WO2011036723A1 - Synchronous generator - Google Patents

Synchronous generator Download PDF

Info

Publication number
WO2011036723A1
WO2011036723A1 PCT/JP2009/004866 JP2009004866W WO2011036723A1 WO 2011036723 A1 WO2011036723 A1 WO 2011036723A1 JP 2009004866 W JP2009004866 W JP 2009004866W WO 2011036723 A1 WO2011036723 A1 WO 2011036723A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferential direction
stator
synchronous generator
rotor
radial direction
Prior art date
Application number
PCT/JP2009/004866
Other languages
French (fr)
Japanese (ja)
Inventor
多久征吾
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2009/004866 priority Critical patent/WO2011036723A1/en
Priority to JP2011532805A priority patent/JPWO2011036723A1/en
Priority to CN2009801616728A priority patent/CN102577050A/en
Publication of WO2011036723A1 publication Critical patent/WO2011036723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding

Definitions

  • the present invention relates to a synchronous generator having a field winding on a stator.
  • a permanent magnet type synchronous generator In a permanent magnet type synchronous generator, a rotor is generally provided with a permanent magnet, and a stator has an armature winding. A static magnetic field is formed by this permanent magnet.
  • Such a permanent magnet type synchronous generator uses a lot of expensive neodymium permanent magnets, and is therefore expensive.
  • a high-cost permanent magnet type synchronous generator there is one that uses a synchronous generator that excites a static magnetic field in the stator.
  • a synchronous generator as disclosed in Patent Document 1 is known.
  • stators of a synchronous generator that excites a static magnetic field have a protruding portion that protrudes radially inward on the inner peripheral surface of a ring-shaped member.
  • the projecting portion is provided with a field winding for exciting a static magnetic field and an armature winding for generating an electromotive force.
  • the rotor side often has a magnetic pole protruding in the radial direction on the outer peripheral surface of a ring made of a magnetic material.
  • cogging torque When the rotor rotates, cogging torque may occur when the protrusions of the stator and the magnetic poles of the rotor intersect each other.
  • vibration When the value of the cogging torque is increased, vibration such as noise is generated. This vibration is a factor that reduces power generation efficiency and the like.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce cogging torque generated when a synchronous generator that excites a static magnetic field generates power.
  • a synchronous generator includes a plurality of projecting magnetic pole portions formed so as to project radially outward from an outer peripheral surface and are arranged at intervals in the circumferential direction.
  • An inner ring member made of a body, the inner ring-shaped member being configured to rotate about an axis, and covering the rotor from the radially outer side and projecting radially inward from the inner peripheral surface.
  • a stator core having an outer ring-shaped member in which a plurality of fixed protrusions that can face each of the protruding magnetic pole parts are arranged at intervals in the circumferential direction; An armature winding formed by winding a coil around each portion in the radial direction; and a stator that covers the stator from the outside in the radial direction and fixes the stator.
  • the synchronous generator according to the present invention includes an inner ring made of a magnetic material in which a plurality of protruding magnetic pole portions formed so as to protrude radially outward from the outer peripheral surface are arranged at intervals in the circumferential direction.
  • a rotor configured to rotate around its axis, and the inner ring-shaped member covering the rotor from the radially outer side and projecting from the inner peripheral surface toward the radially inner side to project each of the projecting magnetic poles
  • a plurality of fixed protrusions that can be opposed to each of the respective parts, and a stator core having a static magnetic field formed by outer ring members arranged in the circumferential direction at intervals, and each of the fixed protrusions in a radial direction
  • a stator having an armature winding formed by winding a coil around the housing, and a housing configured to cover the stator from the outside in a radial direction and fix the stator.
  • FIG. 3 is a schematic front view showing a part of the stator and the rotor of the synchronous generator according to the first embodiment of the present invention linearly developed in the circumferential direction when viewed from the axial direction. It is a schematic perspective view which shows the state which expand
  • FIG. 3 is a schematic perspective view showing a set of armature windings and field windings formed on a stator iron core formed on the stator of FIG. 2.
  • FIG. 5 It is a schematic perspective view which shows a part of rotor of FIG. It is a front view which shows the example which generates a three-phase electromotive force with the synchronous generator of FIG. It is a schematic perspective view which shows a part of conventional rotor. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 5 is used. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 6 is used.
  • FIG. 6 It is a schematic perspective view which shows a part of rotor of FIG. It is a front view which shows the example which generates a three-phase electromotive force with the synchronous generator of FIG. It is a schematic perspective view which shows a part of conventional rotor. It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 5 is used. It is a
  • FIG. 6 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a second embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction.
  • FIG. 10 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a third embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction. It is a schematic perspective view which shows the synchronous generator which concerns on the 4th Embodiment of this invention.
  • FIG. 1 is a schematic front view showing a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment as seen in the axial direction and linearly developed in the circumferential direction.
  • FIG. 2 is a schematic perspective view showing a state where the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis.
  • FIG. 3 is a schematic perspective view showing a state in which the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis, where (a) is the rotor 10 and (b) is the stator.
  • FIG. 4 is a schematic perspective view showing a part of the rotor 10 of FIG.
  • FIG. 5 is a front view showing an example of generating a three-phase electromotive force in the synchronous generator of FIG.
  • FIG. 6 is a schematic perspective view showing a part of the conventional rotor 10.
  • FIG. 7 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 5 is used.
  • FIG. 8 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 6 is used.
  • the synchronous generator includes a rotor 10 having a ring-shaped rotor core 16 that can rotate around a horizontal axis 70, and a stator that covers the rotor 10 from the outside in the radial direction. And a housing 30 for covering the stator 20 from the outside in the radial direction and fixing the stator 20.
  • the rotor core 16 is a ring-shaped member made of a magnetic material such as a silicon steel plate and configured to be rotatable around a horizontal axis.
  • a plurality of protruding magnetic pole portions 12 are formed on the outer peripheral surface of the rotor core 16 so as to protrude outward in the radial direction. These protruding magnetic pole portions 12 are arranged at intervals in the circumferential direction. The intervals between the protruding magnetic pole portions 12 are configured to be equal intervals.
  • the protruding magnetic pole portion 12 will be described later.
  • a rotating shaft (not shown) that rotates around a horizontal axis is arranged inside the rotor 10.
  • the rotor 10 is fixed to the rotating shaft and rotates together with the rotating shaft.
  • the stator 20 has a stator core 22, an armature winding 26 disposed on the stator core 22, and a field winding 25 disposed in the vicinity of the armature winding 26.
  • the stator core 22 is a ring-shaped member made of a magnetic material such as a silicon steel plate, and is configured to cover the rotor 10 from the outside in the radial direction.
  • a plurality of fixed projecting portions 24 projecting inward in the radial direction are formed on the inner peripheral surface of the stator core 22. These fixed projecting portions 24 are arranged at intervals in the circumferential direction, and can be opposed to the projecting magnetic pole portions 12 of the rotor 10.
  • the central angle formed by each of the adjacent fixed protruding portions 24 and the shaft 70 is configured to be equal to the central angle formed by each of the adjacent protruding magnetic pole portions 12 and the shaft 70.
  • the stator core 22 is configured to be divided for each fixed protrusion 24. That is, the stator core 22 includes a plurality of members including the fixed protrusions 24 shown in FIG. 3 arranged in the circumferential direction to form one ring.
  • Each of these fixed protrusions 24 is provided with a field winding 25 formed by winding a coil around the protrusion direction (radial direction).
  • a static magnetic field is formed in the stator 20 by passing a direct current through the field winding 25.
  • a static magnetic field is formed such that the direction of the magnetic flux becomes the arrow A shown in FIG.
  • the fixed protrusion 24 is provided with an armature winding 26 on the inner side in the radial direction than the field winding 25.
  • the armature winding 26 is formed by winding a coil around the radial direction.
  • the armature winding 26 is configured to generate an electromotive force or the like.
  • the inner front end surface 29 facing the radially inner side of each of the fixed projecting portions 24 is disposed so as to maintain a predetermined distance in the radial direction from the outer front end surface 14 facing the radially outer side of each projecting magnetic pole portion 12. ing.
  • stator 20 is fixed by the housing 30 as described above.
  • each protruding magnetic pole portion 12 of the rotor 10 is formed such that the central portion in the circumferential direction protrudes radially outward from both ends in the circumferential direction.
  • the outer front end surface 14 of the present embodiment is formed with a partial cylindrical surface in which the center in the circumferential direction protrudes in the radial direction from both ends in the circumferential direction.
  • the center of curvature of the partial cylindrical surface is configured to be radially outside the rotation center of the rotor 10, that is, the shaft 70.
  • ten fixed protrusions 24 arranged adjacent to each other in the circumferential direction constitute one fixed protrusion 24 group.
  • it has three fixed protrusion parts 24 group, ie, the 1st fixed protrusion part group 41, the 2nd fixed protrusion part group 42, and the 3rd fixed protrusion part group 43.
  • the first to third fixed projecting portion groups 41, 42, 43 are arranged at intervals in the circumferential direction.
  • the first to third fixed protruding portion groups 41, 42, and 43 are arranged so that the circumferential interval is larger than the interval between the adjacent fixed protruding portions 24.
  • the first to third fixed protrusion groups 41, 42, and 43 each generate a one-phase electromotive force, and the first to third fixed protrusion groups 41, 42, and 43 generate a three-phase electromotive force.
  • the outer tip surfaces 14 of the projecting magnetic pole portions 12 correspond to the inner tip surfaces 29 of the fixed projecting portions 24, respectively. Move while crossing each other.
  • the vicinity of the end of the outer front end surface 14 on the rotation direction overlaps one end of the inner front end surface 29 in the radial direction.
  • the circumferential center portion of the outer tip surface 14 does not overlap the inner tip surface 29 in the radial direction.
  • the outer front end face 14 moves to positions where the circumferential positions differ from each other with respect to the inner front end face 29. That is, the protruding magnetic pole portion 12 is in a state between the adjacent fixed protruding portions 24. After this, it moves so that it may approach the fixed protrusion part 24 which overlaps with a radial direction next.
  • the armature voltage changes according to the distance between the outer front end surface 14 and the inner front end surface 29.
  • the armature voltage changes as shown in FIG.
  • the armature voltage is maximized when the outer tip surface 14 of the projecting magnetic pole portion 12 overlaps the inner tip surface 29 of the fixed projecting portion 24 in the radial direction.
  • the armature voltage is minimized. This corresponds to the case where the portion 12 is between the adjacent fixed protrusions 24.
  • the armature voltage changes as shown in FIG.
  • the circumferential end of the outer tip surface 14 begins to overlap the inner tip surface 29, the distance between the outer tip surface 14 and the inner tip surface 29 decreases rapidly. For this reason, the waveform of the armature voltage has a steep slope near zero.
  • the outer end surface 14 and the inner front end surface 29 are formed because the end in the circumferential direction is radially inward of the center in the circumferential direction of the outer end surface 14. When they start to overlap each other, it is possible to suppress the mutual distance from being rapidly reduced as compared with the comparative example.
  • the waveform shown in FIG. 7 has a gentler slope near the armature voltage of zero than the waveform shown in FIG. 8, and FIG. 7 (the present embodiment) has a higher slope than the example of FIG.
  • the waveform is close to a sine wave.
  • the cogging torque of the synchronous generator can be suppressed by suppressing the rapid change in the armature voltage.
  • the outer tip surface 14 of the projecting magnetic pole portion 12 of the rotor 10 is a partial cylindrical surface, so that the waveform of the armature voltage becomes close to a sine wave. As a result, the cogging torque of the synchronous generator can be suppressed.
  • FIG. 9 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • a partially convex cylindrical surface is formed on the inner front end surface 29 of the fixed protrusion 24 formed on the stator 20 as in the first embodiment.
  • the outer front end surface 14 is formed with a substantially flat surface.
  • the cogging torque can be reduced as in the first embodiment.
  • FIG. 10 shows the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • This embodiment is a combination of the features of the first embodiment and the features of the second embodiment. That is, a partially convex cylindrical surface is formed on each of the outer front end surface 14 and the inner front end surface 29.
  • the cogging torque can be reduced as in the first and second embodiments.
  • FIG. 11 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • the combination of the stator 20 and the rotor 10 shown in FIG. 2 described in the first embodiment is arranged in three layers in the axial direction, and the first generator layer 51 and the second generator layer 52 are arranged.
  • the synchronous generator which has the 3rd generator layer 53 is comprised.
  • Each layer is configured to generate an electromotive force corresponding to one phase and to generate a three-phase electromotive force in the first to third generator layers 51, 52, and 53.
  • the features of the fourth embodiment may be combined with the features of the second embodiment or the features of the third embodiment.
  • the static magnetic field is formed by providing the field winding 25 in the stator 20, it is not limited to this. For example, if it is a comparatively small thing, it is also possible to arrange
  • the outer tip surface 14 and the inner tip surface 29 are partial cylindrical surfaces, but are not limited thereto.
  • the circumferential ends may be chamfered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

A synchronous generator is provided with a rotor (10) in which a plurality of projecting magnetic pole portions (12) projecting from the outer circumferential surface are arranged at intervals from one another in the circumferential direction, and which consists of a magnetic material, and a stator (20) covering the rotor (10) from the outside.  The stator (20) comprises a stator iron core (22) in which a plurality of fixed projecting portions (24) which project from the inner circumferential surface toward the inside and are capable of facing each of the projecting magnetic pole portions (12) are arranged at intervals from one another in the circumferential direction and a static magnetic field is formed, and armature winding wires (26) which are formed by winding a coil around each of the fixed projecting portions (24) in the radial direction.  The circumferential central portion of an outer end surface (14) of each of the projecting magnetic pole portions (12) projects radially outward than circumferential both ends thereof.

Description

同期発電機Synchronous generator
 本発明は、固定子に界磁巻線を有する同期発電機に関する。 The present invention relates to a synchronous generator having a field winding on a stator.
 従来の大型風車用の発電機には、永久磁石式の同期発電機が用いられているものが多い。永久磁石式の同期発電機は、一般に回転子に永久磁石が設けられて、固定子に電機子巻線を有している。この永久磁石で静磁場が形成されている。 Many conventional generators for large wind turbines use a permanent magnet type synchronous generator. In a permanent magnet type synchronous generator, a rotor is generally provided with a permanent magnet, and a stator has an armature winding. A static magnetic field is formed by this permanent magnet.
 このような永久磁石式の同期発電機は、高価なネオジム系の永久磁石を多く用いているために、高コストなものが多い。このような高コストな永久磁石式の同期発電機に代えて、固定子に静磁場を励磁させる同期発電機を用いるものがある。このような同期発電機は、例えば特許文献1に開示されているようなものが知られている。 Such a permanent magnet type synchronous generator uses a lot of expensive neodymium permanent magnets, and is therefore expensive. In place of such a high-cost permanent magnet type synchronous generator, there is one that uses a synchronous generator that excites a static magnetic field in the stator. For example, such a synchronous generator as disclosed in Patent Document 1 is known.
特開2008-48584号公報JP 2008-48584 A
 静磁場を励磁する同期発電機の固定子は、リング状部材の内周面に半径方向内側に突出する突出部が形成されたものがある。この突出部には、静磁場を励磁されるための界磁巻線や、起電力等を発生させる電機子巻線が設けられている。一方、回転子側は、磁性体からなるリングの外周面に半径方向に突出する磁極を有するものが多い。 Some stators of a synchronous generator that excites a static magnetic field have a protruding portion that protrudes radially inward on the inner peripheral surface of a ring-shaped member. The projecting portion is provided with a field winding for exciting a static magnetic field and an armature winding for generating an electromotive force. On the other hand, the rotor side often has a magnetic pole protruding in the radial direction on the outer peripheral surface of a ring made of a magnetic material.
 回転子が回転するときに固定子の突出部および回転子の磁極が互いに交差するときに、コギングトルクが発生することがある。このコギングトルクの値が大きくなると、騒音等の振動を発生させる。この振動は、発電効率等を低下させる要因となる。 When the rotor rotates, cogging torque may occur when the protrusions of the stator and the magnetic poles of the rotor intersect each other. When the value of the cogging torque is increased, vibration such as noise is generated. This vibration is a factor that reduces power generation efficiency and the like.
 本発明は上述した課題を解決するためになされたものであり、その目的は、静磁場を励磁する同期発電機が発電するときに発生するコギングトルクを低減させることである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce cogging torque generated when a synchronous generator that excites a static magnetic field generates power.
 上記目的を達成するための本発明に係る同期発電機は、外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、を有する同期発電機において、前記各突出磁極部それぞれの半径方向外側に面する端面部の周方向中央部が、周方向両端よりも半径方向外側に突出するように形成されていること、を特徴とする。 In order to achieve the above object, a synchronous generator according to the present invention includes a plurality of projecting magnetic pole portions formed so as to project radially outward from an outer peripheral surface and are arranged at intervals in the circumferential direction. An inner ring member made of a body, the inner ring-shaped member being configured to rotate about an axis, and covering the rotor from the radially outer side and projecting radially inward from the inner peripheral surface. A stator core having an outer ring-shaped member in which a plurality of fixed protrusions that can face each of the protruding magnetic pole parts are arranged at intervals in the circumferential direction; An armature winding formed by winding a coil around each portion in the radial direction; and a stator that covers the stator from the outside in the radial direction and fixes the stator. With housing In the synchronous generator having the above, the center part in the circumferential direction of the end face part facing outward in the radial direction of each protruding magnetic pole part is formed to protrude radially outward from both ends in the circumferential direction. And
 また、本発明に係る同期発電機は、外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、を有する同期発電機において、前記各固定突出部それぞれの半径方向内側に面する端面部の周方向中央部が、周方向両端よりも半径方向内側に突出するように形成されていること、を特徴とする。 In addition, the synchronous generator according to the present invention includes an inner ring made of a magnetic material in which a plurality of protruding magnetic pole portions formed so as to protrude radially outward from the outer peripheral surface are arranged at intervals in the circumferential direction. A rotor configured to rotate around its axis, and the inner ring-shaped member covering the rotor from the radially outer side and projecting from the inner peripheral surface toward the radially inner side to project each of the projecting magnetic poles A plurality of fixed protrusions that can be opposed to each of the respective parts, and a stator core having a static magnetic field formed by outer ring members arranged in the circumferential direction at intervals, and each of the fixed protrusions in a radial direction A stator having an armature winding formed by winding a coil around the housing, and a housing configured to cover the stator from the outside in a radial direction and fix the stator. Synchronous power generation In the circumferential direction central portion of the end surface portion facing the radially inner side of each of the fixed protrusion, that it is formed so as to protrude radially inward from circumferential ends, characterized by.
 本発明によれば、静磁場を励磁する同期発電機が発電するときに発生するコギングトルクを低減させることが可能になる。 According to the present invention, it is possible to reduce the cogging torque generated when the synchronous generator that excites the static magnetic field generates power.
本発明の第1の実施形態に係る同期発電機の固定子および回転子の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。FIG. 3 is a schematic front view showing a part of the stator and the rotor of the synchronous generator according to the first embodiment of the present invention linearly developed in the circumferential direction when viewed from the axial direction. 図1の同期発電機の固定子および回転子等を回転軸方向に展開した状態を示す概略斜視図であって、(a)は回転子、(b)は固定子、(c)はハウジング、(d)は同期発電機が組み上がった状態を示している。It is a schematic perspective view which shows the state which expand | deployed the stator of the synchronous generator of FIG. 1, a rotor, etc. to the rotating shaft direction, (a) is a rotor, (b) is a stator, (c) is a housing, (D) has shown the state which the synchronous generator was assembled. 図2の固定子に形成された固定子鉄心に形成された電機子巻線および界磁巻線等の一組を取り出して示す概略斜視図である。FIG. 3 is a schematic perspective view showing a set of armature windings and field windings formed on a stator iron core formed on the stator of FIG. 2. 図2の回転子の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of rotor of FIG. 図2の同期発電機で、3相起電力を発生させる例を示す正面図である。It is a front view which shows the example which generates a three-phase electromotive force with the synchronous generator of FIG. 従来の回転子の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of conventional rotor. 図5の回転子を用いたときに、回転子が回転しているときの時間と電機子電圧の関係を示すグラフである。It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 5 is used. 図6の回転子を用いたときに、回転子が回転しているときの時間と電機子電圧の関係を示すグラフである。It is a graph which shows the relationship between time and armature voltage when a rotor is rotating when the rotor of FIG. 6 is used. 本発明の第2の実施形態に係る同期発電機の固定子および回転子の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。FIG. 6 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a second embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction. 本発明の第3の実施形態に係る同期発電機の固定子および回転子の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。FIG. 10 is a schematic front view showing a part of a stator and a rotor of a synchronous generator according to a third embodiment of the present invention as seen from the axial direction and linearly developed in the circumferential direction. 本発明の第4の実施形態に係る同期発電機を示す概略斜視図である。It is a schematic perspective view which shows the synchronous generator which concerns on the 4th Embodiment of this invention.
 以下、本発明に係る同期発電機の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of a synchronous generator according to the present invention will be described with reference to the drawings.
[第1の実施形態]
 本発明に係る第1の実施形態について、図1~図8を用いて説明する。図1は、本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。図2は、図1の同期発電機の固定子20および回転子10等を回転軸方向に展開した状態を示す概略斜視図である。図3は、図1の同期発電機の固定子20および回転子10等を回転軸方向に展開した状態を示す概略斜視図であって、(a)は回転子10、(b)は固定子20、(c)はハウジング30、(d)は同期発電機が組み上がった状態を示している。図4は、図2の回転子10の一部を示す概略斜視図である。図5は、図2の同期発電機で、3相起電力を発生させる例を示す正面図である。
[First Embodiment]
A first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic front view showing a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment as seen in the axial direction and linearly developed in the circumferential direction. FIG. 2 is a schematic perspective view showing a state where the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis. FIG. 3 is a schematic perspective view showing a state in which the stator 20 and the rotor 10 of the synchronous generator of FIG. 1 are developed in the direction of the rotation axis, where (a) is the rotor 10 and (b) is the stator. 20, (c) shows the housing 30, and (d) shows a state where the synchronous generator is assembled. FIG. 4 is a schematic perspective view showing a part of the rotor 10 of FIG. FIG. 5 is a front view showing an example of generating a three-phase electromotive force in the synchronous generator of FIG.
 図6は、従来の回転子10の一部を示す概略斜視図である。図7は、図5の回転子10を用いたときに、回転子10が回転しているときの時間と電機子電圧の関係を示すグラフである。図8は、図6の回転子10を用いたときに、回転子10が回転しているときの時間と電機子電圧の関係を示すグラフである。 FIG. 6 is a schematic perspective view showing a part of the conventional rotor 10. FIG. 7 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 5 is used. FIG. 8 is a graph showing the relationship between the time when the rotor 10 is rotating and the armature voltage when the rotor 10 of FIG. 6 is used.
 先ず、本実施形態の同期発電機の構成について説明する。 First, the configuration of the synchronous generator of this embodiment will be described.
 本実施形態の同期発電機は、図2に示すように、水平な軸70周りを回転可能なリング状の回転子鉄心16を有する回転子10と、この回転子10を半径方向外側から覆う固定子20と、この固定子20を半径方向外側から覆い固定子20を固定するためのハウジング30と、を有する。 As shown in FIG. 2, the synchronous generator according to the present embodiment includes a rotor 10 having a ring-shaped rotor core 16 that can rotate around a horizontal axis 70, and a stator that covers the rotor 10 from the outside in the radial direction. And a housing 30 for covering the stator 20 from the outside in the radial direction and fixing the stator 20.
 回転子鉄心16は、例えばケイ素鋼板等の磁性体からなり、水平な軸周りを回転可能に構成されたリング状の部材である。この回転子鉄心16の外周面には、半径方向外側に向かって突出するように複数の突出磁極部12が形成されている。これらの突出磁極部12は、周方向に互いに間隔をあけて配列されている。突出磁極部12同士の各間隔は、等間隔になるように構成されている。突出磁極部12については、後で説明する。 The rotor core 16 is a ring-shaped member made of a magnetic material such as a silicon steel plate and configured to be rotatable around a horizontal axis. A plurality of protruding magnetic pole portions 12 are formed on the outer peripheral surface of the rotor core 16 so as to protrude outward in the radial direction. These protruding magnetic pole portions 12 are arranged at intervals in the circumferential direction. The intervals between the protruding magnetic pole portions 12 are configured to be equal intervals. The protruding magnetic pole portion 12 will be described later.
 また、回転子10の内側には、水平な軸周りを回転する回転軸(図示せず)が配置されている。回転子10は、この回転軸に固定されて、当該回転軸と共に回転する。 Also, a rotating shaft (not shown) that rotates around a horizontal axis is arranged inside the rotor 10. The rotor 10 is fixed to the rotating shaft and rotates together with the rotating shaft.
 固定子20は、固定子鉄心22と、この固定子鉄心22に配置された電機子巻線26と、この電機子巻線26の付近に配置された界磁巻線25と、を有する。 The stator 20 has a stator core 22, an armature winding 26 disposed on the stator core 22, and a field winding 25 disposed in the vicinity of the armature winding 26.
 この固定子鉄心22は、ケイ素鋼板等の磁性体からなるリング状の部材で、回転子10を半径方向外側から覆うように構成されている。この固定子鉄心22の内周面には、半径方向内側に向かって突出する複数の固定突出部24が形成されている。これらの固定突出部24は、周方向に互いに間隔をあけて配列されて、回転子10の各突出磁極部12それぞれと対向可能である。ここで、隣接する固定突出部24それぞれと軸70とにより形成される中心角は、隣接する突出磁極部12それぞれと軸70とにより形成される中心角と等しくなるように構成されている。 The stator core 22 is a ring-shaped member made of a magnetic material such as a silicon steel plate, and is configured to cover the rotor 10 from the outside in the radial direction. A plurality of fixed projecting portions 24 projecting inward in the radial direction are formed on the inner peripheral surface of the stator core 22. These fixed projecting portions 24 are arranged at intervals in the circumferential direction, and can be opposed to the projecting magnetic pole portions 12 of the rotor 10. Here, the central angle formed by each of the adjacent fixed protruding portions 24 and the shaft 70 is configured to be equal to the central angle formed by each of the adjacent protruding magnetic pole portions 12 and the shaft 70.
 この固定子鉄心22は、固定突出部24毎に分割可能に構成されている。すなわち、当該固定子鉄心22は、図3に示す固定突出部24を含む部材が周方向に複数配列されて、1つのリングを構成している。 The stator core 22 is configured to be divided for each fixed protrusion 24. That is, the stator core 22 includes a plurality of members including the fixed protrusions 24 shown in FIG. 3 arranged in the circumferential direction to form one ring.
 これらの各固定突出部24それぞれには、突出方向(半径方向)周りにコイルが巻き回されて形成された界磁巻線25が設けられている。この界磁巻線25に直流電流を流すことによって、固定子20に静磁場が形成される。本実施形態では、磁束の方向が図1に示す矢印Aになるような静磁場が形成されている。 Each of these fixed protrusions 24 is provided with a field winding 25 formed by winding a coil around the protrusion direction (radial direction). A static magnetic field is formed in the stator 20 by passing a direct current through the field winding 25. In the present embodiment, a static magnetic field is formed such that the direction of the magnetic flux becomes the arrow A shown in FIG.
 また、この固定突出部24には、界磁巻線25よりも半径方向内側に電機子巻線26が設けられている。この電機子巻線26は、界磁巻線25と同様に、半径方向周りにコイルが巻き回されて形成されている。この電機子巻線26によって起電力等を発生するように構成される。 Also, the fixed protrusion 24 is provided with an armature winding 26 on the inner side in the radial direction than the field winding 25. As with the field winding 25, the armature winding 26 is formed by winding a coil around the radial direction. The armature winding 26 is configured to generate an electromotive force or the like.
 これらの各固定突出部24の半径方向内側に面する内側先端面29は、各突出磁極部12の半径方向外側に面する外側先端面14と半径方向に互いに所定の間隔を保つように配置されている。 The inner front end surface 29 facing the radially inner side of each of the fixed projecting portions 24 is disposed so as to maintain a predetermined distance in the radial direction from the outer front end surface 14 facing the radially outer side of each projecting magnetic pole portion 12. ing.
 また、詳細な図示は省略しているが、固定子20は上述したようにハウジング30によって固定されている。 Although not shown in detail, the stator 20 is fixed by the housing 30 as described above.
 回転子10の各突出磁極部12それぞれの外側先端面14は、周方向中央部が周方向両端よりも半径方向外側に突出するように形成されている。本実施形態の外側先端面14は、図1および図4に示すように、周方向両端よりも周方向中央が半径方向に突出する部分円筒面が形成されている。この部分円筒面の曲率の中心は、回転子10の回転中心、すなわち軸70よりも半径方向外側にあるように構成されている。 The outer front end face 14 of each protruding magnetic pole portion 12 of the rotor 10 is formed such that the central portion in the circumferential direction protrudes radially outward from both ends in the circumferential direction. As shown in FIGS. 1 and 4, the outer front end surface 14 of the present embodiment is formed with a partial cylindrical surface in which the center in the circumferential direction protrudes in the radial direction from both ends in the circumferential direction. The center of curvature of the partial cylindrical surface is configured to be radially outside the rotation center of the rotor 10, that is, the shaft 70.
 続いて、上記のように構成された回転子10および固定子20等で、3相の起電力を発生させる構成について説明する。 Subsequently, a configuration in which the three-phase electromotive force is generated by the rotor 10 and the stator 20 configured as described above will be described.
 図5に示すように、周方向に隣接配列された10個の固定突出部24が1つの固定突出部24群を構成している。この例では、3つの固定突出部24群、すなわち、第1固定突出部群41、第2固定突出部群42、および第3固定突出部群43、を有している。 As shown in FIG. 5, ten fixed protrusions 24 arranged adjacent to each other in the circumferential direction constitute one fixed protrusion 24 group. In this example, it has three fixed protrusion parts 24 group, ie, the 1st fixed protrusion part group 41, the 2nd fixed protrusion part group 42, and the 3rd fixed protrusion part group 43.
 第1~第3固定突出部群41、42、43は、互いに周方向間隔をあけて配列されている。この周方向間隔が、互いに隣接する固定突出部24同士の間隔よりも大きくなるように、第1~第3固定突出部群41、42、43を配置している。第1~第3固定突出部群41、42、43それぞれが1相の起電力を発生させて、第1~第3固定突出部群41、42、43で3相起電力を発生する。 The first to third fixed projecting portion groups 41, 42, 43 are arranged at intervals in the circumferential direction. The first to third fixed protruding portion groups 41, 42, and 43 are arranged so that the circumferential interval is larger than the interval between the adjacent fixed protruding portions 24. The first to third fixed protrusion groups 41, 42, and 43 each generate a one-phase electromotive force, and the first to third fixed protrusion groups 41, 42, and 43 generate a three-phase electromotive force.
 次に、本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 回転子10が回転すると、すなわち図1に示す矢印Rの方向に回転子10が移動すると、各突出磁極部12それぞれの各外側先端面14が、各固定突出部24それぞれの各内側先端面29に、互いに交差しながら移動する。 When the rotor 10 rotates, that is, when the rotor 10 moves in the direction of the arrow R shown in FIG. 1, the outer tip surfaces 14 of the projecting magnetic pole portions 12 correspond to the inner tip surfaces 29 of the fixed projecting portions 24, respectively. Move while crossing each other.
 ここで1つの突出磁極部12の外側先端面14が、各固定突出部24それぞれと半径方向に交差するように移動する例について説明する。この場合、図1の矢印Rの方向に突出磁極部12が移動して、矢印Rの方向に各固定突出部24と交差する。 Here, an example will be described in which the outer front end surface 14 of one protruding magnetic pole portion 12 moves so as to intersect each fixed protruding portion 24 in the radial direction. In this case, the protruding magnetic pole portion 12 moves in the direction of arrow R in FIG. 1 and intersects with each fixed protruding portion 24 in the direction of arrow R.
 先ず、回転方向(図1の矢印Rが示す方向)側の外側先端面14の端部近傍が、内側先端面29の一方の端部と半径方向に重なる。このとき、当該外側先端面14の周方向中央部は、内側先端面29と半径方向に重なっていない。 First, the vicinity of the end of the outer front end surface 14 on the rotation direction (direction indicated by the arrow R in FIG. 1) overlaps one end of the inner front end surface 29 in the radial direction. At this time, the circumferential center portion of the outer tip surface 14 does not overlap the inner tip surface 29 in the radial direction.
 この状態から、外側先端面14が回転方向に移動すると、外側先端面14の周方向中央部が当該内側先端面29に半径方向にほぼ重なる状態になる。このときは、外側先端面14および内側先端面29が互いに対向している。さらに、回転子10が回転して外側先端面14が回転方向に移動すると、当該周方向中央部は、外側先端面14の回転方向と反対側の端部近傍が、内側先端面29に重なる。 From this state, when the outer front end surface 14 moves in the rotation direction, the circumferential central portion of the outer front end surface 14 substantially overlaps the inner front end surface 29 in the radial direction. At this time, the outer front end surface 14 and the inner front end surface 29 face each other. Furthermore, when the rotor 10 rotates and the outer front end surface 14 moves in the rotational direction, the vicinity of the end opposite to the rotation direction of the outer front end surface 14 overlaps the inner front end surface 29 in the circumferential center portion.
 この後に、外側先端面14は、内側先端面29に対して周方向位置が互いに異なる位置に移動する。すなわち、当該突出磁極部12は、隣接する固定突出部24の間にある状態になる。この後に、次に半径方向に重なる固定突出部24に近づくように移動する。 After this, the outer front end face 14 moves to positions where the circumferential positions differ from each other with respect to the inner front end face 29. That is, the protruding magnetic pole portion 12 is in a state between the adjacent fixed protruding portions 24. After this, it moves so that it may approach the fixed protrusion part 24 which overlaps with a radial direction next.
 電機子電圧は、外側先端面14および内側先端面29同士の距離に応じて変化する。本実施形態の部分円筒面の突出磁極部12の場合には、電機子電圧は、図7に示すように変化する。この電機子電圧が最大になるときは、突出磁極部12の外側先端面14が固定突出部24の内側先端面29と半径方向に重なっているときに対応し、最小になるときは、突出磁極部12が隣接する固定突出部24同士の間にあるときに対応する。 The armature voltage changes according to the distance between the outer front end surface 14 and the inner front end surface 29. In the case of the protruding magnetic pole portion 12 having a partial cylindrical surface according to the present embodiment, the armature voltage changes as shown in FIG. The armature voltage is maximized when the outer tip surface 14 of the projecting magnetic pole portion 12 overlaps the inner tip surface 29 of the fixed projecting portion 24 in the radial direction. When the armature voltage is minimized, the armature voltage is minimized. This corresponds to the case where the portion 12 is between the adjacent fixed protrusions 24.
 ここで、回転子10の突出磁極部12の外側先端面14が平坦な場合を、本実施形態の比較例として説明する。 Here, a case where the outer front end surface 14 of the protruding magnetic pole portion 12 of the rotor 10 is flat will be described as a comparative example of the present embodiment.
 図6に示すように、外側先端面14が平坦な面の場合には、電機子電圧は図8に示すように変化する。この場合、外側先端面14の周方向端部が、内側先端面29に重なり始めるときに、外側先端面14および内側先端面29同士の距離が急激に小さくなる。このため、電機子電圧の波形は、ゼロ付近の傾斜が急である。 As shown in FIG. 6, when the outer front end surface 14 is a flat surface, the armature voltage changes as shown in FIG. In this case, when the circumferential end of the outer tip surface 14 begins to overlap the inner tip surface 29, the distance between the outer tip surface 14 and the inner tip surface 29 decreases rapidly. For this reason, the waveform of the armature voltage has a steep slope near zero.
 これに対して、本実施形態は、図5に示すように外側先端面14の周方向中央部よりも周方向端部が半径方向内側にあるために、外側先端面14および内側先端面29が互いに重なり始めるときに、互いの距離が比較例に比べて急激に小さくなることが抑制される。 On the other hand, in the present embodiment, as shown in FIG. 5, the outer end surface 14 and the inner front end surface 29 are formed because the end in the circumferential direction is radially inward of the center in the circumferential direction of the outer end surface 14. When they start to overlap each other, it is possible to suppress the mutual distance from being rapidly reduced as compared with the comparative example.
 このため、図7に示す波形は、図8に示す波形に比べて、電機子電圧がゼロ付近の傾斜が緩やかになり、図8の例よりも図7(本実施形態)の方が、より正弦波に近い波形となる。 For this reason, the waveform shown in FIG. 7 has a gentler slope near the armature voltage of zero than the waveform shown in FIG. 8, and FIG. 7 (the present embodiment) has a higher slope than the example of FIG. The waveform is close to a sine wave.
 このように電機子電圧の急激な変化を抑制することによって、同期発電機のコギングトルクを抑制することが可能になる。 Thus, the cogging torque of the synchronous generator can be suppressed by suppressing the rapid change in the armature voltage.
 以上の説明からわかるように本実施形態によれば、回転子10の突出磁極部12の外側先端面14を部分円筒面にすることによって、電機子電圧の波形が正弦波に近くなる。これにより、同期発電機のコギングトルクを抑制することが可能になる。 As can be seen from the above description, according to the present embodiment, the outer tip surface 14 of the projecting magnetic pole portion 12 of the rotor 10 is a partial cylindrical surface, so that the waveform of the armature voltage becomes close to a sine wave. As a result, the cogging torque of the synchronous generator can be suppressed.
[第2の実施形態]
 本発明に係る同期発電機の第2の実施形態について、図9を用いて説明する。図9は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
[Second Embodiment]
A second embodiment of the synchronous generator according to the present invention will be described with reference to FIG. FIG. 9 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG. In addition, this embodiment is a modification of 1st Embodiment, Comprising: The same code | symbol is attached | subjected to the same part as 1st Embodiment, or a similar part, and duplication description is abbreviate | omitted.
 本実施形態では、固定子20に形成された固定突出部24の内側先端面29に、第1の実施形態と同様に、部分凸円筒面が形成されている。外側先端面14は、ほぼ平坦な面が形成されている。 In this embodiment, a partially convex cylindrical surface is formed on the inner front end surface 29 of the fixed protrusion 24 formed on the stator 20 as in the first embodiment. The outer front end surface 14 is formed with a substantially flat surface.
 本実施形態によれば、第1の実施形態と同様に、コギングトルクを低減することができる。 According to this embodiment, the cogging torque can be reduced as in the first embodiment.
[第3の実施形態]
 本発明に係る同期発電機の第3の実施形態について、図10を用いて説明する。図10は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
[Third Embodiment]
A third embodiment of the synchronous generator according to the present invention will be described with reference to FIG. FIG. 10 shows the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to the present embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG. In addition, this embodiment is a modification of 1st Embodiment, Comprising: The same code | symbol is attached | subjected to the same part as 1st Embodiment, or a similar part, and duplication description is abbreviate | omitted.
 本実施形態は、第1の実施形態の特徴と、第2の実施形態の特徴とを、互いに組み合わせたものである。すなわち、外側先端面14および内側先端面29それぞれに、部分凸円筒面が形成されている。 This embodiment is a combination of the features of the first embodiment and the features of the second embodiment. That is, a partially convex cylindrical surface is formed on each of the outer front end surface 14 and the inner front end surface 29.
 これにより、第1および第2の実施形態と同様に、コギングトルクを低減させることが可能になる。 As a result, the cogging torque can be reduced as in the first and second embodiments.
[第4の実施形態]
 本発明に係る同期発電機の第4の実施形態について、図11を用いて説明する。図11は、本実施形態に係る同期発電機の固定子20および回転子10の本実施形態に係る同期発電機の固定子20および回転子10の一部を軸方向からみて周方向を直線的に展開して示す模式的正面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明は省略する。
[Fourth Embodiment]
A fourth embodiment of the synchronous generator according to the present invention will be described with reference to FIG. FIG. 11 shows the stator 20 and the rotor 10 of the synchronous generator according to this embodiment, and a part of the stator 20 and the rotor 10 of the synchronous generator according to this embodiment is linear in the circumferential direction when viewed from the axial direction. It is a typical front view developed and shown in FIG. In addition, this embodiment is a modification of 1st Embodiment, Comprising: The same code | symbol is attached | subjected to the same part as 1st Embodiment, or a similar part, and duplication description is abbreviate | omitted.
 本実施形態では、第1の実施形態で説明した図2に示す固定子20および回転子10の組合せを、軸方向に3層配列して、第1発電機層51、第2発電機層52および第3発電機層53を有する同期発電機を構成している。各層それぞれが1相に相当する起電力を発生させて、第1~第3発電機層51、52、53で3相起電力を発生させるように構成されている。 In this embodiment, the combination of the stator 20 and the rotor 10 shown in FIG. 2 described in the first embodiment is arranged in three layers in the axial direction, and the first generator layer 51 and the second generator layer 52 are arranged. And the synchronous generator which has the 3rd generator layer 53 is comprised. Each layer is configured to generate an electromotive force corresponding to one phase and to generate a three-phase electromotive force in the first to third generator layers 51, 52, and 53.
 これにより、第1の実施形態の効果に加え、より大きい起電力を得やすくなる。 This makes it easier to obtain a larger electromotive force in addition to the effects of the first embodiment.
[その他の実施形態]
 上記実施形態の説明は、本発明を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other Embodiments]
The description of the above embodiment is an example for explaining the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.
 例えば、第4の実施形態の特徴と、第2の実施形態の特徴または第3の実施形態の特徴とを組み合わせてもよい。 For example, the features of the fourth embodiment may be combined with the features of the second embodiment or the features of the third embodiment.
 また、固定子20に界磁巻線25を設けることによって静磁場を形成しているが、これに限らない。例えば比較的小型のものであれば、永久磁石を配置することも可能である。 Moreover, although the static magnetic field is formed by providing the field winding 25 in the stator 20, it is not limited to this. For example, if it is a comparatively small thing, it is also possible to arrange | position a permanent magnet.
 また、上記の実施形態では、外側先端面14および内側先端面29は、部分円筒面であるがこれに限らない。例えば、周方向両端を面取りしてもよい。 In the above embodiment, the outer tip surface 14 and the inner tip surface 29 are partial cylindrical surfaces, but are not limited thereto. For example, the circumferential ends may be chamfered.
10…回転子、12…突出磁極部、14…外側先端面、16…回転子鉄心、20…固定子、22…固定子鉄心、24…固定突出部、25…界磁巻線、26…電機子巻線、29…内側先端面、30…ハウジング、41…第1固定突出部群、42…第2固定突出部群、43…第3固定突出部群、51…第1発電機層、52…第2発電機層、53…第3発電機層 DESCRIPTION OF SYMBOLS 10 ... Rotor, 12 ... Protruding magnetic pole part, 14 ... Outer front end surface, 16 ... Rotor iron core, 20 ... Stator, 22 ... Stator iron core, 24 ... Fixed protrusion part, 25 ... Field winding, 26 ... Electric machine Sub winding, 29 ... inner front end surface, 30 ... housing, 41 ... first fixed protruding portion group, 42 ... second fixed protruding portion group, 43 ... third fixed protruding portion group, 51 ... first generator layer, 52 ... 2nd generator layer, 53 ... 3rd generator layer

Claims (9)

  1.  外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、
     前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、
     前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、
     を有する同期発電機において、
     前記各突出磁極部それぞれの半径方向外側に面する端面部の周方向中央部が、周方向両端よりも半径方向外側に突出するように形成されていること、
     を特徴とする同期発電機。
    A plurality of protruding magnetic pole portions formed so as to protrude radially outward from the outer peripheral surface have an inner ring member made of a magnetic material arranged at intervals in the circumferential direction. A rotor configured to rotate about an axis;
    An outer ring in which a plurality of fixed protrusions that cover the rotor from the outer side in the radial direction and protrude from the inner peripheral surface toward the inner side in the radial direction so as to face each of the protruding magnetic pole parts are arranged at intervals in the circumferential direction. A stator core comprising a stator member formed with a static magnetic field and an armature winding formed by winding a coil around each of the fixed protrusions in the radial direction;
    A housing configured to cover the stator from outside in the radial direction and fix the stator;
    In a synchronous generator having
    The center part in the circumferential direction of the end face part facing the radially outer side of each protruding magnetic pole part is formed so as to protrude radially outward from both ends in the circumferential direction,
    Synchronous generator characterized by
  2.  前記各突出磁極部それぞれの端面部は、周方向両端よりも周方向中央部が突出するように形成された部分円筒面で、この部分円筒面の曲率中心が前記回転子の回転中心よりも半径方外側にあるように構成されていること、
     を特徴とする請求項1に記載の同期発電機。
    Each end face part of each projecting magnetic pole part is a partial cylindrical surface formed so that the central part in the circumferential direction protrudes from both ends in the circumferential direction, and the center of curvature of the partial cylindrical surface is more radius than the rotation center of the rotor. Configured to be on the outside,
    The synchronous generator according to claim 1.
  3.  前記各突出磁極部それぞれの端面部は周方向両端が面取りされていること、を特徴とする請求項1に記載の同期発電機。 2. The synchronous generator according to claim 1, wherein both end surfaces of the projecting magnetic pole portions are chamfered at both ends in a circumferential direction.
  4.  前記回転子は、軸方向に積層された複数の前記内側リング状部材を有し、
     前記固定子は、前記各内側リング状部材それぞれと一対となり前記各突出磁極部それぞれと対向可能な複数の外側リング状部材を有すること、
     を特徴とする請求項1ないし請求項3のいずれか一項に記載の同期発電機。
    The rotor has a plurality of the inner ring-shaped members stacked in the axial direction,
    The stator has a plurality of outer ring-shaped members that are paired with the inner ring-shaped members and can face the projecting magnetic pole portions;
    The synchronous generator as described in any one of Claim 1 thru | or 3 characterized by these.
  5.  周方向に隣接する複数の前記固定突出部によって1つの固定突出部群が形成されて、
     前記外側リング部材の内周面に、3つの前記固定突出部群が周方向に互いに間隔をあけて配列されて、周方向に隣接する前記固定突出部群同士の間隔は、前記各固定突出部群内の隣接する前記固定突出部同士の周方向間隔よりも大きくなるように形成されて、
     3つの前記各固定突出部群それぞれが1相の起電力を発生させて、3群で3相起電力を発生させるように構成されていること、
     を特徴とする請求項1ないし請求項4のいずれか一項の記載の同期発電機。
    One fixed protrusion group is formed by the plurality of fixed protrusions adjacent in the circumferential direction,
    Three fixed protrusions are arranged on the inner peripheral surface of the outer ring member at intervals in the circumferential direction, and the intervals between the fixed protrusions adjacent to each other in the circumferential direction are determined by the fixed protrusions. It is formed to be larger than the circumferential interval between the adjacent fixed protrusions in the group,
    Each of the three groups of fixed protrusions is configured to generate a one-phase electromotive force and to generate a three-phase electromotive force in the three groups;
    The synchronous generator according to any one of claims 1 to 4, wherein
  6.  半径方向に互いに対向する一対の前記内側リング部材および外側リング部材によって形成されるリング部材対が、軸方向に3つ積層されて1組のリング部材群を構成し、
     各リング部材対が1相の起電力を発生させて、1組のリング部材群で3相起電力を発生させるように構成されていること、
     を特徴とする請求項1ないし請求項4のいずれか一項に記載の同期発電機。
    Three ring member pairs formed by a pair of the inner ring member and the outer ring member facing each other in the radial direction are stacked in the axial direction to form a set of ring members.
    Each ring member pair is configured to generate a one-phase electromotive force and to generate a three-phase electromotive force in a set of ring member groups,
    The synchronous generator according to any one of claims 1 to 4, wherein
  7.  前記固定突出部の半径方向内側に面する端面部の周方向中央部が、周方向端部両側よりも半径方向内側に突出するように形成されていること、
     を特徴とする請求項1ないし請求項6のいずれか一項に記載の同期発電機。
    The center part in the circumferential direction of the end face part facing inward in the radial direction of the fixed protruding part is formed so as to protrude inward in the radial direction from both sides of the circumferential end part,
    The synchronous generator according to any one of claims 1 to 6, wherein:
  8.  外周面から半径方向外側に向かって突出するように形成された複数の突出磁極部が周方向に互いに間隔をあけて配列されて磁性体からなる内側リング部材を有し、この内側リング状部材が軸周りを回転するように構成された回転子と、
     前記回転子を半径方向外側から覆い内周面から半径方向内側に向かって突出して前記各突出磁極部それぞれと対向可能な複数の固定突出部が周方向に互いに間隔をあけて配列された外側リング状部材を備えて静磁場が形成された固定子鉄心と、前記各固定突出部それぞれに半径方向周りにコイルが巻き回されて形成される電機子巻線と、を具備する固定子と、
     前記固定子を半径方向外側から覆い、前記固定子を固定するように形成されたハウジングと、
     を有する同期発電機において、
     前記各固定突出部それぞれの半径方向内側に面する端面部の周方向中央部が、周方向両端よりも半径方向内側に突出するように形成されていること、
     を特徴とする同期発電機。
    A plurality of protruding magnetic pole portions formed so as to protrude radially outward from the outer peripheral surface have an inner ring member made of a magnetic material arranged at intervals in the circumferential direction. A rotor configured to rotate about an axis;
    An outer ring in which a plurality of fixed protrusions that cover the rotor from the outer side in the radial direction and protrude from the inner peripheral surface toward the inner side in the radial direction so as to face each of the protruding magnetic pole parts are arranged at intervals in the circumferential direction. A stator core comprising a stator member formed with a static magnetic field and an armature winding formed by winding a coil around each of the fixed protrusions in the radial direction;
    A housing configured to cover the stator from outside in the radial direction and fix the stator;
    In a synchronous generator having
    The center portion in the circumferential direction of the end surface portion facing the radially inner side of each of the fixed protruding portions is formed so as to protrude radially inward from both ends in the circumferential direction,
    Synchronous generator characterized by
  9.  前記各固定突出部それぞれには、前記電機子巻線の半径方向内側に界磁巻線が形成されていること、を特徴とする請求項1ないし請求項8のいずれか一項に記載の同期発電機。 9. The synchronization according to claim 1, wherein a field winding is formed on each of the fixed protrusions on the radially inner side of the armature winding. 10. Generator.
PCT/JP2009/004866 2009-09-25 2009-09-25 Synchronous generator WO2011036723A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/004866 WO2011036723A1 (en) 2009-09-25 2009-09-25 Synchronous generator
JP2011532805A JPWO2011036723A1 (en) 2009-09-25 2009-09-25 Synchronous generator
CN2009801616728A CN102577050A (en) 2009-09-25 2009-09-25 Synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004866 WO2011036723A1 (en) 2009-09-25 2009-09-25 Synchronous generator

Publications (1)

Publication Number Publication Date
WO2011036723A1 true WO2011036723A1 (en) 2011-03-31

Family

ID=43795496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004866 WO2011036723A1 (en) 2009-09-25 2009-09-25 Synchronous generator

Country Status (3)

Country Link
JP (1) JPWO2011036723A1 (en)
CN (1) CN102577050A (en)
WO (1) WO2011036723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748772A (en) * 2011-08-11 2014-04-23 东芝三菱电机产业系统株式会社 Rotary electrical machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205272B2 (en) * 2019-02-08 2023-01-17 株式会社デンソー Armature and rotating electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395104U (en) * 1976-12-30 1978-08-03
JPS5885472U (en) * 1981-12-07 1983-06-09 デンヨ−株式会社 welding machine with multiple outputs
JPH089609A (en) * 1994-06-17 1996-01-12 Osaka Seimitsu Denki Kosakusho:Kk Engine-driven arc welding machine
JPH11262225A (en) * 1998-01-20 1999-09-24 Switched Reluctance Drives Ltd Reduction of noise in reluctance machine
JP2001128426A (en) * 1999-10-28 2001-05-11 Tamagawa Seiki Co Ltd Variable reluctance synchro-motor
JP2007282323A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Motor and energization control device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395104U (en) * 1976-12-30 1978-08-03
JPS5885472U (en) * 1981-12-07 1983-06-09 デンヨ−株式会社 welding machine with multiple outputs
JPH089609A (en) * 1994-06-17 1996-01-12 Osaka Seimitsu Denki Kosakusho:Kk Engine-driven arc welding machine
JPH11262225A (en) * 1998-01-20 1999-09-24 Switched Reluctance Drives Ltd Reduction of noise in reluctance machine
JP2001128426A (en) * 1999-10-28 2001-05-11 Tamagawa Seiki Co Ltd Variable reluctance synchro-motor
JP2007282323A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Motor and energization control device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748772A (en) * 2011-08-11 2014-04-23 东芝三菱电机产业系统株式会社 Rotary electrical machine
CN103748772B (en) * 2011-08-11 2016-06-08 东芝三菱电机产业系统株式会社 Electric rotating machine

Also Published As

Publication number Publication date
JPWO2011036723A1 (en) 2013-02-14
CN102577050A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2013047076A1 (en) Rotating electric machine
JP5695748B2 (en) Rotating electric machine
JP6388066B2 (en) Brushless motor
JP2009033952A (en) Electric motor
JP6406355B2 (en) Double stator type rotating machine
EP3352347B1 (en) Permanent magnet (pm) brushless machine with outer rotor
JP2016538817A (en) Transverse flux type electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2008312318A (en) Rotor of rotary electric machine, and rotary electric machine
JP5702118B2 (en) Rotor structure and motor
JP5441584B2 (en) Electric motor
US20160268859A1 (en) Multi-pole, three-phase rotary electric machine
WO2011036723A1 (en) Synchronous generator
JP2005130689A (en) Rotating electric machine
JP5918760B2 (en) Rotating electric machine
WO2011101886A1 (en) Synchronous generator
JP6658707B2 (en) Rotating electric machine
JP2006025486A (en) Electric electric machine
EP4329152A1 (en) Rotor
WO2023281892A1 (en) Motor
EP4329153A1 (en) Permanent magnet rotor with reduced torque ripple
WO2021149753A1 (en) Magnetic geared dynamo-electric machine, and method for manufacturing stator
JP5401753B2 (en) Rotating electric machine
WO2021019703A1 (en) Three-phase ac generator
JP5924913B2 (en) Generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161672.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3617/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09849754

Country of ref document: EP

Kind code of ref document: A1