JPH0894682A - Apparatus for diagnosing insulation deterioration - Google Patents

Apparatus for diagnosing insulation deterioration

Info

Publication number
JPH0894682A
JPH0894682A JP22944894A JP22944894A JPH0894682A JP H0894682 A JPH0894682 A JP H0894682A JP 22944894 A JP22944894 A JP 22944894A JP 22944894 A JP22944894 A JP 22944894A JP H0894682 A JPH0894682 A JP H0894682A
Authority
JP
Japan
Prior art keywords
partial discharge
signal
current
peak
averaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22944894A
Other languages
Japanese (ja)
Other versions
JP3682930B2 (en
Inventor
Tetsuo Yoshida
哲雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22944894A priority Critical patent/JP3682930B2/en
Publication of JPH0894682A publication Critical patent/JPH0894682A/en
Application granted granted Critical
Publication of JP3682930B2 publication Critical patent/JP3682930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To detect a minute partial discharge with high accuracy and estimate the time till a break down by attenuating a pulse signal detected by a high frequency current transformer at an attenuator, detecting a peak of the signal through a BPF of a high gain, and averaging the signal. CONSTITUTION: A partially discharging pulse current is inputted to a point A and output to an input terminal of a matching resistor 21 connected by means of a coaxial cord. The pulse current output from the matching resistor 21 is divided by an attenuator 22 of 0-several tens dB in accordance with the size of noises of a set switch gear so as not to exceed a maximum input value of a BPF23, and input to the BPF23 matching the frequency component. The output is amplified by an amplifier 24 to several tens dB and sent to a terminal B and a peak detection circuit 25. The peak detection circuit 25 holds a peak at a time constant of several ms under a decimal point. Passing through an averaging circuit 26 averaging by a time interval of several 100ms and a voltage/current conversion circuit 27, an output current, of DC4mA-20mA is outputted from a terminal C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチギヤ等で発生
する部分放電を検出する絶縁劣化診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation deterioration diagnosing device for detecting a partial discharge generated in a switchgear or the like.

【0002】[0002]

【従来の技術】部分放電検出器が取り付けられた金属閉
鎖形スイッチギヤを示す図6において、外周を軟鋼板で
囲まれた金属箱体1の後部には、仕切り1aが縦に設け
られている。この仕切り1aの上端後部の天井にはスペ
ーサ2が設けられ、スペーサ2の軸心に貫設された導体
の下端には、受電用の導体3aが接続されている。
2. Description of the Related Art In FIG. 6 showing a metal closed type switchgear to which a partial discharge detector is attached, a partition 1a is vertically provided at a rear portion of a metal box 1 whose outer periphery is surrounded by a mild steel plate. . A spacer 2 is provided on the ceiling at the rear of the upper end of the partition 1a, and a conductor 3a for receiving power is connected to the lower end of the conductor penetrating the axial center of the spacer 2.

【0003】導体3aの下端には、U字状に湾曲され、
端部には仕切り1aの後面に取り付けられた一対の変流
器4を貫通する導体3bの下端と、略L字形の導体3c
の上端が接続されている。このうち、上側の導体3bの
上端は、遮断器室1bに収納された真空遮断器5の下極
に接続され、真空遮断器5の上極は導体3dの下端が接
続される。導体3dの上端は母線室1cに取り付けら
れ、箱体1の天井部下面に紙面直交方向に配設された母
線6に接続されている。
The lower end of the conductor 3a is curved in a U shape,
At the end, the lower end of the conductor 3b penetrating the pair of current transformers 4 attached to the rear surface of the partition 1a and the substantially L-shaped conductor 3c.
The upper end of is connected. Of these, the upper end of the upper conductor 3b is connected to the lower pole of the vacuum circuit breaker 5 housed in the circuit breaker chamber 1b, and the upper pole of the vacuum circuit breaker 5 is connected to the lower end of the conductor 3d. The upper end of the conductor 3d is attached to the busbar chamber 1c, and is connected to the busbar 6 arranged on the lower surface of the ceiling of the box body 1 in the direction orthogonal to the plane of the drawing.

【0004】一方、遮断器室1bの下側に設けられた計
器用変成器室1dには計器用変成器7が収納され、計器
用変成器7の一次側は、導体3eの下端に接続されてい
る。さらに、計器用変成器室1dの下側に設けられた避
雷器室1eには避雷器8が収納され、避雷器8には図示
しないがいしを介して仕切り1fに支えられた導体3f
の片側が接続され、この導体3fの他側は導体3dの下
端に接続されている。
On the other hand, an instrument transformer 7 is housed in the instrument transformer chamber 1d provided below the circuit breaker chamber 1b, and the primary side of the instrument transformer 7 is connected to the lower end of the conductor 3e. ing. Further, a lightning arrester 8 is housed in a lightning arrester chamber 1e provided below the instrument transformer room 1d, and a conductor 3f supported by a partition 1f via an insulator (not shown) is provided in the lightning arrester 8.
One side of the conductor 3f is connected, and the other side of the conductor 3f is connected to the lower end of the conductor 3d.

【0005】箱体1の下端後部には、接地母線9が紙面
直交方向に設けられ、接地母線9には接地導体10の片側
が接続され、接地導体10の他端は箱体1の接地棒に接続
されている。接地導体10には高周波変流器11(以下、高
周波CTと表す。)があらかじめ遊嵌され、高周波CT
11の二次側の同軸コード線12は、図示しない検出装置に
接続されている。また、計器用変成器室1dの前面上端
にはAEセンサ13が取り付けられ、AEセンサ13の出力
側の同軸コード線14も図示しない超音波検出装置に接続
されている。
A ground busbar 9 is provided in the rear portion of the lower end of the box body 1 in a direction orthogonal to the plane of the drawing. One side of a ground conductor 10 is connected to the ground busbar 9, and the other end of the ground conductor 10 is a ground rod of the box body 1. It is connected to the. A high-frequency current transformer 11 (hereinafter referred to as a high-frequency CT) is loosely fitted in the ground conductor 10 in advance, and
The coaxial cord wire 12 on the secondary side of 11 is connected to a detection device (not shown). Further, an AE sensor 13 is attached to the upper end of the front surface of the instrument transformer room 1d, and the coaxial cord wire 14 on the output side of the AE sensor 13 is also connected to an ultrasonic detecting device (not shown).

【0006】このように構成された金属閉鎖形スイッチ
ギヤにおいては、長期に亘る運転の結果、計器用変成器
7や真空遮断器5を構成する絶縁物及びがいしの劣化
や、導体の表面に付着した埃などによって、対地間及び
相間において部分放電が発生すると、超音波が発生する
と共に接地母線9に部分放電によるパルス電流が流れ、
接地導体10から接地棒を介して大地に放電される。
In the metal-closed switch gear constructed as described above, as a result of long-term operation, the insulators and insulators constituting the transformer 7 for the instrument and the vacuum circuit breaker are deteriorated, and the switch gear adheres to the surface of the conductor. When a partial discharge is generated between the ground and between the phases due to dust or the like, ultrasonic waves are generated and a pulse current due to the partial discharge flows through the ground bus 9,
It is discharged from the ground conductor 10 to the ground through the ground rod.

【0007】従って、この金属閉鎖形スイッチギヤにお
いては、高周波CT11によって大地に放電されるパルス
電流を特定の中心周波数で検出し、図示しない増幅回路
に入力している。この周波数は、数100 kHzの低周波
領域や、図7に示すような数MHzがあり、用途に応じ
て使用されている。なお、高周波CT11による検出方法
は、例えば特公平2−43409 にも開示されている。
Therefore, in this metal closed switchgear, the pulse current discharged to the ground by the high frequency CT11 is detected at a specific center frequency and is input to an amplifier circuit (not shown). This frequency has a low frequency range of several 100 kHz and several MHz as shown in FIG. 7, and is used depending on the application. The detection method using the high frequency CT11 is also disclosed in, for example, Japanese Patent Publication No. 2-43409.

【0008】一方、AEセンサ13では、部分放電による
数10kHzの超音波を検出し、この超音波を電気信号に
変換して同軸コード14を介して検出装置の増幅回路に入
力している。
On the other hand, the AE sensor 13 detects an ultrasonic wave of several tens of kHz due to partial discharge, converts the ultrasonic wave into an electric signal, and inputs the electric signal to the amplification circuit of the detection device via the coaxial cord 14.

【0009】[0009]

【発明が解決しようとする課題】ところが、この金属閉
鎖形スイッチギヤで検出されたパルス電流や超音波に
は、ノイズが混入されることがある。パルス電流に混入
されるノイズとしては、スイッチギヤが接続された電源
系統に重畳されて侵入する高周波成分のパルス電圧や、
当該スイッチギヤ及び隣接されたスイッチギヤに収納さ
れた真空遮断器や断路器等の開閉よって発生したサージ
電圧及び受電用変圧器の高調波成分の電圧がある。ま
た、周波数の高い領域では、放送周波が静電結合されて
侵入してくる。
However, noise may be mixed into the pulse current and ultrasonic waves detected by the metal-closed switchgear. As noise mixed in the pulse current, the pulse voltage of the high-frequency component that enters and is superimposed on the power supply system to which the switch gear is connected,
There is a surge voltage generated by opening and closing a vacuum circuit breaker, a disconnector, etc. housed in the switch gear and the adjacent switch gear and a voltage of a harmonic component of the power receiving transformer. In the high frequency region, the broadcast frequency is electrostatically coupled and enters.

【0010】一方、AEセンサで検出されるノイズに
は、金属閉鎖形スイッチギヤの導体等に流れる電流によ
って生じる電磁力による機械的な振動や、近接して設置
された電気機器の放電による音波及び無線通信機から発
生する音波等がある。
On the other hand, noise detected by the AE sensor includes mechanical vibration due to electromagnetic force generated by current flowing through the conductor of the metal-closed switchgear, sound waves due to discharge of electric equipment installed in the vicinity, and There are sound waves generated from a wireless communication device.

【0011】このように高周波数CTやAEセンサにノ
イズが侵入すると、部分放電の検出精度が低下するの
で、ノイズの影響を減らすために周波数帯域を選んだ
り、ノイズ除去回路を併用したりしている。しかし、接
地線に流れるパルス電流を数100kHzで測定回路に同
調させると、検出感度を上げることはできるが、部分放
電の立ち上がり時間に対応した周波数ではないので、部
分放電に伴うパルス電流は検出できない。また、図7の
周波数帯域では、高周波CTを介した部分放電に伴うパ
ルス電流を検出するものの、約1MHzでの利得が約18
dBしか低減できず、放送周波数を含んだ大きなノイズ
を抑制しきれない。さらに、ノイズが大きく信号がオー
バするとピークの大きさがひずみ、信号の周波数が変化
する。このため、バンドパスフィルタの周波数では部分
放電を検出できなくなる。
When noise enters the high frequency CT or AE sensor as described above, the detection accuracy of the partial discharge deteriorates. Therefore, in order to reduce the influence of noise, a frequency band is selected or a noise removing circuit is used together. There is. However, if the pulse current flowing in the ground line is tuned to the measurement circuit at several 100 kHz, the detection sensitivity can be increased, but the frequency does not correspond to the rise time of partial discharge, so the pulse current associated with partial discharge cannot be detected. . Further, in the frequency band of FIG. 7, although the pulse current accompanying the partial discharge via the high frequency CT is detected, the gain at about 1 MHz is about 18
Only dB can be reduced, and large noise including broadcast frequency cannot be suppressed. Furthermore, when the noise is large and the signal is over, the magnitude of the peak is distorted and the frequency of the signal changes. Therefore, partial discharge cannot be detected at the frequency of the bandpass filter.

【0012】また超音波は、数10kHzを検出している
が、部分放電の音を検出しているので、雑音が侵入し易
くなり、検出精度が低下する。従って、ノイズの侵入に
よって検出精度が低下する従来の部分放電検出装置にお
いては、部分放電の放電電荷量が微弱な絶縁劣化初期に
は部分放電を検出することができず、絶縁劣化が進展し
て大きな放電電荷量にならないと部分放電を検出できな
くなる。さらに、検出された放電電荷量も最大値であっ
て、全てを捕らえていない。また、放電電荷量の大きさ
や放電の形によって絶縁破壊を推定することができず、
運転継続の可否が判定できなかった。本発明の目的は、
微弱な部分放電を高精度で検出し、絶縁破壊までの時間
を推定することができる絶縁劣化診断装置を提供するこ
とにある。
Further, although the ultrasonic waves detect several tens of kHz, the noise of the partial discharge is detected, so that the noise easily enters and the detection accuracy deteriorates. Therefore, in the conventional partial discharge detection device in which the detection accuracy decreases due to the intrusion of noise, the partial discharge cannot be detected in the early stage of insulation deterioration when the discharge charge amount of the partial discharge is weak, and the insulation deterioration progresses. Partial discharge cannot be detected unless the amount of discharged electric charge becomes large. Further, the detected discharge charge amount is also the maximum value, and not all are captured. Also, it is not possible to estimate the dielectric breakdown due to the magnitude of the discharge charge amount and the shape of the discharge,
It was not possible to judge whether or not the operation could be continued. The purpose of the present invention is to
An object of the present invention is to provide an insulation deterioration diagnosing device capable of detecting a weak partial discharge with high accuracy and estimating a time until dielectric breakdown.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明は、スイッチギヤの接地線に高周波CTを貫通
させ、この高周波CTで検出されたパルス信号を先ず減
衰器で低減させてから利得の大きいバンドパスフィルタ
を通してピーク検波後、平均化処理を行うことを特徴と
する。
In order to achieve the above object, the present invention is to penetrate a ground wire of a switchgear with a high frequency CT, and first reduce a pulse signal detected by the high frequency CT with an attenuator. It is characterized in that averaging processing is performed after peak detection through a bandpass filter having a large gain.

【0014】[0014]

【作用】これらの構成において、スイッチギヤの内部で
部分放電が発生すると、数MHzの周波数が高周波CT
で検出され、この周波数成分のパルス電流だけをフィル
タリングすることにより、部分放電のパルス電流を的確
に捕らえることができる。この場合、放送周波数などの
帯域と部分放電の帯域がラップしているので、利得の大
きいフィルタで区分けをすると共に、減衰器で各種の信
号がオーバして原波の周波数が変化しないようにしてフ
ィルタの効果を向上させている。
In these configurations, when partial discharge occurs inside the switchgear, the frequency of several MHz becomes high frequency CT.
The pulse current of the partial discharge can be accurately captured by filtering only the pulse current of this frequency component that is detected by. In this case, the band of the broadcast frequency and the band of the partial discharge overlap, so make a distinction with a filter with a large gain and make sure that the frequency of the original wave does not change due to various signals being attenuated by the attenuator. The effect of the filter is improved.

【0015】また、パルス電流の波高値と発生頻度を平
均化処理することで、一定時間内での放電エネルギーを
捕らえることができる。バンドパスフィルタ後の信号で
は、放電パルスの発生位相から、放電初期は右上がり、
絶縁破壊直前になると右下がりであることより、放電電
荷量の大きさと組み合わせて絶縁破壊までの時間をある
程度推定することができる。
Further, by averaging the peak value and the occurrence frequency of the pulse current, it is possible to capture the discharge energy within a fixed time. In the signal after the band pass filter, the discharge pulse rises from the phase of the discharge pulse to the right at the beginning of discharge.
Since it is sloping down right before the dielectric breakdown, it is possible to estimate the time until the dielectric breakdown to some extent in combination with the magnitude of the discharge charge amount.

【0016】[0016]

【実施例】以下、本発明の絶縁劣化診断装置の一実施例
を図面を参照して説明する。但し、従来の装置と重複す
る部分には同一符号を付した。図1は、本発明の一実施
例を示す絶縁劣化診断装置のブッロク図である。同図に
おいて、点Aは、図6と同様に、接地線に貫通され、例
えばフェライトコアで構成された数MHz〜数10MHz
の周波数特性を備えた高周波CT11の出力端子に接続さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the insulation deterioration diagnosing device of the present invention will be described below with reference to the drawings. However, the same parts as those of the conventional device are designated by the same reference numerals. FIG. 1 is a block diagram of an insulation deterioration diagnosing device showing an embodiment of the present invention. In the same figure, as in FIG. 6, point A is penetrated by the ground wire, and is composed of, for example, a ferrite core, and is several MHz to several tens of MHz.
It is connected to the output terminal of the high frequency CT11 having the frequency characteristic of.

【0017】この点Aに部分放電のパルス電流が入力さ
れ、同軸コード線で接続された整合抵抗21の入力端子に
出力される。整合抵抗21から出力されたパルス電流は、
設置されたスイッチギヤのノイズの大きさによって0〜
数10dBの減衰器22で信号がバンドパスフィルタ23の最
大入力値をオーバしないように分圧され、周波数成分に
適合したバンドパスフィルタ23に入力される。この出力
は数10dBに増幅器24で増幅され、端子Bとピーク検波
回路25に送出される。ピーク検波回路25では、0.数m
sの時定数でピークの保持が行われ、数100 msの時間
幅で平均化処理を行う平均化処理回路26を経て、電圧−
電流変換回路27を介してDC4mA〜20mAの出力電流
が端子Cから出力される。
A partial discharge pulse current is input to this point A, and is output to the input terminal of the matching resistor 21 connected by the coaxial cord line. The pulse current output from the matching resistor 21 is
0 to 0 depending on the noise level of the installed switchgear
The signal is divided by the attenuator 22 of several tens of dB so as not to exceed the maximum input value of the bandpass filter 23, and is input to the bandpass filter 23 adapted to the frequency component. This output is amplified to several tens of dB by the amplifier 24 and sent to the terminal B and the peak detection circuit 25. In the peak detection circuit 25, 0. A few meters
The peak is held with the time constant of s, and the voltage is passed through the averaging circuit 26 that performs the averaging process in the time width of several 100 ms.
An output current of 4 mA to 20 mA DC is output from the terminal C via the current conversion circuit 27.

【0018】これらの回路により、高周波CT11に流れ
る部分放電パルスは、数〜数10nsの急峻な立ち上がり
を持っており、周波数に換算すると数MHz〜数10MH
zとなる。さらに、多種類の周波数で大きさの異なった
ノイズが重畳される。これらの信号は、スイッチギヤを
設置した周囲のノイズの大きさに応じて減衰器22でバン
ドパスフィルタ23の入力電圧をオーバしない程度に減衰
される。なお、オーバすると波高値が歪んで周波数成分
が異なってくる。この入力電圧は数10mVであり、これ
をオーバしないノイズでは減衰をしなくてよい。このよ
うな部分放電のパルス信号とノイズの原波がバンドパス
フィルタ23に入力され、図2に示すローパスフィルタと
図3に示すハイパスフィルタで、部分放電の信号が取り
出される。本発明者が実験により求めた部分放電の周波
数は気中放電と沿面放電が約3MHz、ボイド放電が約
30MHzであった。
With these circuits, the partial discharge pulse flowing in the high frequency CT11 has a steep rise of several to several tens of ns, and when converted to frequency, several MHz to several tens of MH.
z. Further, noises of different magnitudes are superimposed on various kinds of frequencies. These signals are attenuated by the attenuator 22 to the extent that the input voltage of the bandpass filter 23 is not exceeded in accordance with the noise level around the switch gear. In addition, when it exceeds, the peak value is distorted and the frequency component becomes different. This input voltage is several tens of mV, and it is not necessary to attenuate it with noise that does not exceed this value. The partial discharge pulse signal and the noise original wave are input to the band pass filter 23, and the partial discharge signal is extracted by the low pass filter shown in FIG. 2 and the high pass filter shown in FIG. The frequency of partial discharge obtained by experiments by the present inventor was about 3 MHz for air discharge and creeping discharge, and about 3 MHz for void discharge.
It was 30 MHz.

【0019】ここで、放送周波数帯は、約1MHzの成
分が大きく部分放電とラップしているため、ローパスフ
ィルタでは1MHzでの利得を約35dBとしている。こ
れにより、約1MHz以下のノイズは、大きく減衰され
る。従来の周波数特性では、ノイズが大きく部分放電と
の区分けができにくかったが、利得を大きくすることに
より区分けができるようになった。また、ハイパスフィ
ルタは、100 MHz以上の利得を従来の約30dBから約
55dBの減衰とし、同様にVHFの放送周波数帯のノイ
ズを大きく減衰させている。
Here, in the broadcast frequency band, the component at about 1 MHz is large and overlaps with the partial discharge, so that the gain at 1 MHz is about 35 dB in the low-pass filter. As a result, noise below about 1 MHz is greatly attenuated. In the conventional frequency characteristics, it was difficult to distinguish from partial discharge due to large noise, but it became possible to distinguish by increasing the gain. In addition, the high-pass filter provides a gain of 100 MHz or more from the conventional level of approximately 30 dB to approximately
The attenuation is 55 dB, and noise in the VHF broadcast frequency band is also greatly attenuated.

【0020】バンドパスフィルタ23を通過した信号は増
幅器24で増幅され、点Bで部分放電の原波形として出力
されると共に、ピーク検波回路25へ入力される。ピーク
検波回路25では0.数msの時定数でピーク保持され、
個々のパルス電流も同様にピーク検波される。その後、
平均化処理回路26によって約330 msの時間幅で大きさ
と頻度を累積後、頻度で除して平均値を求めている。こ
れは、50Hzベースにパルス電流を計測する場合、0.
数msでピーク検波をすれば1サイクル当たり約30本に
分解され、部分放電の発生頻度に対する総数を殆ど測定
することができる。また、約330 msで平均化を行え
ば、連続的に発生する部分放電を捕らえることができ
る。なお、突発的に発生するノイズは平均化により波高
値が減衰される。
The signal that has passed through the bandpass filter 23 is amplified by the amplifier 24, output at point B as the original waveform of the partial discharge, and also input to the peak detection circuit 25. In the peak detection circuit 25, 0. The peak is held with a time constant of several ms,
The individual pulse currents are similarly peak-detected. afterwards,
The averaging circuit 26 accumulates the magnitude and frequency in a time width of about 330 ms and then divides by the frequency to obtain an average value. This is 0 .. when measuring pulse current on a 50 Hz basis.
If peak detection is performed for several ms, it is decomposed into about 30 lines per cycle, and the total number with respect to the frequency of partial discharges can be almost measured. Further, if the averaging is performed in about 330 ms, it is possible to catch the partial discharge that continuously occurs. Note that the peak value of noise generated suddenly is attenuated by averaging.

【0021】平均化処理された信号は、電圧−電流変換
回路27で4〜20mAの直流電流に変換されて点Cから図
示しない監視装置に入力され、部分放電の常時監視がで
きる。点Cの出力電流を放電電荷に換算した特性例を図
4に示す。印加電圧を上昇させると部分放電が始まり、
約6000pCの放電電荷が持続して発生する。そして、約
10000 pCの放電を繰り返して、約20000 pCに達する
と絶縁破壊を起こしている。これにより、絶縁破壊直前
には数1000pCの放電電荷があり、この値が絶縁破壊を
推定する大きさの目安となる。
The averaging-processed signal is converted into a DC current of 4 to 20 mA by the voltage-current conversion circuit 27 and input to a monitoring device (not shown) from the point C so that partial discharge can be constantly monitored. FIG. 4 shows a characteristic example in which the output current at the point C is converted into the discharge charge. When the applied voltage is raised, partial discharge begins,
A discharge charge of about 6000 pC is continuously generated. And about
The discharge of 10,000 pC is repeated, and when it reaches about 20000 pC, dielectric breakdown occurs. As a result, there is a discharge charge of several thousand pC immediately before the dielectric breakdown, and this value serves as a standard for estimating the size of the dielectric breakdown.

【0022】なお、点Bにシンクロスコープなどを接続
した波形観測装置により、電圧位相と部分放電パルスの
関係を求めると、部分放電開始付近と絶縁破壊直前で
は、異なった形を示す。図5に測定例を示すが、部分放
電開始付近では(a)のように位相に対して右下がり、
絶縁破壊直前では(b)のように右上がりである。つま
り、右下がりの部分放電では絶縁劣化の初期段階で短時
間に絶縁破壊に到ることはなく、右上がりの部分放電で
は絶縁劣化の末期で絶縁破壊に結びつくと考えられる。
When the relationship between the voltage phase and the partial discharge pulse is obtained by a waveform observing device having a synchroscope or the like connected to the point B, different shapes are shown near the start of partial discharge and immediately before dielectric breakdown. A measurement example is shown in FIG. 5, but in the vicinity of the start of partial discharge, as shown in FIG.
Immediately before dielectric breakdown, it rises to the right as shown in (b). In other words, it is considered that the downward-discharging partial discharge does not lead to dielectric breakdown in a short time in the initial stage of insulation deterioration, and the upward-sloping partial discharge leads to dielectric breakdown at the final stage of insulation deterioration.

【0023】これらのことより、放電電荷の大きさと放
電パターンを組み合わせて、絶縁破壊をある程度推定す
ることができる。つまり、放電電荷が数1000pCに上昇
し、電圧位相に対して右下がりの放電パルスであると、
短時間で絶縁破壊につながるのでスイッチギヤの運転を
継続できないことになる。この条件を満足せず、放電電
荷が小さく右上がりの放電パルスであると、短時間で絶
縁破壊に到らないことになる。
From the above, it is possible to estimate the dielectric breakdown to some extent by combining the magnitude of the discharge charge and the discharge pattern. In other words, if the discharge charge rises to several thousand pC and the discharge pulse is falling to the right with respect to the voltage phase,
This will result in dielectric breakdown in a short time, so the operation of the switchgear cannot be continued. If this condition is not satisfied, and the discharge pulse has a small discharge charge and rises to the right, dielectric breakdown will not occur in a short time.

【0024】[0024]

【発明の効果】以上のように本発明によれば、スイッチ
ギヤの接地線に貫通された高調波変流器からの出力信号
を減衰する減衰器と、減衰器により減衰された信号から
部分放電パルス信号を取り出すバンドパスフィルタと、
バンドパスフィルタの出力信号からピークを検出するピ
ーク検波器と、ピーク検波器の出力信号の平均化処理を
行なう平均化処理回路とを有するので、微弱な部分放電
でも高精度に検出でき、絶縁破壊までの時間を推定する
ことができる。
As described above, according to the present invention, the attenuator for attenuating the output signal from the harmonic current transformer which is penetrated through the ground wire of the switchgear, and the partial discharge from the signal attenuated by the attenuator are provided. A bandpass filter that extracts the pulse signal,
Since it has a peak detector that detects peaks from the output signal of the bandpass filter and an averaging processing circuit that performs averaging processing on the output signal of the peak detector, even a weak partial discharge can be detected with high accuracy and dielectric breakdown. The time to can be estimated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す絶縁劣化診断装置のブ
ロック図。
FIG. 1 is a block diagram of an insulation deterioration diagnosing device showing an embodiment of the present invention.

【図2】〔図1〕のバンドパスフィルタ23が有するロー
パスフィルタの周波数特性図。
FIG. 2 is a frequency characteristic diagram of a low pass filter included in the band pass filter 23 of FIG.

【図3】〔図1〕のバンドパスフィルタ23が有するハイ
パスフィルタの周波数特性図。
FIG. 3 is a frequency characteristic diagram of a high pass filter included in the band pass filter 23 of FIG.

【図4】絶縁破壊に至るまでの放電電荷と電圧との関係
を説明するための図。
FIG. 4 is a diagram for explaining the relationship between discharge charge and voltage until dielectric breakdown.

【図5】電圧位相と部分放電パルスとの関係を説明する
ための図。
FIG. 5 is a diagram for explaining a relationship between a voltage phase and a partial discharge pulse.

【図6】代表的な金属閉鎖形スイッチギヤの構成を示す
側面図。
FIG. 6 is a side view showing the configuration of a typical metal-closed switchgear.

【図7】従来のバンドパスフィルタの周波数特性図。FIG. 7 is a frequency characteristic diagram of a conventional bandpass filter.

【符号の説明】[Explanation of symbols]

11…高周波変流器、22…減衰器、23…バンドパスフィル
タ、25…ピーク検波回路、26…平均化処理回路。
11 ... High-frequency current transformer, 22 ... Attenuator, 23 ... Bandpass filter, 25 ... Peak detection circuit, 26 ... Averaging processing circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スイッチギヤの接地線に貫通された高周
波変流器からの出力信号を減衰する減衰器と、この減衰
器により減衰された信号から部分放電パルス信号を取り
出すバンドパスフィルタと、このバンドパスフィルタの
出力信号からピークを検出するピーク検波器と、このピ
ーク検波器の出力信号の平均化処理を行なう平均化処理
回路とを有する絶縁劣化診断装置。
1. An attenuator for attenuating an output signal from a high frequency current transformer, which penetrates a ground wire of a switchgear, a bandpass filter for extracting a partial discharge pulse signal from the signal attenuated by the attenuator, and An insulation deterioration diagnosing device having a peak detector for detecting a peak from an output signal of a bandpass filter, and an averaging processing circuit for averaging the output signal of the peak detector.
【請求項2】 前記バンドパスフィルタとピーク検波器
の間に前記部分放電パルス信号を増幅する増幅器と、こ
の増幅器の出力信号から電圧位相と部分放電パルス信号
の関係を得る波形観測手段とを備えたことを特徴とする
請求項1記載の絶縁劣化診断装置。
2. An amplifier for amplifying the partial discharge pulse signal is provided between the bandpass filter and the peak detector, and waveform observing means for obtaining a relationship between the voltage phase and the partial discharge pulse signal from the output signal of the amplifier. The insulation deterioration diagnosing device according to claim 1, wherein
【請求項3】 前記平均化処理回路の出力信号を電流信
号に変換する電圧−電流変換回路を設け、電圧−電流変
換回路の出力信号から得られる放電電荷に変換した部分
放電の大きさと、前記波形観測手段から得られる放電パ
ターンとから絶縁破壊までに時間を推定するようにした
ことを特徴とする請求項2記載の絶縁劣化診断装置。
3. A voltage-current conversion circuit for converting an output signal of the averaging processing circuit into a current signal is provided, and the magnitude of partial discharge converted into discharge charge obtained from the output signal of the voltage-current conversion circuit, and The insulation deterioration diagnostic device according to claim 2, wherein the time until the dielectric breakdown is estimated from the discharge pattern obtained from the waveform observing means.
【請求項4】 前記バンドパスフィルタが有するローパ
スフィルタは、周波数1MHz以下の利得を30dB以上
にしたことを特徴とする請求項1〜請求項3のいずれか
に記載の絶縁劣化診断装置。
4. The insulation deterioration diagnostic device according to claim 1, wherein the low-pass filter included in the band-pass filter has a gain of 30 dB or more at a frequency of 1 MHz or less.
JP22944894A 1994-09-26 1994-09-26 Insulation deterioration diagnosis device Expired - Fee Related JP3682930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22944894A JP3682930B2 (en) 1994-09-26 1994-09-26 Insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944894A JP3682930B2 (en) 1994-09-26 1994-09-26 Insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH0894682A true JPH0894682A (en) 1996-04-12
JP3682930B2 JP3682930B2 (en) 2005-08-17

Family

ID=16892370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944894A Expired - Fee Related JP3682930B2 (en) 1994-09-26 1994-09-26 Insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP3682930B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237045A (en) * 2004-02-17 2005-09-02 Meidensha Corp Device and method for detecting generation of mold crack
JPWO2005038475A1 (en) * 2003-10-22 2007-01-18 株式会社フジクラ Insulation deterioration diagnosis device
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
CN104297611A (en) * 2014-01-14 2015-01-21 河南许继智能控制技术有限公司 Transformer sampling circuit
JP2020204550A (en) * 2019-06-18 2020-12-24 株式会社東芝 Device, method, and system for diagnosing partial discharge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005038475A1 (en) * 2003-10-22 2007-01-18 株式会社フジクラ Insulation deterioration diagnosis device
JP4592592B2 (en) * 2003-10-22 2010-12-01 株式会社フジクラ Insulation deterioration diagnosis device
JP2005237045A (en) * 2004-02-17 2005-09-02 Meidensha Corp Device and method for detecting generation of mold crack
JP4561117B2 (en) * 2004-02-17 2010-10-13 株式会社明電舎 Mold crack occurrence detection device and detection method
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
CN104297611A (en) * 2014-01-14 2015-01-21 河南许继智能控制技术有限公司 Transformer sampling circuit
JP2020204550A (en) * 2019-06-18 2020-12-24 株式会社東芝 Device, method, and system for diagnosing partial discharge

Also Published As

Publication number Publication date
JP3682930B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
US7112968B1 (en) Method and apparatus for detecting a partial discharge in a high-voltage transmission and distribution system
JP2009300289A (en) Partial discharge detection method by electromagnetic wave measurement
US5973500A (en) Apparatus for detecting insulation defects in devices connected into power distribution networks
CN108919070A (en) A kind of partial discharge of switchgear detection system of Multi-source Information Fusion
JP3080313B2 (en) Insulation degradation detector for electrical equipment
JP5120133B2 (en) Partial discharge detection method by magnetic field measurement
EP0802421B1 (en) Microwave sensor
US5903159A (en) Microwave sensor for sensing discharge faults
JPH0894682A (en) Apparatus for diagnosing insulation deterioration
JP4663846B2 (en) Pattern recognition type partial discharge detector
CN116593842A (en) Cable partial discharge detection system and method with broadband and filtering functions
JP3176000B2 (en) Partial discharge detection device for switchgear
JPH08152453A (en) Measuring method for partial discharge
JP2831042B2 (en) Partial discharge monitoring device for oil-immersed transformer
JPH08129047A (en) Microwave sensor
JPS62218880A (en) Method for detecting partial discharge of electric machinery
JP3854783B2 (en) Partial discharge diagnostic device
JPH04194762A (en) Device for monitoring partial discharge of electric apparatus
JPS61173175A (en) Partial discharge monitor device for high-voltage apparatus
CN116973702B (en) Signal identification method and system applied to GIS partial discharge test
JPS585677A (en) Detecting method for partial discharge of power cable
JP2950425B2 (en) Partial discharge monitoring device for electrical equipment
JPH0533608U (en) KYUVLET's insulation abnormality detector
JPH10322823A (en) Method and device for diagnosing insulation of electric apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees