JPH089643A - Schenkel type high voltage dc power source - Google Patents

Schenkel type high voltage dc power source

Info

Publication number
JPH089643A
JPH089643A JP6160714A JP16071494A JPH089643A JP H089643 A JPH089643 A JP H089643A JP 6160714 A JP6160714 A JP 6160714A JP 16071494 A JP16071494 A JP 16071494A JP H089643 A JPH089643 A JP H089643A
Authority
JP
Japan
Prior art keywords
coil
booster
power supply
drive shaft
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6160714A
Other languages
Japanese (ja)
Inventor
Toshio Kimura
寿男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP6160714A priority Critical patent/JPH089643A/en
Publication of JPH089643A publication Critical patent/JPH089643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce high-frequency ripples without using an inductance regulating coil by providing a ferrite core displaceable in the axial direction of a step-up coil in the step-up coil. CONSTITUTION:A stepping motor 36 is forward or reversely driven to rotate an insulation drive shaft 32 via a bevel gear 35. As the shaft 32 is rotated, a ferrite core 38 disposed between a secondary U-phase coil 42 and a secondary V-phase coil 42' is displaced in the axial direction of a step-up coil by a threaded part 321 of the shaft 32 and a screw mechanism of a jack 40 engaged with the part 321, thereby relatively regulating the induction coupling degree of the primary coil with the secondary U-phase coil and the secondary V-phase coil, and the position of the core 38 is so regulated that the high-frequency induced ripple to be superposed on the DC output voltage is minimized. Thus, a coil for regulating the inductance is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流出力電圧に重畳す
るリップル電圧を低減させたシェンケル型直流高電圧電
源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Schenkel type DC high voltage power supply device in which a ripple voltage superimposed on a DC output voltage is reduced.

【0002】[0002]

【従来の技術】図2はイオン注入装置、電子線照射装置
等における荷電粒子の加速電圧源に用いられているバラ
ンス形式のシェンケル型直流高電圧電源の基本回路図で
ある。同高電圧電源は、全体として、数10kHzの高
周波発振電源部1と、同電源部から給電される整流逓倍
部2からなる。高周波発振電源部1における発振管3の
プレートは昇圧コイル4の1次コイル41を介して直流
電源5の正極端子に接続されており、発振管のカソード
は接地されている。昇圧コイル4の2次U相コイル
2,同V相コイル42’の一端は整流逓倍部2における
円筒を二つ割した形状のU相高周波(RF)電極6,V
相高周波(RF)電極6’に接続されており、これら各
コイルの他端はリップル調整用コイル7,7’を介して
接地される。
2. Description of the Related Art FIG. 2 is a basic circuit diagram of a balanced type Schenkel type DC high voltage power source used as an accelerating voltage source for charged particles in an ion implantation apparatus, an electron beam irradiation apparatus and the like. The high-voltage power supply as a whole is composed of a high-frequency oscillation power supply unit 1 of several tens of kHz and a rectifying and multiplying unit 2 fed from the power supply unit. The plate of the oscillation tube 3 in the high-frequency oscillation power supply unit 1 is connected to the positive terminal of the DC power supply 5 via the primary coil 4 1 of the boosting coil 4, and the cathode of the oscillation tube is grounded. One ends of the secondary U-phase coil 4 2 and the V-phase coil 4 2 ′ of the booster coil 4 have U-phase radio frequency (RF) electrodes 6 and V each having a shape obtained by dividing the cylinder in the rectifying and multiplying unit 2 into two.
It is connected to a phase radio frequency (RF) electrode 6 ', and the other ends of these coils are grounded via ripple adjusting coils 7 and 7'.

【0003】図3は昇圧コイル4の構成図であり、昇圧
コイルは、高圧絶縁ガスが充填される圧力容器8内に収
容されており、同容器は整流逓倍部2を収容する圧力容
器9に連通している。昇圧コイルは中央絶縁板21の両
側に1次及び2次コイル部を対称に配置して構成されて
おり、2枚の絶縁板22の両面に1次コイルのコイル部
分411を設け、複数の絶縁板23の両面に2次コイルの
各コイル部分42u,42vが設けられている。各絶縁板
21,22,23は複数本の絶縁体製ボルト24で締結
されており、1次コイルの全コイル部分411は直列に接
続して1次コイル41が構成され、2次コイルの各コイ
ル部分42uを直列接続して2次U相コイル42が、そし
て各コイル部分42vを直列接続して2次V相コイル
2’が構成される。そして中央絶縁板21を圧力容器
8に固定した支持部材25に取り付けることにより、昇
圧コイル4を同容器内に設置する。
FIG. 3 is a block diagram of the booster coil 4. The booster coil is housed in a pressure container 8 filled with a high-pressure insulating gas, and the container is a pressure container 9 that houses the rectifying and multiplying unit 2. It is in communication. The step-up coil is configured by symmetrically arranging the primary and secondary coil parts on both sides of the central insulating plate 21, and the coil parts 4 11 of the primary coil are provided on both surfaces of the two insulating plates 22 to form a plurality of coil parts. The coil portions 4 2 u and 4 2 v of the secondary coil are provided on both surfaces of the insulating plate 23. Each insulating plate 21, 22, 23 is fastened by a plurality of insulator bolts 24, and all coil portions 4 11 of the primary coil are connected in series to form a primary coil 4 1. The respective coil portions 4 2 u are connected in series to form a secondary U-phase coil 4 2 , and the respective coil portions 4 2 v are connected in series to form a secondary V-phase coil 4 2 ′. Then, by mounting the central insulating plate 21 on the support member 25 fixed to the pressure vessel 8, the boosting coil 4 is installed in the vessel.

【0004】各高周波電極6,6’の内側に幅の狭いシ
ールド電極10,10’がそれぞれ多数段設けられてお
り、高周波電極とシールド電極間の浮遊静電容量は整流
逓倍用コンデンサとして働く。接地点と最低圧段のシー
ルド電極10,10’との間、各段のシールド電極10
及び10’とそれより高圧段のシールド電極10’及び
10との間、最高圧段のシールド電極10,10と高電
圧タ−ミナル電極11との間に図示極性の整流器12が
接続されている(最低圧段のシールド電極は整流器を介
さずに接地点に接続し、最高圧段のシールド電極を整流
器を介さずに高電圧タ−ミナル電極に接続する形式のも
のもある)。
A large number of narrow shield electrodes 10, 10 'are provided inside the high-frequency electrodes 6, 6', respectively, and the stray capacitance between the high-frequency electrodes and the shield electrodes acts as a rectifying and multiplying capacitor. Between the ground point and the shield electrodes 10 and 10 'of the lowest pressure stage, the shield electrode 10 of each stage
And 10 'and the shield electrodes 10' and 10 of the higher voltage stage, and between the shield electrodes 10 and 10 of the highest pressure stage and the high voltage terminal electrode 11, a rectifier 12 of the illustrated polarity is connected. (There is also a type in which the shield electrode of the lowest pressure stage is connected to the ground point without a rectifier, and the shield electrode of the highest pressure stage is connected to the high voltage terminal electrode without a rectifier).

【0005】高周波発振電源部1の発振管3の負電位に
バイアスされたグリッドには、例えば昇圧コイル4の2
次コイルに誘導結合したピックアップコイル13から励
振電圧が与えられており、これにより、高周波発振電源
部1は発振動作し、発振周波数は、昇圧コイル4の2次
コイルのインダクタンスと、この2次コイルと並列関係
にある浮遊静電容量で形成される共振回路の共振周波数
である。昇圧コイル4の2次U相コイル42、同V相コ
イル42’に接続された高周波電極6,6’と各段のシ
ールド電極10,10’との間の浮遊静電容量には2次
コイル電圧を順次整流逓倍した直流電圧が生じ、高電圧
タ−ミナル電極11に正極性の高い直流出力電圧が得ら
れる。
In the grid biased to the negative potential of the oscillation tube 3 of the high frequency oscillation power supply unit 1, for example, 2 of the boosting coil 4 is provided.
An excitation voltage is applied from the pickup coil 13 that is inductively coupled to the secondary coil, whereby the high frequency oscillation power supply unit 1 oscillates, and the oscillation frequency is the inductance of the secondary coil of the boosting coil 4 and this secondary coil. It is the resonance frequency of the resonance circuit formed by the floating electrostatic capacitance in parallel relationship with. The stray capacitance between the high frequency electrodes 6 and 6 ′ connected to the secondary U-phase coil 4 2 and the V-phase coil 4 2 ′ of the booster coil 4 and the shield electrodes 10 and 10 ′ of each stage is 2 A direct current voltage obtained by sequentially rectifying and multiplying the next coil voltage is generated, and a high positive polarity direct current output voltage is obtained at the high voltage terminal electrode 11.

【0006】[0006]

【発明が解決しようとする課題】バランス形式(全波整
流方式)のシェンケル型直流高電圧電源は、回路構成部
の対称性により、原理的に、直流出力電圧における高周
波誘導分が零になる利点を有するが、実際は、高周波電
極、シールド電極等の工作、設置上の限界から完全に対
称に製作することは不可能であり、浮遊静電容量のアン
バランスが生ずる。これに伴い、高周波誘導分が零にな
らず、直流出力電圧に重畳されるリップル電圧が大きく
なる。そこで、昇圧コイル4の2次コイル42,42’の
接地側に、圧力タンクの外に設置したリップル調整用コ
イル7,7’を接続し、調整用コイルによって共振回路
のインダクタンスを調整し、整流逓倍部2への印加電圧
のバランス状態を調節することにより、高周波誘導分に
よるリップル電圧を低減させている。
In the balanced type (full-wave rectification type) Schenkel type DC high-voltage power supply, the symmetry of the circuit components in principle has the advantage that the high frequency induction component in the DC output voltage becomes zero. However, in reality, it is impossible to manufacture them in perfect symmetry due to the limitations of working and installation of high-frequency electrodes, shield electrodes, etc., and an imbalance of stray capacitance occurs. Along with this, the high frequency induction component does not become zero, and the ripple voltage superimposed on the DC output voltage increases. Therefore, the ripple adjusting coils 7 and 7'installed outside the pressure tank are connected to the ground side of the secondary coils 4 2 and 4 2 'of the boosting coil 4, and the inductance of the resonance circuit is adjusted by the adjusting coil. By adjusting the balance state of the voltage applied to the rectifying and multiplying unit 2, the ripple voltage due to the high frequency induction component is reduced.

【0007】しかしながら、かかるインダクタンス調整
用コイル7,7’は一般に大型となる。例えばメガ・ボ
ルト(MV)級の直流高電圧電源に用いられるものの場
合、U,V各相のインダクタンスに対し5%の可変分を
インダクタンス調整コイルで得ようとすると、30ター
ン程度のコイルを巻く必要があり、加えて、そのコイル
辺部を連続的に短絡してインダクタンスを微細に調節す
る機構を要し、かかる調整用コイルに共振状態の電流を
流すとなると、大気絶縁、冷却を行う関係上、圧力容器
8より大型のインダクタンス調整コイル装置が必要とな
り、収容容器を含めると2m角程度の大きさになってし
まい、直流高電圧電源全体からみてスペースファクター
が非常に悪いものとなる。さらに、調整用コイル7,
7’との接続のために、2次コイル42,42’の接地側
接続線を圧力容器8の外に引き出さねばならない。
However, the inductance adjusting coils 7 and 7'are generally large in size. For example, in the case of being used for a mega high voltage (MV) class DC high voltage power supply, if an inductance adjusting coil is used to obtain a variable amount of 5% with respect to the inductance of each phase of U and V, a coil of about 30 turns is wound. In addition, it requires a mechanism to finely adjust the inductance by short-circuiting the coil sides continuously, and when a current in a resonant state is passed through such an adjustment coil, it is necessary to perform atmospheric insulation and cooling. In addition, an inductance adjusting coil device larger than the pressure vessel 8 is required, and the size of about 2 m square is included when the accommodating vessel is included, resulting in a very bad space factor in view of the entire DC high voltage power supply. Furthermore, the adjustment coil 7,
'For connection with the secondary coil 4 2, 4 2' 7 ground connection line of the must drawn out of the pressure vessel 8.

【0008】本発明は、インダクタンス調整用コイルを
使用せずに、直流出力電圧に重畳される高周波誘導リッ
プルを低減させたシェンケル型直流高電圧電源の提供を
目的とするものである。
It is an object of the present invention to provide a Schenkel type DC high voltage power supply which does not use an inductance adjusting coil and which reduces high frequency induction ripple superimposed on a DC output voltage.

【0009】[0009]

【課題を解決するための手段】本考案は、高周波電源か
ら給電される1次コイルと、この1次コイルの両側に配
置され、二つの高周波電極にそれぞれ給電する二つの2
次コイルとからなる昇圧コイルを備えたシェンケル型直
流高電圧電源装置において、前記昇圧コイルの内部に、
コイル軸方向に変位可能のフェライト磁芯が設けられて
いることを主たる特徴とするのである。
SUMMARY OF THE INVENTION The present invention provides a primary coil which is supplied with power from a high frequency power source and two two coils which are arranged on both sides of the primary coil and which respectively supply power to two high frequency electrodes.
In a Schenkel type DC high voltage power supply device having a boost coil consisting of the following coil, in the boost coil,
The main feature is that a ferrite core that is displaceable in the coil axis direction is provided.

【0010】さらに本発明は、高周波電源から給電され
る1次コイルと、この1次コイルの両側に配置され、二
つの高周波電極にそれぞれ給電する二つの2次コイルと
からなり、圧力容器に収納された昇圧コイルを備えたシ
ェンケル型直流高電圧電源装置において、前記昇圧コイ
ルの内部を貫通し、前記圧力容器の外に延出した絶縁駆
動軸と、内部に貫通する前記絶縁駆動軸にネジ機構を介
して結合し、前記昇圧コイルの軸方向に変位可能のフェ
ライト磁芯とを設けてなることを特徴とするものであ
る。
Further, the present invention comprises a primary coil fed from a high frequency power source, and two secondary coils arranged on both sides of the primary coil and respectively feeding two high frequency electrodes, and housed in a pressure vessel. In a Schenkel-type DC high-voltage power supply device including a booster coil, an insulating drive shaft that penetrates the inside of the booster coil and extends to the outside of the pressure vessel, and a screw mechanism for the insulating drive shaft that penetrates inside. And a ferrite magnetic core that is displaceable in the axial direction of the booster coil.

【0011】[0011]

【作用】昇圧コイルの内部に設けられたフェライト磁芯
をコイル軸方向に変位させることにより、1次コイルと
各2次コイルとの誘導結合度が変化し、各高周波電極へ
の印加電圧のバランス状態が調節できる。直流出力電圧
に重畳されたリップルが最小となるようにフェライト磁
芯の位置を調節する。
[Function] By displacing the ferrite core provided inside the booster coil in the coil axis direction, the degree of inductive coupling between the primary coil and each secondary coil changes, and the voltage applied to each high-frequency electrode is balanced. The state can be adjusted. The position of the ferrite core is adjusted so that the ripple superimposed on the DC output voltage is minimized.

【0012】絶縁駆動軸を圧力容器の外から回転操作す
ることにより、同駆動軸にネジ機構を介して結合したフ
ェライト磁芯の位置を微調節することができる。
By rotating the insulating drive shaft from the outside of the pressure vessel, the position of the ferrite magnetic core coupled to the drive shaft via the screw mechanism can be finely adjusted.

【0013】[0013]

【実施例】本発明の実施例について図面を参照して説明
する。図1はシェンケル型直流高電圧電源装置における
昇圧コイル部の構成図であり、図2と同一符号は同等部
分を示す。圧力容器8に収納された昇圧コイル4は、中
央絶縁板21の両側に、高周波電源に接続される1次コ
イル41及び二つの高周波電極に給電する2次コイル
2,42’のコイル部分411,42u,42vを対称的に
配置して構成されており、各2次コイルの一端は高周波
電極6,6’に接続し、他端は接地点に接続される。昇
圧コイル全体を支持している中央絶縁板21、1次コイ
ル41のコイル部分411が両側に設けられている絶縁板
22及び2次コイル42,42’のコイル部分42u,42
vが両側に設けられている絶縁板2には中央開口部30
が形成されており、各絶縁板は環状のものとなってい
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a boosting coil unit in a Schenkel type DC high voltage power supply device, and the same reference numerals as those in FIG. 2 denote the same parts. The booster coil 4 housed in the pressure vessel 8 includes a primary coil 4 1 connected to a high frequency power source and a secondary coil 4 2 , 4 2 ′ for feeding two high frequency electrodes on both sides of the central insulating plate 21. The parts 4 11 , 4 2 u and 4 2 v are arranged symmetrically, one end of each secondary coil is connected to the high frequency electrodes 6, 6 ′, and the other end is connected to the ground point. A central insulating plate 21 supporting the entire booster coil, an insulating plate 22 provided with coil parts 4 11 of the primary coil 4 1 on both sides, and coil parts 4 2 u of the secondary coils 4 2 , 4 2 ′, 4 2
The insulating plate 2 provided with v on both sides has a central opening 30.
Are formed, and each insulating plate has an annular shape.

【0014】これら絶縁板21,22,23の中央開口
内を貫通し、昇圧コイル4の内部にフェライト磁芯を用
いた、1次コイルと2次コイル間の誘導結合度可変機構
31を設ける。昇圧コイル4の内部を貫通する絶縁物製
の絶縁駆動軸32は、圧力容器8の上、下フランジ
1,82にそれぞれ取り付けられたシール付きガイドフ
ランジ33を通して圧力容器の外に延出しており、同駆
動軸の上端はスラストベアリング34で軸支する。絶縁
駆動軸32の下端は傘歯車35を介して可逆転ステッピ
ングモ−タ36に連結されており、同モ−タは圧力容器
の下部フランジ82に固定した支持部材37に取り付け
られている。
A mechanism 31 for varying the degree of inductive coupling between the primary coil and the secondary coil, which uses a ferrite magnetic core, is provided inside the booster coil 4 so as to penetrate through the central openings of the insulating plates 21, 22, and 23. An insulating drive shaft 32 made of an insulating material penetrating the inside of the booster coil 4 extends out of the pressure vessel through a guide flange 33 with a seal attached to each of the upper and lower flanges 8 1 and 8 2 of the pressure vessel 8. The thrust bearing 34 pivotally supports the upper end of the drive shaft. Insulating drive shaft 32 of the lower end reversing allowed through the bevel gears 35 stepping - is connected to the motor 36, the motor - motor is attached to a support member 37 fixed to the lower flange 82 of the pressure vessel.

【0015】絶縁駆動軸32の回転によって位置が変位
するフェライト磁芯38が昇圧コイル4の内部に設けら
れる。このフェライト磁芯は円筒状をなしており、その
内部に絶縁駆動軸32が通っている。フェライト磁芯3
8の上端には絶縁駆動軸32が嵌合するガイドリング3
9が、そして、磁芯の下端には絶縁駆動軸に形成された
雄ネジ部321と螺合するジャッキナット40がボルト
41を用いてそれぞれ取り付けられている。また、フェ
ライト磁芯38には回り止め用の縦溝381が形成され
ており、この溝に、例えば中央絶縁板21に取り付けら
れた回り止め爪42が嵌合している。フェライト磁芯3
8は接地電位に接続し、同磁芯は、2次コイル42
2’の発生電圧に対し空間絶縁が充分確保できる位置
まで、2次コイル内に入り込んで設けられる。
A ferrite magnetic core 38 whose position is displaced by the rotation of the insulating drive shaft 32 is provided inside the boosting coil 4. The ferrite core has a cylindrical shape, and the insulating drive shaft 32 passes through the inside thereof. Ferrite core 3
A guide ring 3 into which the insulated drive shaft 32 is fitted at the upper end of
9 is attached to the lower end of the magnetic core by using a bolt 41, and a jack nut 40 screwed with the male screw portion 32 1 formed on the insulated drive shaft is attached. Further, the ferrite core 38 has longitudinal grooves 38 1 for detent is formed in the groove, for example, it engaged detent pawl 42 mounted is fitted in the center insulating plate 21. Ferrite core 3
8 is connected to the ground potential, the magnetic core, a secondary coil 4 2,
To generate a voltage of 4 2 'to a position where the space insulation can be sufficiently secured, is provided enters into the secondary coil.

【0016】昇圧コイル4の2次U相及びV相コイル4
2,42’の一端はシェンケル型直流高電圧電源の整流逓
倍部における二つの高周波電極(図2の符号6,6’)
に接続されており、これらコイルの他端は接地点に接続
される。高周波発振電源部を発振動作させ、整流逓倍部
に給電することにより、高電圧タ−ミナル電極(図3の
符号11)に高い直流出力電圧が生ずる。
Secondary U-phase and V-phase coil 4 of boost coil 4
One end of 2 and 4 2 'is two high frequency electrodes in the rectification and multiplication section of the Schenkel type DC high voltage power supply (reference numerals 6 and 6'in Fig. 2).
The other ends of these coils are connected to the ground point. By oscillating the high frequency oscillating power source and supplying power to the rectifying and multiplying unit, a high DC output voltage is generated at the high voltage terminal electrode (11 in FIG. 3).

【0017】ステッピングモ−タ36を正転又は逆転駆
動し、傘歯車35を介して絶縁駆動軸32を回転操作す
る。絶縁駆動軸の回転に伴い2次U相コイル42と2次
V相コイル42’間にかけて配置されているフェライト
磁芯38は、駆動軸のネジ部321とこれに螺合するジ
ャッキナット40のネジ機構により、昇圧コイルの軸方
向に変位し、1次コイルと2次U相コイル、2次V相コ
イルとの誘導結合度が相対的に調節される。二つの高周
波電極への印加電圧のバランス状態が相対的に調節さ
れ、直流出力電圧に重畳する高周波誘導リップルが最小
となるように、フェライト磁芯38の位置を微調節す
る。
The stepping motor 36 is normally or reversely driven to rotate the insulating drive shaft 32 via the bevel gear 35. The ferrite magnetic core 38 arranged between the secondary U-phase coil 4 2 and the secondary V-phase coil 4 2 ′ along with the rotation of the insulating drive shaft is the screw portion 32 1 of the drive shaft and the jack nut screwed to this. By the screw mechanism of 40, the booster coil is displaced in the axial direction, and the degree of inductive coupling between the primary coil, the secondary U-phase coil, and the secondary V-phase coil is relatively adjusted. The position of the ferrite core 38 is finely adjusted so that the balance state of the voltage applied to the two high frequency electrodes is relatively adjusted and the high frequency induction ripple superimposed on the DC output voltage is minimized.

【0018】[0018]

【発明の効果】本考案は、以上説明したように構成した
ので、昇圧コイルの内部に設けたフェライト磁芯の位置
調節により、1次コイルと各2次コイルとの誘導結合度
を変え、各高周波電極の印加電圧のバランス状態を調節
できるから、直流出力電圧に重畳される高周波誘導リッ
プルを低減することができる。従来のように、大きなイ
ンダクタンス調整用コイルを設けずに済み、また、2次
コイルの接続線を圧力タンクの外に引き出さずに済む。
Since the present invention is configured as described above, the degree of inductive coupling between the primary coil and each secondary coil is changed by adjusting the position of the ferrite magnetic core provided inside the boosting coil. Since the balance state of the voltage applied to the high frequency electrode can be adjusted, the high frequency induction ripple superimposed on the DC output voltage can be reduced. Unlike the conventional case, it is not necessary to provide a large inductance adjusting coil, and it is not necessary to draw the connecting wire of the secondary coil out of the pressure tank.

【0019】昇圧コイルの内部にフェライト磁芯が設け
られているから、1次コイルと2次コイルとの誘導結合
が従来の空芯形状のものと比べて良くなり、高周波電源
から給電される昇圧コイルの必要電力を低減することが
できる。
Since the ferrite core is provided inside the booster coil, the inductive coupling between the primary coil and the secondary coil is better than that of the conventional air core type, and the booster fed from the high frequency power source is boosted. The required power of the coil can be reduced.

【0020】昇圧コイルの内部に1次コイルと2次コイ
ル間の誘導結合度可変機構を設けていることに伴い、圧
力容器の内部に充填された高圧絶縁ガスが昇圧コイルの
内部を通って対流することが可能になり、昇圧コイルの
冷却が良好になる。
Since the mechanism for varying the degree of inductive coupling between the primary coil and the secondary coil is provided inside the booster coil, the high-pressure insulating gas filled in the pressure vessel is convected through the booster coil. Therefore, the booster coil can be cooled well.

【0021】フェライト磁芯は絶縁駆動軸にネジ機構を
介して結合されているから、圧力容器の外から絶縁駆動
軸を回転操作することにより、フェライト磁芯の位置を
微調節することができる。
Since the ferrite magnetic core is connected to the insulating drive shaft via a screw mechanism, the position of the ferrite magnetic core can be finely adjusted by rotating the insulating drive shaft from outside the pressure vessel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例の要部、昇圧コイル部の構成図
である。
FIG. 1 is a configuration diagram of a main part and a boost coil part of an embodiment of the present invention.

【図2】バランス形式のシェンケル型直流高電圧電源の
基本回路図である。
FIG. 2 is a basic circuit diagram of a balanced type Schenkel type DC high voltage power supply.

【図3】従来の昇圧コイル部の構成図である。FIG. 3 is a configuration diagram of a conventional boost coil unit.

【符号の説明】[Explanation of symbols]

4 昇圧コイル 41 1次コイル 42 2次U相コイル 42’2次V相コイル 30 コイル取付け用絶縁板の開口部 32 絶縁駆動軸 321 ネジ部 33 シール付きガイドフランジ 34 スラストベアリング 35 傘歯車 36 ステッピングモ−タ 38 フェライト磁芯 381 縦溝 39 ガイドリング 40 ジャッキナット 42 回り止め爪4 booster coil 4 1 primary coil 4 2 secondary U-phase coil 4 2 'secondary V-phase coil 30 opening 32 of the coil mounting insulating plate insulating drive shaft 32 1 threaded portion 33 seals the guide flange 34 thrust bearing 35 Umbrella Gear 36 Stepping motor 38 Ferrite core 38 1 Vertical groove 39 Guide ring 40 Jack nut 42 Non-rotating pawl

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波電源から給電される1次コイル
と、この1次コイルの両側に配置され、二つの高周波電
極にそれぞれ給電する二つの2次コイルとからなる昇圧
コイルを備えたシェンケル型直流高電圧電源装置におい
て、前記昇圧コイルの内部に、コイル軸方向に変位可能
のフェライト磁芯が設けられていることを特徴とするシ
ェンケル型直流高電圧電源装置。
1. A Schenkel type DC having a booster coil comprising a primary coil fed from a high frequency power source and two secondary coils arranged on both sides of the primary coil and respectively feeding two high frequency electrodes. In the high voltage power supply device, a Schenkel type DC high voltage power supply device characterized in that a ferrite magnetic core displaceable in the coil axis direction is provided inside the booster coil.
【請求項2】 高周波電源から給電される1次コイル
と、この1次コイルの両側に配置され、二つの高周波電
極にそれぞれ給電する二つの2次コイルとからなり、圧
力容器に収納された昇圧コイルを備えたシェンケル型直
流高電圧電源装置において、前記昇圧コイルの内部を貫
通し、前記圧力容器の外に延出した絶縁駆動軸と、内部
に貫通する前記絶縁駆動軸にネジ機構を介して結合し、
前記昇圧コイルの軸方向に変位可能のフェライト磁芯と
を設けてなることを特徴とするシェンケル型直流高電圧
電源装置。
2. A booster housed in a pressure vessel, which comprises a primary coil fed from a high-frequency power source and two secondary coils arranged on both sides of the primary coil to respectively feed two high-frequency electrodes. In a Schenkel type DC high voltage power supply device including a coil, an insulating drive shaft that penetrates the inside of the booster coil and extends to the outside of the pressure vessel, and the insulating drive shaft that penetrates inside through a screw mechanism. Combine,
A Schenkel-type DC high-voltage power supply device comprising a ferrite core that is displaceable in the axial direction of the booster coil.
JP6160714A 1994-06-21 1994-06-21 Schenkel type high voltage dc power source Pending JPH089643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160714A JPH089643A (en) 1994-06-21 1994-06-21 Schenkel type high voltage dc power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160714A JPH089643A (en) 1994-06-21 1994-06-21 Schenkel type high voltage dc power source

Publications (1)

Publication Number Publication Date
JPH089643A true JPH089643A (en) 1996-01-12

Family

ID=15720888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160714A Pending JPH089643A (en) 1994-06-21 1994-06-21 Schenkel type high voltage dc power source

Country Status (1)

Country Link
JP (1) JPH089643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177279A (en) * 2004-12-24 2006-07-06 Diamond Electric Mfg Co Ltd Ion current detection device for internal combustion engine
JP2010098842A (en) * 2008-10-16 2010-04-30 Nhv Corporation Schenkel dc high voltage power supply
WO2016045905A1 (en) * 2014-09-26 2016-03-31 Nikon Metrology Nv High voltage generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177279A (en) * 2004-12-24 2006-07-06 Diamond Electric Mfg Co Ltd Ion current detection device for internal combustion engine
JP2010098842A (en) * 2008-10-16 2010-04-30 Nhv Corporation Schenkel dc high voltage power supply
WO2016045905A1 (en) * 2014-09-26 2016-03-31 Nikon Metrology Nv High voltage generator
JP2017535916A (en) * 2014-09-26 2017-11-30 ニコン・メトロロジー・エヌヴェ High voltage generator
US10856398B2 (en) 2014-09-26 2020-12-01 Nikon Metrology Nv High voltage generator

Similar Documents

Publication Publication Date Title
US5023768A (en) High voltage high power DC power supply
US5436528A (en) Plasma source employing spiral RF coil and method for using same
CN100493290C (en) X-ray generator and x-ray CT apparatus comprising same
US5166965A (en) High voltage dc source including magnetic flux pole and multiple stacked ac to dc converter stages with planar coils
US4720844A (en) High-voltage generating assembly and an X-ray device
CN1520245A (en) Plasma processor appts. and method, and antenna
JPH11504463A (en) Device with inductance and / or power transfer and / or voltage multiplication elements
US4790980A (en) Device for the generation of ozone and a process for its operation
JPH0395898A (en) X-ray generating device
JPH0147950B2 (en)
US4406978A (en) Horizontal deflection output transformer for a television receiver
EP0641066B1 (en) Push-pull, resonant type switching power supply circuit
US4100463A (en) Magnetron, power supply, and fan integral assembly
EP0429315B1 (en) High voltage high power DC power supply
JPH089643A (en) Schenkel type high voltage dc power source
JP2015192470A (en) Resonance type dc/dc converter
JP2000278962A (en) High-frequency and high-voltage power source
JP3312462B2 (en) Schenkel DC high voltage power supply
SE447527B (en) HIGH FREQUENCY FERROR RESONANCE ENERGY FOR A DEVICING AND HIGH VOLTAGE CIRCUIT IN A TV RECEIVER
US4020318A (en) Electron beam generators
US20060255747A1 (en) Lighting apparatus for discharge lamp
US6934165B2 (en) Loosely coupled parallel resonant converter
JP2605903Y2 (en) Schenkel DC high voltage power supply
WO2024018658A1 (en) Rotary capacitor, circular accelerator, and particle beam therapy system
US4860187A (en) Magnetic flux coupled voltage multiplication apparatus