JPH089609A - Engine-driven arc welding machine - Google Patents
Engine-driven arc welding machineInfo
- Publication number
- JPH089609A JPH089609A JP15946994A JP15946994A JPH089609A JP H089609 A JPH089609 A JP H089609A JP 15946994 A JP15946994 A JP 15946994A JP 15946994 A JP15946994 A JP 15946994A JP H089609 A JPH089609 A JP H089609A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- welding
- rectifier circuit
- output
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶接時に必要とする出
力に応じてエンジン回転数を調節するようにしたエンジ
ン駆動アーク溶接機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine-driven arc welder in which the engine speed is adjusted according to the output required during welding.
【0002】[0002]
【従来の技術】従来のエンジン駆動アーク溶接機は、発
電機出力を常時最大として使用可能な回転数にて回転さ
せていた。即ち、溶接負荷の大小には関係なくエンジン
回転数を高速回転のまま継続させていた。2. Description of the Related Art In a conventional engine-driven arc welding machine, the generator output is always maximized and rotated at a usable rotation speed. That is, the engine speed was kept at high speed regardless of the welding load.
【0003】[0003]
【発明が解決しようとする課題】上記従来装置の場合、
負荷の大小に関係なくエンジンの回転数は高速のままで
ある。このことは負荷が軽少であってエンジン出力に余
裕があるにも拘らず高速回転させていることになる。し
たがって燃料消費量,潤滑油消費量が増大することに加
えて騒音量も増大する。又、これらの結果としてエンジ
ンの耐久性の低下が避けられなかった。In the case of the above-mentioned conventional device,
The engine speed remains high regardless of the load. This means that the engine is rotating at a high speed even though the load is light and the engine output has a margin. Therefore, in addition to increasing fuel consumption and lubricating oil consumption, the amount of noise also increases. Further, as a result of these, deterioration of engine durability was unavoidable.
【0004】上記問題を解決しようとすれば、低速時に
充分な出力電圧を発電するためには発電機を大きくしな
ければならず、又、充分な溶接特性を維持するためには
大容量のリアクトルを必要とする。したがってこれらの
条件を満足させるためには価格が高くなるため、いまだ
実用化はなされていないのが現状である。To solve the above problems, the generator must be made large in order to generate a sufficient output voltage at low speed, and a large capacity reactor is required to maintain sufficient welding characteristics. Need. Therefore, in order to satisfy these conditions, the price becomes high, and it is the current situation that it has not been put into practical use.
【0005】本発明は上記課題を解決するためになされ
たものであり、燃料消費量及び潤滑油消費量を抑え、か
つエンジンの耐久性向上及び騒音低下もはかったエンジ
ン駆動アーク溶接機を提供することを目的としている。The present invention has been made in order to solve the above problems, and provides an engine-driven arc welding machine which suppresses fuel consumption and lubricating oil consumption, and has improved engine durability and reduced noise. Is intended.
【0006】[0006]
【課題を解決するための手段】本発明の[請求項1]に
係るエンジン駆動アーク溶接機は、電機子巻線及び界磁
巻線を巻回した固定子と、突極を有する誘導子からなる
回転子とを備えたエンジン駆動アーク溶接機において、
発電機の出力端には整流器とサイリスタを用いてブリッ
ジ構成の整流回路を接続し、前記サイリスタが不導通時
に界磁巻線に供給する電流方向と電機子巻線に流れる電
流方向が一致するように電機子巻線を接続し、溶接出力
の大小に応じて整流回路を切換えると共にエンジン回転
数を変更し、サイリスタの位相制御とエンジン回転の制
御により、溶接出力を連続的に変化するよう構成した。The engine-driven arc welding machine according to the first aspect of the present invention comprises a stator having an armature winding and a field winding, and an inductor having salient poles. In an engine-driven arc welder equipped with
A rectifier and a thyristor are used to connect a bridge-type rectifier circuit to the output end of the generator so that the direction of current supplied to the field winding and the direction of current flowing to the armature winding match when the thyristor is not conducting. The armature winding is connected to the switch, the rectifier circuit is switched according to the magnitude of the welding output, the engine speed is changed, and the welding output is continuously changed by the phase control of the thyristor and the engine speed control. .
【0007】本発明の[請求項2]に係るエンジン駆動
アーク溶接機は、[請求項1]において、溶接出力が大
であるとき、サイリスタを不導通に位相制御して整流回
路を半波整流回路とし、エンジン回転を高速とすると共
に、溶接出力が小であるとき、サイリスタを全導通に位
相制御して整流回路を全波整流回路とし、エンジン回転
を低速とするようにした。In the engine-driven arc welder according to [Claim 2] of the present invention, in [Claim 1], when the welding output is large, the thyristor is phase-controlled so as to be non-conducting and the rectifier circuit is half-wave rectified. When the engine rotation speed is high and the welding output is small, the thyristor is phase-controlled to full conduction so that the rectification circuit is a full-wave rectification circuit and the engine rotation speed is low.
【0008】[0008]
【作用】先ず、作業に先立って被溶接対象物に応じて溶
接出力の大小を検討する。溶接出力が大であればサイリ
スタをオフとして整流回路を半波整流回路とし、かつエ
ンジンを高速に設定する。反対に溶接出力が小であれば
サイリスタをオンとして整流回路を全波整流回路とし、
エンジンを低速に設定する。First, the magnitude of the welding output is examined according to the object to be welded prior to the work. If the welding output is high, the thyristor is turned off and the rectifier circuit is a half-wave rectifier circuit, and the engine is set to high speed. On the other hand, if the welding output is small, turn on the thyristor and make the rectifier circuit a full-wave rectifier circuit.
Set engine to low speed.
【0009】[0009]
【実施例】以下図面を参照して実施例を説明する。図1
は本発明の[請求項1]に係るエンジン駆動アーク溶接
機の一実施例の構成図であり、断面図として示す。図1
において1は発電機本体を示し、固定子2と回転子3と
を有し、この場合は4極3相誘導子型発電機の例であ
る。図に示されるように、固定子の内周面には等間隔に
12個の溝(m1〜m12)があり、これらの溝内には
12の電機子巻線(a1〜a4,b1〜b4,c1〜c
4)と、4つの界磁巻線(f1〜f4)とを有してい
る。又、回転子3は4等分された突極部(31〜34)
からなる。Embodiments will be described below with reference to the drawings. Figure 1
FIG. 1 is a configuration diagram of an embodiment of an engine-driven arc welding machine according to [Claim 1] of the present invention, which is shown as a sectional view. Figure 1
1 denotes a generator main body, and has a stator 2 and a rotor 3, and in this case, it is an example of a 4-pole 3-phase inductor type generator. As shown in the drawing, the inner peripheral surface of the stator has 12 grooves (m1 to m12) at equal intervals, and 12 armature windings (a1 to a4, b1 to b4) are provided in these grooves. , C1 to c
4) and four field windings (f1 to f4). Further, the rotor 3 is divided into four salient pole portions (31 to 34).
Consists of
【0010】図2は本発明における溶接電源の主要制御
回路図である。図2における電機子巻線aは図1に示す
電機子巻線a1.a2,a3,a4を並列接続あるいは
直列接続したものであり、他の電機子巻線b,cについ
ても同様である。つまり図2の各巻線は図1の各電機子
巻線a1〜a4,b1〜b4,c1〜c4に夫々対応し
ている。同様に、界磁巻線fも図1に示す各界磁巻線f
1,f2,f3,f4を直列接続したものである。FIG. 2 is a main control circuit diagram of the welding power source according to the present invention. The armature winding a in FIG. 2 is the armature winding a1. a2, a3, and a4 are connected in parallel or in series, and the same applies to the other armature windings b and c. That is, the windings in FIG. 2 correspond to the armature windings a1 to a4, b1 to b4, c1 to c4 in FIG. 1, respectively. Similarly, the field winding f is also the field winding f shown in FIG.
1, f2, f3 and f4 are connected in series.
【0011】Bは直流電源であり界磁巻線fに直流電流
を供給するための電源である。D1,D2,D3,D4
は整流器であり、この内のD1,D2,D3は各電機子
巻線a,b,cと出力端子4との間に接続し、D4は他
の出力端子5と各電機子巻線a,b,cの接続点(中性
点)に接続する。SCR1,SCR2,SCR3はサイ
リスタであり、他の出力端子5と各電機子巻線a,b,
cに夫々接続される。Reference numeral B denotes a DC power supply for supplying a DC current to the field winding f. D1, D2, D3, D4
Is a rectifier, of which D1, D2, D3 are connected between each armature winding a, b, c and the output terminal 4, and D4 is another output terminal 5 and each armature winding a, Connect to the connection point (neutral point) of b and c. SCR1, SCR2, SCR3 are thyristors, and the other output terminal 5 and each armature winding a, b,
connected to c respectively.
【0012】次に動作説明であるが、無負荷状態(出力
端子4,5間に負荷を接続しない状態)からする。先
ず、各サイリスタSCR1,SCR2,SCR3は予め
位相調整にて不導通状態としておき、エンジンを高速回
転させる。この場合、回路的には各電機子巻線a,b,
cに整流器D1,D2,D3が接続された半波整流回路
となる。したがって出力端子4,5の出力電圧波形は図
3(A)に示されるようになる。Next, the operation will be described. From the no-load state (a state in which no load is connected between the output terminals 4 and 5). First, each thyristor SCR1, SCR2, SCR3 is made into a non-conducting state by phase adjustment in advance, and the engine is rotated at high speed. In this case, each armature winding a, b,
It becomes a half-wave rectifier circuit in which rectifiers D1, D2, D3 are connected to c. Therefore, the output voltage waveforms at the output terminals 4 and 5 are as shown in FIG.
【0013】次に各サイリスタSCR1.SCR2,S
CR3を予め位相調整して全導通状態としておき、エン
ジン回転を低速(高速回転の約半分)回転させる。この
場合、回路的には全整流器D1,D2,D3及び全サイ
リスタSCR1,SCR2,SCR3が生きた(機能し
ている)状態であるため、全波整流回路となる。そして
各電機子巻線に発生する電圧は高速時の約半分になる
が、出力端子4,5の出力電圧波形は図3(C)のよう
になり、平均出力電圧は前記した図3(A)の場合と殆
んど同じである。Next, each thyristor SCR1. SCR2, S
The phase of CR3 is adjusted in advance so as to be in the fully conductive state, and the engine is rotated at a low speed (about half of the high speed rotation). In this case, the circuit is a full-wave rectifier circuit because all the rectifiers D1, D2, D3 and all the thyristors SCR1, SCR2, SCR3 are in a live (functioning) state. The voltage generated in each armature winding is about half that at high speed, but the output voltage waveforms at the output terminals 4 and 5 are as shown in FIG. 3C, and the average output voltage is as shown in FIG. ) Is almost the same as the case.
【0014】次に各サイリスタSCR1,SCR2,S
CR3を予め位相調整して導通角を半分にしておき、エ
ンジン回転を中速(高速回転と低速回転の中間)回転さ
せる。この場合、回路的にはサイリスタ群が不導通時は
半波整流回路、導通時は全波整流回路となる。そして出
力端子4,5の出力電圧波形は図3(B)のようにな
り、平均出力電圧は前記した図3(A),(C)の場合
と殆んど同じである。Next, each thyristor SCR1, SCR2, S
The phase of CR3 is adjusted in advance to halve the conduction angle, and the engine is rotated at medium speed (intermediate between high speed rotation and low speed rotation). In this case, the circuit is a half-wave rectifier circuit when the thyristor group is non-conductive and a full-wave rectifier circuit when conductive. The output voltage waveforms at the output terminals 4 and 5 are as shown in FIG. 3 (B), and the average output voltage is almost the same as in the case of FIGS. 3 (A) and 3 (C).
【0015】上記したことから判ることは、各サイリス
タの動作条件を既に説明したように整定すれば、エンジ
ン回転が高速,中速,低速のいかなる場合であっても、
出力端子の無負荷電圧は殆んど変らないと言うことであ
る。しかも、一般的なサイリスタ制御の場合は位相角度
によって出力電圧が零の場合があるが、本発明では電圧
が途切れることがないと言う事実であり、これはアーク
溶接電源として最適である。From the above, it can be understood that if the operating conditions of each thyristor are settled as described above, no matter whether the engine rotation is high speed, medium speed or low speed,
That is, the no-load voltage at the output terminal is almost unchanged. Moreover, in the case of general thyristor control, the output voltage may be zero depending on the phase angle, but in the present invention, it is the fact that the voltage is not interrupted, which is optimal as an arc welding power source.
【0016】次に負荷状態(出力端子4,5に負荷を接
続した状態)を説明する。上記同様、各サイリスタSC
R1,SCR2,SCR3は予め位相調整して不導通と
しておき、エンジンを高速回転させる。この場合、電機
子巻線aに着目すると、これに流れる電流は整流器D1
→出力端子4→負荷→出力端子5→整流器D4を流れる
が、逆方向には流れない。即ち、この場合電機子巻線a
の電流方向と界磁巻線fの電流方向が同じであるため、
増磁作用を及ぼし出力の増大をはかる。Next, a load state (a state in which a load is connected to the output terminals 4 and 5) will be described. Similar to the above, each thyristor SC
The phases of R1, SCR2, and SCR3 are previously adjusted to be non-conducting, and the engine is rotated at high speed. In this case, paying attention to the armature winding a, the current flowing through it is the rectifier D1.
→ output terminal 4 → load → output terminal 5 → rectifier D4, but not in the opposite direction. That is, in this case, the armature winding a
Since the current direction of the field winding is the same as that of the field winding f,
It exerts a magnetizing effect to increase the output.
【0017】他の電機子巻線b,cについても同様であ
る。図4は負荷時の磁束変化図であり、固定子を展開し
た状態に対応して示してある。図4(A)は電機子巻線
aの無負荷時における磁束φと誘起電圧の関係図、図4
(B)は電機子巻線aの電機子反作用による磁束の変化
図、図4(C)は負荷時における磁束の変化図である。
なお、図4(C)に示されるように、負荷時の磁束は
(A)の磁束と(B)の磁束との和になり、(A)だけ
の磁束よりも大となっていることがわかる。The same applies to the other armature windings b and c. FIG. 4 is a magnetic flux change diagram under load, and is shown corresponding to a state where the stator is expanded. FIG. 4 (A) is a relationship diagram between the magnetic flux φ and the induced voltage when the armature winding a is unloaded, and FIG.
FIG. 4B is a change diagram of the magnetic flux due to the armature reaction of the armature winding a, and FIG. 4C is a change diagram of the magnetic flux under load.
As shown in FIG. 4 (C), the magnetic flux under load is the sum of the magnetic flux of (A) and the magnetic flux of (B), which is larger than the magnetic flux of only (A). Recognize.
【0018】次に各サイリスタSCR1,SCR2,S
CR3を予め位相調整して全導通状態にしておき、エン
ジンを低速回転する。この場合は回路的には3相全波整
流回路となる。したがって各電機子巻線には交流電流が
流れる。図5(A)は電機子巻線aのの無負荷時におけ
る磁束φと誘起電圧の関係図、図5(B)は電機子巻線
aの電機子反作用による磁束の変化図、図5(C)は負
荷時における磁束の変化図である。図5(C)に示され
るように(A),(B)の各磁束の和となる部分と差と
なる部分とがあり、結果として(A)に示す磁束と大差
がないことがわかる。Next, each thyristor SCR1, SCR2, S
The phase of CR3 is adjusted in advance so that it is in the full conduction state, and the engine is rotated at a low speed. In this case, the circuit is a three-phase full-wave rectifier circuit. Therefore, an alternating current flows through each armature winding. FIG. 5 (A) is a relationship diagram between the magnetic flux φ and the induced voltage of the armature winding a when there is no load, FIG. 5 (B) is a change diagram of the magnetic flux due to the armature reaction of the armature winding a, and FIG. C) is a change diagram of magnetic flux under load. As shown in FIG. 5 (C), there is a portion that is the sum of the magnetic fluxes of (A) and (B) and a portion that is the difference, and as a result, it can be seen that there is no great difference from the magnetic flux shown in (A).
【0019】上記したことから、負荷の大小に応じて出
力回路とエンジン回転数とを選択することにより、溶接
出力を調整できることが理解できる。この場合、溶接出
力の大小はその溶接対象物に応じて作業前にわかること
であるため、出力回路の変更及びエンジン回転数の設定
は、予め人間系にて整定すればよい。From the above, it can be understood that the welding output can be adjusted by selecting the output circuit and the engine speed according to the magnitude of the load. In this case, since the magnitude of the welding output can be known before the work depending on the object to be welded, the change of the output circuit and the setting of the engine speed may be settled in advance by a human system.
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば溶
接対象物に応じて溶接出力回路とエンジン回転数とを選
択変更することにより、溶接時におけるエンジンの高速
回転時は増磁作用によって溶接出力を増大し、又、エン
ジンの低速回転時は溶接出力は増大しないようにしたの
で、溶接出力の調整ができるばかりか、以下に列挙する
効果を奏する。 (1)エンジン回転が高速,中速,低速のいかなるとき
も、出力端子の無負荷電圧は殆んど変らない。 (2)出力が途切れることがないため、安定したアーク
溶接ができる。 (3)小型軽量,安価にできる。 (4)エンジン回転数を変更して使用できるため、エン
ジンの耐久性が向上する。 (5)上記に伴ない騒音が減少する。 (6)燃料消費量,潤滑油消費量を低減できる。As described above, according to the present invention, by selectively changing the welding output circuit and the engine speed in accordance with the object to be welded, the magnetizing action is provided during high speed rotation of the engine during welding. Since the welding output is increased and the welding output is not increased when the engine is rotating at a low speed, not only the welding output can be adjusted, but also the effects listed below are exhibited. (1) The no-load voltage at the output terminal hardly changes when the engine speed is high, medium, or low. (2) Since the output is not interrupted, stable arc welding can be performed. (3) Compact, lightweight and inexpensive. (4) Since the engine speed can be changed and used, the durability of the engine is improved. (5) Noise is reduced due to the above. (6) Fuel consumption and lubricating oil consumption can be reduced.
【図1】本発明の[請求項1]に係るエンジン駆動アー
ク溶接機の一実施例の構成図で、発電機の断面図として
示す。FIG. 1 is a configuration diagram of an embodiment of an engine-driven arc welding machine according to [Claim 1] of the present invention, and is shown as a cross-sectional view of a generator.
【図2】溶接電源回路の使用部を示す図。FIG. 2 is a view showing a used portion of a welding power supply circuit.
【図3】溶接機の無負荷時における無負荷電圧の変化
図。FIG. 3 is a change diagram of a no-load voltage when the welding machine has no load.
【図4】溶接出力が大なる時の磁束変化図。FIG. 4 is a magnetic flux change diagram when the welding output is large.
【図5】溶接出力が小なる時の磁束変化図。FIG. 5 is a magnetic flux change diagram when the welding output is small.
【符号の説明】1 発電機本体 2 固定子 3 回転子 31〜34 突極部 a1〜a4,b1〜b4,c1〜c4 電機子巻線 f1〜f4 界磁巻線 m1〜m12 溝[Description of symbols] 1 generator main body 2 stator 3 rotor 31 to 34 salient pole portions a1 to a4, b1 to b4, c1 to c4 armature windings f1 to f4 field windings m1 to m12 grooves
Claims (2)
子と、突極を有する誘導子からなる回転子とを備えたエ
ンジン駆動アーク溶接機において、発電機の出力端には
整流器とサイリスタを用いてブリッジ構成の整流回路を
接続し、前記サイリスタが不導通時に界磁巻線に供給す
る電流方向と電機子巻線に流れる電流方向が一致するよ
うに電機子巻線を接続し、溶接出力の大小に応じて整流
回路を切換えると共にエンジン回転数を変更し、サイリ
スタの位相制御とエンジン回転の制御により、溶接出力
を連続的に変化することを特徴とするエンジン駆動アー
ク溶接機。1. An engine-driven arc welding machine equipped with a stator having an armature winding and a field winding wound around it, and a rotor composed of an inductor having salient poles, wherein the output end of the generator is Connect a rectifier circuit with a bridge structure using a rectifier and a thyristor, and connect the armature winding so that the direction of the current supplied to the field winding and the direction of the current flowing to the armature winding match when the thyristor is not conducting. Then, the rectifier circuit is switched according to the magnitude of the welding output, the engine speed is changed, and the welding output is continuously changed by the phase control of the thyristor and the engine speed control. .
不導通に位相制御して整流回路を半波整流回路とし、エ
ンジン回転を高速とすると共に、溶接出力が小であると
き、サイリスタを全導通に位相制御して整流回路を全波
整流回路とし、エンジン回転を低速とすることを特徴と
する請求項1記載のエンジン駆動アーク溶接機。2. When the welding output is high, the thyristor is phase-controlled so as to be non-conducting so that the rectifier circuit is a half-wave rectifier circuit, the engine rotation speed is high, and when the welding output is low, the thyristor is fully operated. 2. The engine-driven arc welding machine according to claim 1, wherein the rectifier circuit is a full-wave rectifier circuit by controlling the phase of conduction to reduce the engine speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15946994A JPH089609A (en) | 1994-06-17 | 1994-06-17 | Engine-driven arc welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15946994A JPH089609A (en) | 1994-06-17 | 1994-06-17 | Engine-driven arc welding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH089609A true JPH089609A (en) | 1996-01-12 |
Family
ID=15694458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15946994A Pending JPH089609A (en) | 1994-06-17 | 1994-06-17 | Engine-driven arc welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH089609A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001212668A (en) * | 2000-02-01 | 2001-08-07 | Shin Daiwa Kogyo Co Ltd | Engine driven type dc arc welding machine |
US6310320B1 (en) | 1999-01-07 | 2001-10-30 | Illinois Tool Works Inc. | Dual operator phase control engine driven welder |
WO2011036723A1 (en) * | 2009-09-25 | 2011-03-31 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
WO2011101886A1 (en) * | 2010-02-16 | 2011-08-25 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
JP2015077069A (en) * | 2013-10-11 | 2015-04-20 | ゼネラル・エレクトリック・カンパニイ | Electric generator system |
-
1994
- 1994-06-17 JP JP15946994A patent/JPH089609A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6310320B1 (en) | 1999-01-07 | 2001-10-30 | Illinois Tool Works Inc. | Dual operator phase control engine driven welder |
JP2001212668A (en) * | 2000-02-01 | 2001-08-07 | Shin Daiwa Kogyo Co Ltd | Engine driven type dc arc welding machine |
WO2011036723A1 (en) * | 2009-09-25 | 2011-03-31 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
JPWO2011036723A1 (en) * | 2009-09-25 | 2013-02-14 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
WO2011101886A1 (en) * | 2010-02-16 | 2011-08-25 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
CN102754318A (en) * | 2010-02-16 | 2012-10-24 | 东芝三菱电机产业系统株式会社 | Synchronous generator |
JPWO2011101886A1 (en) * | 2010-02-16 | 2013-06-17 | 東芝三菱電機産業システム株式会社 | Synchronous generator |
JP2015077069A (en) * | 2013-10-11 | 2015-04-20 | ゼネラル・エレクトリック・カンパニイ | Electric generator system |
CN104578581A (en) * | 2013-10-11 | 2015-04-29 | 通用电气公司 | Electric generator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1081776A (en) | Alternator having single stator with dual windings and compound output | |
EP0377328B1 (en) | Vscf starter/generator systems | |
CA2279337A1 (en) | Dynamo-electric machines and control and operating system for the same | |
KR20040068870A (en) | Variable reluctance generator | |
EP2519374A1 (en) | A multi-output engine welder supplying full electrical power capacity to a single welding output and method | |
JP2003102199A (en) | Inverter system generator | |
JPH089609A (en) | Engine-driven arc welding machine | |
RU2211519C2 (en) | Welding induction generator | |
JP4534218B2 (en) | Engine driven DC arc welding machine | |
JP3681050B2 (en) | Power supply using a magnet generator | |
JPH0516867Y2 (en) | ||
JPH10272564A (en) | Engine-driven welding machine | |
JPH0543987Y2 (en) | ||
JPH058800Y2 (en) | ||
WO2022180703A1 (en) | Generator, control device, and control method | |
JPH04327375A (en) | Engine welding machine | |
JP2545862B2 (en) | Power generation control device for vehicle alternator | |
JPH0341892Y2 (en) | ||
JPH0519178Y2 (en) | ||
JPH0124644Y2 (en) | ||
JPH0724930Y2 (en) | Brushless single phase alternator | |
JPS5932240Y2 (en) | Voltage regulator for capacitor-excited synchronous generator | |
JPH0530854Y2 (en) | ||
JPH062404Y2 (en) | Electric vehicle running control device | |
JPH0237507Y2 (en) |