat of the collective coating accumulates in the cooling water around the cable, resulting in poor cooling efficiency.

そして、従来の水槽の断面積が切替わる可動水槽と不可動水槽との組み合わせでは、水槽境界面での流量の変化や、両方の面から水を排出するために、長手方向の流量分布や水流方向が不安定になる。   And in the combination of the movable tank and the non-movable tank where the cross-sectional area of the conventional aquarium is switched, in order to change the flow rate at the aquarium boundary surface and to discharge water from both sides, The direction becomes unstable.

最後に、従来の泡飛ばしノズルでは、片面ずつ水流を当てるため、気泡が反対側に逃れてしまう恐れがあった。   Finally, in the conventional bubble blowing nozzle, the water flow is applied to each side, so there is a risk that the bubbles escape to the opposite side.

従来の問題点を解決するために、発明者は鋭意研究を重ねた。この発明の余長付自己支持型ファイバケーブルの製造方法の第1の態様は、被覆機出側の余長付与シーブに支持線とケーブルを接触させて取引速度に差を付け、前記支持線とケーブルに被覆機により一括被覆を施し、余長を付与する余長付自己支持型光ファイバケーブルの製造方法であって、前記一括被覆後の支持線及びケーブルを、前記被覆機の出側に設けられ、ケーブル導入口に向かって水が一方向に流れその途中で水の流路の断面積を急激に絞る仕切りが設置された水槽を通過させ、前記一括被覆の表面温度、前記余長付与シーブと接触する手前で前記ケーブルを局所的に冷却して硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持つように冷却することを特徴とする。ここでいう出口は、後述のケーブル導入口を兼ねている。なお、ケーブルは光ファイバケーブル等であってもよい。 In order to solve the conventional problems, the inventors have conducted intensive research. The first aspect of the method for manufacturing a self-supporting fiber cable with surplus length according to the present invention is such that a surplus length imparting sheave on the coating machine exit side is brought into contact with the support line and the cable to make a difference in transaction speed, A method of manufacturing a self-supporting type optical fiber cable with a surplus length that coats the cable with a coater and gives a surplus length, wherein the support wire and the cable after the collective coating are provided on the exit side of the coater The water flows in one direction toward the cable inlet , and passes through a water tank in which a partition that sharply squeezes the cross-sectional area of the water flow path is provided. The surface temperature of the collective coating is given the extra length. Before the contact with the sheave, the cable is locally cooled to a temperature equal to or lower than the curing temperature, and after the contact with the surplus length sheave, the cable is cooled so as to have a positive temperature gradient in the longitudinal direction of the support line and the cable. With features That. The outlet here also serves as a cable inlet described later. The cable may be an optical fiber cable or the like.

この発明の余長付自己支持型ファイバケーブルの製造方法の第2の態様は、前記一括被覆を、前記余長付与シーブに接触する直前に冷却ノズルにより噴出する冷媒により冷却することを特徴とする。 According to a second aspect of the method for producing a self-supporting fiber cable with surplus length according to the present invention, the collective coating is cooled by a refrigerant jetted by a cooling nozzle immediately before contacting the surplus length imparting sheave. .

この発明の余長付自己支持型ファイバケーブルの製造方法の第3の態様は、前記余長付与シーブを前記水槽内に設け、前記水槽の前記被覆機側の面に設けられたケーブル導入口から前記支持線及びケーブルを前記水槽内に挿通して前記余長付与シーブに接触させ、前記水槽内の少なくとも前記余長付与シーブ直前の箇所において、ケーブル走行と対向する方向に水を流して冷却し、前記ケーブル導入口が設けられた面を水槽の断面積を変化させずに長手方向に平行移動させることにより、水による冷却の開始位置を調整して温度調節を行うことを特徴とする。 According to a third aspect of the method for manufacturing a self-supporting fiber cable with surplus length according to the present invention, the surplus length imparting sheave is provided in the water tank, and the cable introduction port is provided on the surface of the water tank on the coating machine side. The support line and the cable are inserted into the water tank and brought into contact with the extra length-giving sheave, and at least a portion immediately before the extra length-giving sheave in the water tank is cooled by flowing water in a direction opposite to the cable travel. The surface where the cable inlet is provided is translated in the longitudinal direction without changing the cross-sectional area of the water tank, thereby adjusting the temperature by adjusting the start position of cooling with water.

この発明の余長付き自己支持型ファイバケーブルの製造方法の第4の態様は、前記水層内において、泡飛ばしノズルによりケーブルに対して表裏同時に水流を当てることを特徴とする。
A fourth aspect of the method for manufacturing a self-supporting fiber cable with extra length according to the present invention is characterized in that a water flow is simultaneously applied to the cable by a bubble blowing nozzle in the water layer.

本発明の余長付自己支持型光ファイバケーブルの製造方法により、水冷ノズルや仕切りによる冷却効果の上昇によって、最初の余長付与シーブと接触する時点でコアが硬化するので潰れがなく、扁平が小さくなる。さらに、最初に接触する余長付与シーブ以降で余長が安定して与えることができる。   By the manufacturing method of the self-supporting type optical fiber cable with extra length according to the present invention, the core is cured at the time of contact with the first extra length-giving sheave due to the increase in the cooling effect by the water-cooled nozzle or partition, so that the flatness does not occur. Get smaller. Further, the surplus length can be stably provided after the surplus length providing sheave that comes into contact first.

また、本発明のケーブル製造方法により、ケーブル断面の扁平率が従来の6%から3%未満に収めることができた。また、これらと面による水冷区間の調節によって余長を目標値に制御できた。さらに、上下に取り付けられたノズルの噴流によってケーブルに付着した泡を飛ばし、余長付自己支持型ケーブルの冷却の妨げがなくなることで外観不良を防止することができた。さらに、余長付自己支持型ケーブル製造の線速上昇が可能となった。 In addition, the cable manufacturing method of the present invention allowed the flatness of the cable cross section to fall within the range of 6% to less than 3%. Moreover, the surplus length could be controlled to the target value by adjusting the water cooling section with these and the surface. Furthermore, it was possible to prevent the appearance defect by blowing off bubbles adhering to the cable by the jets of the nozzles mounted on the top and bottom, and preventing the cooling of the self-supporting cable with extra length. In addition, it has become possible to increase the line speed of the self-supporting cable with extra length.

以下に、本発明の実施形態を、図面を参照しながら詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1はこの発明の余長付自己支持型ケーブル製造装置の要部を模式的に説明する縦断面図である。図1に示すように、この形態の余長付自己支持型ケーブル製造装置は、光ファイバケーブル1、支持線2、自己支持型光ファイバケーブル3、被覆機4、水槽5及び6、面7、仕切り8、泡飛ばしノズル9、水冷ノズル10、余長付与シーブ111から113からなっている。   FIG. 1 is a longitudinal sectional view for schematically explaining the main part of a self-supporting cable manufacturing apparatus with extra length according to the present invention. As shown in FIG. 1, a self-supporting cable manufacturing apparatus with a surplus length in this form includes an optical fiber cable 1, a support wire 2, a self-supporting optical fiber cable 3, a coating machine 4, water tanks 5 and 6, a surface 7, It consists of a partition 8, a bubble blowing nozzle 9, a water cooling nozzle 10, and extra length imparting sheaves 111 to 113.

図8は自己支持型ケーブルの概略を示す斜視図である。被覆機4において、光ファイバケーブル1と支持線2は熱可塑性樹脂等による一括被覆16が施され、光ファイバケーブル1と支持線2とを結合した部分の断面が瓢箪型である図8に示すような自己支持型光ファイバケーブル3が形成される。ただし、被覆機4を出た直後では一括被覆16が未硬化の状態である。このため、自己支持型光ファイバケーブル3は水槽5及び水槽6内を通過することで冷却される。   FIG. 8 is a perspective view schematically showing a self-supporting cable. In the coating machine 4, the optical fiber cable 1 and the support wire 2 are collectively covered with a thermoplastic resin 16 or the like, and the cross section of the portion where the optical fiber cable 1 and the support wire 2 are coupled is a saddle shape as shown in FIG. Such a self-supporting optical fiber cable 3 is formed. However, immediately after leaving the coating machine 4, the batch coating 16 is in an uncured state. For this reason, the self-supporting optical fiber cable 3 is cooled by passing through the water tank 5 and the water tank 6.

図4は泡飛ばしノズルを説明する概略図である。図4に示すように、自己支持型光ファイバケーブル3が水槽5に入る際に、自己支持型光ファイバケーブル3の表面に泡12が付着している。この泡12は冷却水による一括被覆の冷却に干渉して、外観不良の原因となることから、自己支持型光ファイバケーブル3に対して上下に取付けられた泡飛ばしノズル9の噴流によって除去される。泡飛ばしノズル9は自己支持型光ファイバケーブル3に対して上下に設けられ、表裏同時に水流を当てるので泡が反対側に逃げてしまうことを抑制して効果的に泡の除去ができる。なお、泡飛ばしノズル9は噴流により泡の除去し冷却特性を改善に外観不良を抑制するとともに後述する水冷ノズル10とともに自己支持型光ファイバケーブル3がシーブ11に接触する手前で自己支持型光ファイバケーブル3を局部的に冷却し、前記一括被覆の表面温度を、前記余長付与シーブと接触する手前で硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持たせることに寄与する。 FIG. 4 is a schematic diagram for explaining a bubble blowing nozzle. As shown in FIG. 4, when the self-supporting optical fiber cable 3 enters the water tank 5, bubbles 12 are attached to the surface of the self-supporting optical fiber cable 3. The bubbles 12 interfere with cooling of the collective coating with the cooling water and cause appearance defects. Therefore, the bubbles 12 are removed by the jets of the bubble blowing nozzles 9 attached to the upper and lower sides of the self-supporting optical fiber cable 3. . The bubble blowing nozzle 9 is provided above and below the self-supporting optical fiber cable 3 and applies a water flow at the same time on the front and back, so that bubbles can be effectively removed by suppressing the escape of bubbles to the opposite side. The bubble blowing nozzle 9 removes bubbles by a jet to improve cooling characteristics, suppresses poor appearance, and, together with a water cooling nozzle 10 described later, a self-supporting optical fiber cable 3 comes into contact with the sheave 11 before the self-supporting optical fiber. The cable 3 is locally cooled, and the surface temperature of the collective coating is set to be equal to or lower than the curing temperature before contacting the surplus length imparting sheave, and after contacting with the surplus length imparting sheave, the longitudinal direction of the support wire and the cable in contributes to Taseru lifting a positive temperature gradient.

図3は水槽5の長手方向に移動可能な面を説明する図である。Xは面の移動範囲を示している。この水槽5は側面壁と自己支持型光ファイバケーブル3の水槽5への導入口が設けられている被覆機側の面7とによって構成されるが、面7は図3に矢印で示すように長手方向に対してXの範囲を平行移動することが可能である。即ち、面7は水槽5の断面積を長手方向に均一にしたまま、図1に示す水冷区間を調整することが可能である。   FIG. 3 is a diagram illustrating a surface of the water tank 5 that can move in the longitudinal direction. X indicates the movement range of the surface. This water tank 5 is constituted by a side wall and a surface 7 on the coating machine side where an inlet to the water tank 5 of the self-supporting optical fiber cable 3 is provided. The surface 7 is indicated by an arrow in FIG. It is possible to translate the range of X with respect to the longitudinal direction. That is, the surface 7 can adjust the water cooling section shown in FIG. 1 while keeping the cross-sectional area of the water tank 5 uniform in the longitudinal direction.

図5は水槽5の仕切り8と水槽内の水の流れに関する説明図である。図5に示すように、水槽5では1方向に規則正しい水流を発生させることができるが、その途中に幾つかの仕切り8を取り付けることによって断面積を急激に変化させることで水流を乱し、自己支持型光ファイバケーブル3の周囲の冷却水を攪拌させることで自己支持型光ファイバケーブル3から冷却水への熱交換を向上させる。   FIG. 5 is an explanatory diagram regarding the partition 8 of the water tank 5 and the flow of water in the water tank. As shown in FIG. 5, in the water tank 5, a regular water flow can be generated in one direction, but the water flow is disturbed by abruptly changing the cross-sectional area by attaching several partitions 8 in the middle of the water tank. Heat exchange from the self-supporting optical fiber cable 3 to the cooling water is improved by stirring the cooling water around the supporting optical fiber cable 3.

図6は水槽6内の水冷ノズル10の説明図である。水冷ノズル10は、自己支持型光ファイバケーブル3が余長付与シーブ11に接触する手前で自己支持型光ファイバケーブル3を局部的に冷却し、前記一括被覆の表面温度を、前記余長付与シーブと接触する手前で硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持たせるものである。ところで、本実施形態において水槽6は余長付与シーブ11を収容しているため水槽5に比べて底が深く、幅も広いため、断面積が非常に大きく、水槽内の冷却水はほとんど停止した状態となる。この状態では、自己支持型光ファイバケーブル3の周囲の冷却水に熱がたまり、冷却効果が落ちてしまう。そのため、図6に示すように、自己支持型光ファイバケーブル3全体に向けて、自己支持型光ファイバケーブル3の進行方向とは逆向きに、そして、余長付与シーブ11より手前に水冷ノズル10を設置し、水を噴出することで、その噴出が水槽壁や水面に反射・干渉して噴流の運動量が前方の遠距離まで保持されるため、冷却水は水槽の長手方向に渡って動き、余長付与シーブ11に接触する手前の自己支持型光ファイバケーブル3への冷却効果を高め、効果的に
前記一括被覆の表面温度を、前記余長付与シーブと接触する手前で硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持たせることができるので好適である。また、水冷ノズル10は複数配置しても効果がある。
FIG. 6 is an explanatory diagram of the water cooling nozzle 10 in the water tank 6. The water-cooling nozzle 10 locally cools the self-supporting optical fiber cable 3 before the self-supporting optical fiber cable 3 comes into contact with the extra-length-providing sheave 11, and changes the surface temperature of the collective coating to the extra-length- providing sheave. short of contacting the following curing temperatures and, after contact with the extra length imparting sheave in the longitudinal direction of the support wire and cable, in which Taseru lifting a positive temperature gradient. By the way, in this embodiment, since the aquarium 6 accommodates the extra-length-giving sheave 11, the bottom is deeper and wider than the aquarium 5, so the cross-sectional area is very large, and the cooling water in the aquarium is almost stopped. It becomes a state. In this state, heat accumulates in the cooling water around the self-supporting optical fiber cable 3 and the cooling effect is reduced. Therefore, as shown in FIG. 6, the water-cooling nozzle 10 faces the entire self-supporting optical fiber cable 3 in the direction opposite to the traveling direction of the self-supporting optical fiber cable 3 and before the surplus length imparting sheave 11. , And the water jets are reflected and interfered with the aquarium wall and the water surface, and the momentum of the jet is held to a long distance in the front, so the cooling water moves over the longitudinal direction of the aquarium, The cooling effect on the self-supporting optical fiber cable 3 in front of the sheave 11 that is in contact with the surplus length imparting sheave 11 is enhanced and effectively
The surface temperature of the bulk coating, the excess length granted sheave just before contacting to below the curing temperature and, after contact with the extra length imparting sheave in the longitudinal direction of the support wire and cable, Taseru lifting a positive temperature gradient This is preferable. Even if a plurality of water-cooling nozzles 10 are arranged, it is effective.

図9は余長付与シーブの概略を示す断面図である。自己支持型光ファイバケーブル3の光ファイバケーブル1と支持線2を、溝18及び19からなる収容部分を備える周長差を持つ図9に示すような余長付与シーブ11をかませることで、光ファイバケーブル1と支持線2との間に余長が発生する。図1に示すように余長付与シーブ111以降は、水冷ノズル10がなく、自己支持型光ファイバケーブル3の周囲の冷却能力が比較的弱めで、一括被覆内部の持っている熱量が次第に表面に伝わっていくので、一括被覆表面温度が上がり、再度軟化する。   FIG. 9 is a cross-sectional view showing an outline of a surplus length imparting sheave. By biting the optical fiber cable 1 and the support line 2 of the self-supporting optical fiber cable 3 with a surplus length providing sheave 11 as shown in FIG. An extra length is generated between the optical fiber cable 1 and the support wire 2. As shown in FIG. 1, after the surplus length giving sheave 111, there is no water cooling nozzle 10, the cooling capacity around the self-supporting optical fiber cable 3 is relatively weak, and the amount of heat in the batch coating gradually increases on the surface. As it is transmitted, the temperature of the coating surface rises and softens again.

図2は本発明及び比較例1の水槽直前から余長付与シーブ113以降までの一括被覆16の表面温度の変化を表すグラフである。図2(a)に示すように、本発明では長手方向に凹型の温度分布を示すグラフである。即ち、前記一括被覆の表面温度を、前記余長付与シーブと接触する手前で硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持つようになっている。なお、図2に記載されたピッチ線で囲まれた範囲は、余長付与シーブ111から余長付与シーブ113までの接触区間を表している。 FIG. 2 is a graph showing changes in the surface temperature of the collective coating 16 from immediately before the water tank of the present invention and Comparative Example 1 to after the surplus-length imparting sheave 113. As shown in FIG. 2A, the present invention is a graph showing a concave temperature distribution in the longitudinal direction. That is, the surface temperature of the collective coating is set to be equal to or lower than the curing temperature before coming into contact with the surplus length imparting sheave, and after the contact with the surplus length imparting sheave, a positive temperature gradient is formed in the longitudinal direction of the support wire and the cable. It has come to have. The range surrounded by the pitch lines shown in FIG. 2 represents a contact section from the surplus length imparting sheave 111 to the surplus length imparting sheave 113.

次に、本発明の実施形態を、以下の表1及び表2に記載された比較例を参照しながら詳細に説明する。
表 1

Figure 0004015140

表 2
Figure 0004015140
Next, embodiments of the present invention will be described in detail with reference to comparative examples described in Tables 1 and 2 below.
Table 1
Figure 0004015140

Table 2
Figure 0004015140

比較例1は、本発明の実施形態から仕切り8及び水冷ノズル10を取り外し、さらに水槽5及び水槽6で水温を本発明と同じく10℃としたものである。押出し時点での自己支持型光ファイバケーブル3の一括被覆の表面温度が180℃であるとすると、水槽直前までの空冷区間ではほとんど自己支持型光ファイバケーブル3の一括被覆16の表面温度が下がらない。   In Comparative Example 1, the partition 8 and the water cooling nozzle 10 are removed from the embodiment of the present invention, and the water temperature is set to 10 ° C. in the water tank 5 and the water tank 6 as in the present invention. If the surface temperature of the collective coating of the self-supporting optical fiber cable 3 at the time of extrusion is 180 ° C., the surface temperature of the collective coating 16 of the self-supporting optical fiber cable 3 hardly decreases in the air-cooling section immediately before the water tank. .

しかし、自己支持型光ファイバケーブル3の一括被覆16の表面温度は水槽5に入ると、図2(b)のグラフが示すように、減衰曲線的に下がる。余長付与シーブ111の位置で、自己支持型光ファイバケーブル3の一括被覆16の表面温度が30℃未満でないと、一括被覆表面の硬化が不十分なため、余長付与シーブ111との接触で自己支持型光ファイバケーブル3が扁平する。 However, when the surface temperature of the collective coating 16 of the self-supporting optical fiber cable 3 enters the water tank 5, as shown in the graph of FIG. If the surface temperature of the collective coating 16 of the self-supporting optical fiber cable 3 is not less than 30 ° C. at the position of the extra length imparting sheave 111, the collective coating surface is not sufficiently cured. The self-supporting optical fiber cable 3 is flattened.

比較例2は、本発明の実施形態において水槽5及び水槽6で水温を2℃としたものである。比較例1と同様に、押出し時点での自己支持型光ファイバケーブル3の一括被覆16の表面温度が180℃であるとすると、水槽直前までの空冷区間ではほとんど自己支持型光ファイバケーブル3の一括被覆16の表面温度が下がらない。しかし、自己支持型光ファイバケーブル3の一括被覆16の表面温度は水槽5に入ると、減衰曲線的に下がる。   In Comparative Example 2, the water temperature is 2 ° C. in the water tank 5 and the water tank 6 in the embodiment of the present invention. As in Comparative Example 1, when the surface temperature of the collective coating 16 of the self-supporting optical fiber cable 3 at the time of extrusion is 180 ° C., the collective of the self-supporting optical fiber cable 3 is almost in the air-cooling section immediately before the water tank. The surface temperature of the coating 16 does not decrease. However, when the surface temperature of the collective covering 16 of the self-supporting optical fiber cable 3 enters the water tank 5, it decreases in an attenuation curve.

これは、水槽5及び水槽6で水温を2℃としたことにより、冷却能力が平均的に上がっている。したがって、自己支持型光ファイバケーブル3の一括被覆16の表面の硬化は十分であり、余長付与シーブ111との接触による自己支持型光ファイバケーブル3の扁平は防止できる。   This is because the cooling capacity is increased on average by setting the water temperature to 2 ° C. in the water tank 5 and the water tank 6. Therefore, the surface of the collective coating 16 of the self-supporting optical fiber cable 3 is sufficiently cured, and the self-supporting optical fiber cable 3 can be prevented from being flattened by contact with the surplus length imparting sheave 111.

しかし、一括被覆内部は材料(一般的にはポリエチレンである。)の熱伝導性が小さいので、ほとんど一括被覆16の内部温度降下に違いはない。余長付与シーブ111の位置では、一括被覆の内部温度は160℃であり、余長付与シーブ113の位置では140℃程度である。このように、一括被覆16の内部温度と表面温度との温度差が大きすぎると、一括被覆16の内部の固さと表面部分の固さの差が大きくなる。余長付与シーブ11で余長付自己支持型光ファイバケーブル3を引張ってる区間では、一括被覆16の未硬化部分にズレ変形が起こるが、一括被覆16の硬化した部分にはひずみが溜まる。   However, since the heat conductivity of the material (generally polyethylene) is small inside the collective coating, there is almost no difference in the internal temperature drop of the collective coating 16. At the position of the surplus length imparting sheave 111, the internal temperature of the collective coating is 160 ° C., and at the position of the surplus length imparting sheave 113, it is about 140 ° C. Thus, if the temperature difference between the internal temperature and the surface temperature of the collective coating 16 is too large, the difference between the internal hardness of the collective coating 16 and the hardness of the surface portion becomes large. In the section where the extra-length-provided sheave 11 is pulling the extra-length self-supporting optical fiber cable 3, the uncured portion of the collective coating 16 is deformed, but strain is accumulated in the cured portion of the collective coating 16.

余長付与シーブ113を出てから張力が解放されると、一括被覆16の硬化部分は復元力で縮み、結果的に余長率が小さくなる。さらに一括被覆16の内部の固さと表面部分の固さの差が大きくなると、一括被覆16の表面だけの縮みで一括被覆16にしわやへこみが入る外観不良となる。   When the tension is released after leaving the surplus length imparting sheave 113, the hardened portion of the collective coating 16 is shrunk by the restoring force, resulting in a smaller surplus length ratio. Furthermore, when the difference between the hardness of the inside of the collective coating 16 and the hardness of the surface portion becomes large, the appearance of the wrinkles and dents in the collective coating 16 due to the shrinkage of only the surface of the collective coating 16 results.

本発明は、一括被覆16の表面温度を20℃から30℃に制御し、一括被覆16の表面と内部との温度差を適正に保つので、扁平もなく、かつ、余長も十分に入る。   In the present invention, the surface temperature of the collective coating 16 is controlled from 20 ° C. to 30 ° C., and the temperature difference between the surface and the inside of the collective coating 16 is maintained appropriately, so that there is no flatness and the extra length is sufficient.

なお、本実施形態のように奇数個(例えば3個)の余長付与シーブを千鳥状に配置した場合は用いたが、ケーブル導入口と導出口を一直線上に配置できるため好ましいが余長付与シーブの数は3個以外であっても良い。シーブに溝を形成する場合は、ケーブルがシーブに接触する位置が安定して好ましいが必ずしも必要でない。また、図10に示すように1つの余長付与キャプスタン115を用い、自己指示型光ファイバケーブル3を余長付与キャプスタン115に巻き付けて引取るものであってもよい。さらに、冷媒は水の他に各種気体、液体が適用可能であるが、冷却効率、経済性、安全性を考慮して水を適用することが好適である。   In addition, although it was used when odd-numbered (for example, three) extra-length-giving sheaves were arranged in a staggered manner as in the present embodiment, it is preferable because the cable inlet and outlet can be arranged in a straight line. The number of sheaves may be other than three. When the groove is formed in the sheave, the position where the cable contacts the sheave is stable and preferable, but it is not always necessary. In addition, as shown in FIG. 10, one extra length imparting capstan 115 may be used, and the self-indicating optical fiber cable 3 may be wound around the extra length imparting capstan 115 and pulled. In addition to water, various gases and liquids can be used as the refrigerant, but it is preferable to apply water in consideration of cooling efficiency, economy, and safety.

本発明の余長付自己支持型光ファイバケーブルの製造方法により、水冷ノズルや仕切りによる冷却効果の上昇によって、余長付与シーブと接触する時点でケーブルが硬化するので潰れがなく、扁平が小さくなる。かつ、余長付与シーブ以降で余長が安定して与えることができる。   By the method for manufacturing a self-supporting optical fiber cable with extra length according to the present invention, the cooling effect is increased by a water-cooled nozzle or a partition, so that the cable is cured at the time of contact with the extra length-giving sheave, so that the flattening is reduced. . In addition, the surplus length can be stably provided after the surplus length giving sheave.

また、本発明のケーブル製造方法により、光ファイバケーブル断面の扁平率が従来の6%から3%未満に収めることができた。また、これらと面による水冷区間の調節によって余長を目標値に制御できた。さらに、上下に取り付けられた泡飛ばしノズルの噴流によってケーブルに付着した泡を飛ばし、ケーブルの冷却の妨げがなくなることで外観不良を防止することができた。さらに、ケーブル製造の線速上昇が可能となった。上述により、産業上の利用価値が高い。




In addition, the cable manufacturing method of the present invention allowed the flatness of the cross section of the optical fiber cable to fall from 6% to less than 3%. Moreover, the surplus length could be controlled to the target value by adjusting the water cooling section with these and the surface. Furthermore, the bubble adhering to the cable was blown off by the jets of the bubble blowing nozzles installed on the top and bottom, and the hindrance to the cooling of the cable was eliminated, thereby preventing appearance defects. In addition, the cable production speed can be increased. As described above, the industrial utility value is high.




図1は、本発明における自己支持型ケーブル製造装置の要部を模式的に説明する縦断面図である。FIG. 1 is a longitudinal sectional view schematically illustrating a main part of a self-supporting cable manufacturing apparatus according to the present invention. 図2中(a)は、本発明の製造方法による自己支持型光ファイバケーブルの一括被覆の表面温度を示すグラフである。図2中(b)は、比較例1の自己支持型光ファイバケーブルの一括被覆の表面温度を示すグラフである。In FIG. 2, (a) is a graph showing the surface temperature of the collective coating of the self-supporting optical fiber cable by the manufacturing method of the present invention. 2B is a graph showing the surface temperature of the collective coating of the self-supporting optical fiber cable of Comparative Example 1. FIG. 図3は、前水槽の長手方向に移動可能な面の説明図である。Xは面の移動範囲を示している。FIG. 3 is an explanatory diagram of a surface movable in the longitudinal direction of the front water tank. X indicates the movement range of the surface. 図4は、泡飛ばしノズルの説明図である。FIG. 4 is an explanatory diagram of a bubble blowing nozzle. 図5は、水槽5の仕切り8と水槽5内の水の流れに関する説明図である。FIG. 5 is an explanatory diagram relating to the partition 8 of the water tank 5 and the flow of water in the water tank 5. 図6は、水槽6内の水冷ノズル10の説明図である。FIG. 6 is an explanatory diagram of the water cooling nozzle 10 in the water tank 6. 図7は、余長付自己支持型ケーブルの概略を示す斜視図である。FIG. 7 is a perspective view schematically showing a self-supporting cable with extra length. 図8は、自己支持型ケーブルの概略を示す斜視図である。FIG. 8 is a perspective view schematically showing a self-supporting cable. 図9は、余長付与シーブの概略を示す断面図である。FIG. 9 is a cross-sectional view schematically showing the surplus length imparting sheave. 図10は、本発明における自己支持型ケーブル製造装置の要部を模式的に説明する他の形態の縦断面図である。FIG. 10 is a vertical cross-sectional view of another embodiment schematically illustrating the main part of the self-supporting cable manufacturing apparatus according to the present invention.

符号の説明Explanation of symbols

1 光ファイバケーブル
2 支持線
3 自己支持型光ファイバケーブル
4 被覆機
5、6 水槽
7 面
8 仕切り
9 泡飛ばしノズル
10 水冷ノズル
11 111〜113 余長付与シーブ
115 余長付与キャプスタン
12 泡
13 余長付自己支持型ケーブル
14 ケーブル
15 首部
16 一括被覆
17 自己支持型ケーブル
18、19 溝

DESCRIPTION OF SYMBOLS 1 Optical fiber cable 2 Support line 3 Self-supporting type optical fiber cable 4 Coating machine 5, 6 Water tank 7 Surface 8 Partition 9 Bubble blowing nozzle 10 Water cooling nozzle 11 111-113 Extra length grant sheave 115 Extra length grant capstan 12 Foam 13 Extra Long self-supporting cable 14 Cable 15 Neck 16 Batch coating 17 Self-supporting cable 18, 19 Groove

Claims (4)

被覆機出側の余長付与シーブに支持線とケーブルを接触させて取引速度に差を付け、前記支持線とケーブルに被覆機により一括被覆を施し、余長を付与する余長付自己支持型光ファイバケーブルの製造方法であって、
前記一括被覆後の支持線及びケーブルを、前記被覆機の出側に設けられ、ケーブル導入口に向かって水が一方向に流れその途中で水の流路の断面積を急激に絞る仕切りが設置された水槽を通過させ、
前記一括被覆の表面温度を、前記余長付与シーブと接触する手前で前記ケーブルを局所的に冷却して硬化温度以下にし、前記余長付与シーブと接触後は、前記支持線およびケーブルの長手方向において、正の温度勾配を持つように冷却することを特徴とする余長付自己支持型光ファイバケーブルの製造方法。
A self-supporting type with surplus length that gives a surplus length by applying a surplus length to the sheave on the exit side of the coating machine by contacting the support wire and the cable to make a difference in transaction speed, and coating the support wire and cable with a coating machine. A method of manufacturing an optical fiber cable,
A support wire and cable after the collective coating are provided on the outlet side of the coating machine, and a partition is installed to rapidly reduce the cross-sectional area of the water flow path in the middle of the flow of water toward the cable inlet. Passed through the aquarium,
The surface temperature of the collective coating is locally cooled before the contact with the surplus length imparting sheave to a curing temperature or less, and after contact with the surplus length imparting sheave, the longitudinal direction of the support wire and the cable The method of manufacturing a self-supporting optical fiber cable with a surplus length, wherein the cooling is performed so as to have a positive temperature gradient.
前記一括被覆を、前記余長付与シーブに接触する直前に冷却ノズルにより噴出する冷媒により冷却することを特徴とする請求項1に記載の余長付自己支持型光ファイバケーブルの製造方法。 2. The method of manufacturing a self-supporting optical fiber cable with a surplus length according to claim 1, wherein the collective coating is cooled by a refrigerant jetted by a cooling nozzle immediately before contacting the surplus length imparting sheave. 前記余長付与シーブを前記水槽内に設け、前記水槽の前記被覆機側の面に設けられたケーブル導入口から前記支持線及びケーブルを前記水槽内に挿通して前記余長付与シーブに接触させ、前記水槽内の少なくとも前記余長付与シーブ直前の箇所において、ケーブル走行と対向する方向に水を流して冷却し、前記ケーブル導入口が設けられた面を水槽の断面積を変化させずに長手方向に平行移動させることにより、水による冷却の開始位置を調整して温度調節を行うことを特徴とする請求項1または2に記載の余長付自己支持型光ファイバケーブルの製造方法。 The surplus length imparting sheave is provided in the water tank, and the support wire and the cable are inserted into the water tank from a cable introduction port provided on the surface of the water tank on the coating machine side, and are brought into contact with the surplus length imparting sheave. The water tank is cooled by flowing water in a direction opposite to the cable travel at least immediately before the sheave giving sheave, and the surface provided with the cable inlet is elongated without changing the cross-sectional area of the water tank. The method for manufacturing a self-supporting optical fiber cable with extra length according to claim 1 or 2, wherein the temperature is adjusted by adjusting the start position of cooling with water by translating in the direction. 前記水層内において、泡飛ばしノズルによりケーブルに対して表裏同時に水流を当てることを特徴とする請求項1乃至3のいずれか1項に記載の余長付自己支持型光ファイバケーブルの製造方法。 4. The method of manufacturing a self-supporting optical fiber cable with extra length according to claim 1, wherein a water flow is simultaneously applied to the cable by a bubble blowing nozzle in the water layer. 5.
JP2004197812A 2004-07-05 2004-07-05 Method for manufacturing self-supporting optical fiber cable with extra length Expired - Fee Related JP4015140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197812A JP4015140B2 (en) 2004-07-05 2004-07-05 Method for manufacturing self-supporting optical fiber cable with extra length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197812A JP4015140B2 (en) 2004-07-05 2004-07-05 Method for manufacturing self-supporting optical fiber cable with extra length

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007104452A Division JP4234760B2 (en) 2007-04-12 2007-04-12 Method for manufacturing self-supporting optical fiber cable with extra length

Publications (2)

Publication Number Publication Date
JP2006018143A JP2006018143A (en) 2006-01-19
JP4015140B2 true JP4015140B2 (en) 2007-11-28

Family

ID=35792467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197812A Expired - Fee Related JP4015140B2 (en) 2004-07-05 2004-07-05 Method for manufacturing self-supporting optical fiber cable with extra length

Country Status (1)

Country Link
JP (1) JP4015140B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215892A (en) * 2018-11-27 2019-01-15 安徽牡东通讯光缆有限公司 A kind of cable cooling device
CN109378128B (en) * 2018-11-27 2024-04-12 安徽牡东通讯光缆有限公司 Cable water cooling equipment

Also Published As

Publication number Publication date
JP2006018143A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2010070931A1 (en) Method for producing optical fiber preform
US7326298B2 (en) Wire insulating line
KR20140053371A (en) Secondary cooling method and secondary cooling device for continuous casting machine
US8418893B2 (en) Immersion nozzle
KR20110002081U (en) Method and continuous casting plant for producing thick slabs
JP4015140B2 (en) Method for manufacturing self-supporting optical fiber cable with extra length
JP4438596B2 (en) Linear object cooling device
JP4234760B2 (en) Method for manufacturing self-supporting optical fiber cable with extra length
KR100237499B1 (en) Strip casting
US7905272B2 (en) Method and device for the production of wide strips of copper or copper alloys
JP2000335932A (en) Nozzle tip for spinning flat glass fiber and apparatus for production
JP3826034B2 (en) Drift prevention immersion nozzle and sliding nozzle device
JP4426947B2 (en) Covered wire take-up machine
WO2021157266A1 (en) Apparatus and method for producing glass fiber
CN1223419C (en) Nozzle equipped with a bar for introducing molten metal into an ingot mould for continuous metal casting
CN1241700C (en) Method and strand guide for supporting, guiding and cooling casting strands made of steel, especially preliminary sections for girders
FI61856C (en) METHOD OF MANUFACTURE OF GLASS GLASS
JP7333020B2 (en) Glass fiber manufacturing apparatus and manufacturing method
JP2001266678A (en) Apparatus, and method manufacturing for self-supporting cable
EP4052815B1 (en) Secondary cooling method for continuous cast strand
KR101998970B1 (en) Continuous casting apparatus
WO2022264607A1 (en) Bushing, glass fiber production device, and glass fiber production method
JP3303387B2 (en) Heating furnace for linear body, apparatus for manufacturing linear body, and method for manufacturing linear body
JPH02247053A (en) Method for cooling pinch roll for continuous casting
WO2022264606A1 (en) Bushing, glass fiber manufacturing device, and glass fiber manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070306

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees