JP3854783B2 - Partial discharge diagnostic device - Google Patents

Partial discharge diagnostic device Download PDF

Info

Publication number
JP3854783B2
JP3854783B2 JP2000170400A JP2000170400A JP3854783B2 JP 3854783 B2 JP3854783 B2 JP 3854783B2 JP 2000170400 A JP2000170400 A JP 2000170400A JP 2000170400 A JP2000170400 A JP 2000170400A JP 3854783 B2 JP3854783 B2 JP 3854783B2
Authority
JP
Japan
Prior art keywords
partial discharge
signal
frequency
speed
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000170400A
Other languages
Japanese (ja)
Other versions
JP2001343418A (en
Inventor
洋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000170400A priority Critical patent/JP3854783B2/en
Publication of JP2001343418A publication Critical patent/JP2001343418A/en
Application granted granted Critical
Publication of JP3854783B2 publication Critical patent/JP3854783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧機器特にSF6等の絶縁特性の優れたガスを絶縁媒体とするガス絶縁機器の絶縁特性を診断する装置に係わり、装置の信号検出・処理方法に関する。
【0002】
【従来の技術】
変電所等で使用される高電圧用開閉機器は、接地容器内にSF6等の絶縁特性の優れたガスを圧縮充填し、固体絶縁物により高電圧課電導体部分を機械的に支持する構造のガス絶縁機器が主となっている。
【0003】
これらの機器の絶縁性能の健全性・信頼性を確認するために、機器の内部の絶縁物、金属導体等からの部分放電発生有無をチェックすることは極めて重要である。そのため、部分放電の計測を通して機器の絶縁診断を行う各種の方法が提案され実用化されている。
【0004】
部分放電の計測のためのセンサには、大別すると主として部分放電に伴う機械的信号を捕らえるものと電気的信号を捕らえるものがある。後者の例として、高電圧機器の容器の壁面にセンサ(電磁波検出アンテナ)を取り付け、そのセンサの信号により内部の絶縁診断を行う方法が、外部のノイズの影響も少なく、高感度に機器内部の異常を検出できる方法として利用されている。
【0005】
変電所における高電圧機器は、密閉された容器内にSF6ガスを封入し、この中に遮断器や断路器等を組み込んだガス絶縁開閉装置が主流となっている。この場合には、内部のガス中で発生する部分放電は、外部で発生する気中コロナに比して急峻なパルスになり、高周波成分の多い電磁波を発生することが知られている。このため、部分放電信号を周波数成分解析することで、外部ノイズの影響を受けずに異常の有無を診断する方法が有効であることが確認されている。
【0006】
従来技術では、スペクトルアナライザ等の装置で部分放電信号を高周波成分解析し、所定のしきい値を越える信号が検出された場合、装置を最大の信号強度を示した周波数に固定して、引き続き部分放電パルスの電源電圧に対する位相特性を計測していた。
【0007】
以下、この方法を図5により説明する。同図において、高電圧導体3は固体絶縁物で構成される絶縁スペーサ4で支持され、金属製の接地容器1内に収納される。絶縁スペーサ4は接地容器1の端部に設けられたフランジ部2により相互に固定される。また軸方向への接続を組み合わせることにより開閉装置としての所要の形状に構成され、全体として図示されない架台上に設置される。接地容器1の各所には、内蔵電極センサ6が設けられている。このセンサは、部分放電に伴ない管路内を伝播する電磁波を高感度に検出できるように設計されたアンテナであり、容器内の電界分布を乱さないような構造で設置される。内蔵電極センサ6で検出された部分放電信号は、密封端子31を介して接地容器1の外部に引き出され、同軸ケーブル8を用いて部分放電診断装置5に入力される。
【0008】
部分放電診断装置5では、所定の周波数帯域を通過させる広帯域フィルタ9、高周波信号を増幅するアンプ10、周波数シフター21により中心周波数がスイープする狭帯域フイルタ11を介して部分放電に伴う信号が検出され、信号線15によりA/D変換器16に入力される。同時に、周波数シフター21の信号も信号線13によりA/D変換器16に取り込まれる。
【0009】
また、詳細図示されない参照電圧作成部12では、主回路印加電圧と同位相の参照信号が作られ、信号線14によりA/D変換器16に取り込まれる。A/D変換器16でディジタル化された部分放電信号強度と周波数情報並びに参照電圧の位相情報は、データ処理部17で所定のアルゴリズムにより判定処理される。データ処理部17は、CPU18と表示部19で構成され、検出された部分放電信号強度が予め設定された条件を満たすと、CPU18からの指令でD/A変換部32を介して周波数シフター部21に所定の周波数に固定する指令が出される。この状態で所定の周波数成分の部分放電信号を取り込み、参照電圧の位相情報とともに異常判定用のデータが作られる。判定結果が部分放電異常となった場合、CPU18からDI/O部20に指令が出され、入出力I/F部22を介して外部への警報接点24が出力される。
【0010】
【発明が解決しようとする課題】
上記の従来技術は、周波数ポイントを固定して位相特性を取るため、周波数成分を計測している時間帯と位相成分を計測している時間帯にタイミング上の差が生じる。また、部分放電の周波数主成分が変動する場合、位相特性を計測している周波数が必ずしも最大信号強度のポイントではないケースが生じる。これを避けるため、計測回数、計測時間を変化させて多くのデータを取り込み、それらを総合的に判定すると言う方法が取られてきた。更に、装置構成の面では、CPUからの指令で周波数シフターを所定の周波数に固定するための回路部が必要となり、装置のコストアップ要因になっている。
【0011】
本発明の目的は、周波数特性を取り込む時の周波数掃引速度と、位相特性を取り込む時の周波数掃引速度を切り替えることにより、周波数掃引速度が低速状態の時に電磁波の信号強度、周波数特性、位相特性を同時に取得することに有る。これにより間欠的に発生する部分放電信号に対しても、取り込みタイミングずれ等の不具合が解消できる。
【0012】
また、診断装置の回路構成を単純化することにより、装置の小型軽量化、低コスト化を図ることにある。
【0013】
【課題を解決するための手段】
本目的を達成するため、請求項1の発明は、部分放電に伴う電磁波を検出しその周波数成分を抽出する回路において、狭帯域フイルタの共振点となる中心周波数の掃引スピードを可変または切換式とすることを特徴とする。
【0014】
請求項2の発明は、低速掃引スピードの状態のまま、部分放電に伴う電磁波信号の最大強度における周波数ポイントでの位相特性を作ることにより、そのポイントに固定する回路を不要とすることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施例を図1〜図4に基づいて説明する。なお、図5に示した従来例と同一の部分に関しては、同一の符号を付し説明は省略する。
【0016】
図1において、内蔵電極センサ6の信号は、図5の従来構造と同じようにスペクトル成分強度として信号線15によりA/D変換器16に取り込まれる。なお、接地容器1は外部ノイズに対しては遮蔽効果が有るが、絶縁スペーサ4は遮蔽効果が無く、気中コロナ、放送・通信波等の電磁波が接地容器1の内部に侵入する。逆に、接地容器1の内部で生じた部分放電に伴う電磁波は、該絶縁スペーサ4部から外部に漏れ出てくる。従って、部分放電診断のためのセンサは、内蔵電極センサ6のタイプの他、絶縁スペーサ4の外周表面に設けた外付けアンテナ7とも組み合わせることができる。
【0017】
A/D変換部16には、図5と同様に信号線14で参照電圧作成部12からの電圧情報が引き込まれる。同様に信号線13により周波数シフター21からの周波数信号が入力される。周波数シフター21は、図2に示す構成となり、掃引信号発生部27に低速掃引制御部28または高速掃引制御部29の組み合わせで動作し、この切換は、DI/O部20からの信号によりスイッチ部30で行われる。掃引特性は、例えば図3に示すように高速掃引モード25(約数十ms程度の繰り返し)と低速掃引モード26(約数秒程度の繰り返し)のごとく設定される。
【0018】
13,14,15の各入力信号は、A/D変換部16で同時処理され瞬時値データとしてデータ処理装置17に取り込まれる。処理装置17ではCPU18が、取り込んだA/Dデータを所定のプログラムにより編集・加工・判定並びに保存する。絶縁診断の結果は、予め設定されたしきい値と測定された信号強度とを比較し、しきい値を越えた場合、DI/O部20を介して入出力I/F部22により外部出力接点24を「入り(ON)」にする。また、診断結果は、詳細図示されない通信ポート23を介して、より上位の装置に伝送することも可能である。
【0019】
部分放電信号は、図3に示すように周波数シフター21によって狭帯域フイルター11の中心周波数をf1からf2の間で繰り返し掃引させることで、A/D変換器16によってこの間の任意の中心周波数に対応した成分の信号強度としてディジタルデータの形でCPU18に取り込まれる。
【0020】
CPU18では、周波数シフター21の掃引スピードを管理しており、通常は高速モードで繰り返し部分放電信号の有無をサーチする。しきい値を超過する信号成分が検出された場合、DI/O部20に指令を出して周波数シフター21を低速モードに切り替え、参照電圧作成部12の信号を基に電圧信号の零点通過ポイントを基準に、図4に示すような1サイクル分(電気角で0°〜360°)の位相特性データを作成する。
【0021】
位相特性は、掃引のくり返し毎に部分放電信号の最大ポイントにおけるデータを用いたり、または、同一の周波数成分時点におけるデータを複数回収集してその最大データの集合または平均データの集合などの手法により、1サイクル分の特性データとして作成される。また、単発的、突発的な部分放電の信号パターンを取り込む場合は、高速モードにおける1回の掃引データによる位相特性データを作れ場良く、CPU18のプログラムで対応が可能である。
【0022】
位相特性のパターンは予め登録された部分放電様相毎の特徴的なパターンと比較・参照され、類似のパターンが有れば、検出した部分放電の要因としてガイダンスすることができる。
【0023】
また、図示されない表示装置に位相特性の時間的な変動を表示することで、部分放電事象の発生、消滅または継続性をチェックできる。
【0024】
【発明の効果】
本発明の信号処理により、周波数成分データ取得と位相特性データ取得の時間遅れがなくなり、また部分放電信号強度の最大点の周波数成分が変動してもその最大点における位相特性データを取得でき、部分放電様相判定が確実になる。
【0025】
間歇的、単発的な部分放電に対しても、確実に1サイクル分の位相特性を取得できるため、異常の初期の兆候データを見ることができる。更に、掃引スピードを切り替えるだけの簡単な仕組みで機能を実現できるため、ハードの小型化、低コスト化が可能になり可搬形診断装置等への適用が可能となる。
【図面の簡単な説明】
【図1】本発明の全体構成を示す図。
【図2】周波数シフタの切換を示す図。
【図3】掃引スピードの比較を示す図。
【図4】位相特性を示す図。
【図5】従来の実施例を示す図。
【符号の説明】
1…接地容器、2…フランジ部、3…高電圧導体、4…絶縁スペーサ、5…部分放電診断装置、6…内蔵型電極(センサ)、7…外付けアンテナ(センサ)、8…同軸ケーブル、9…広帯域フイルタ、10…高周波増幅器、11…狭帯域フイルタ、12…参照電圧作成部、13…部分放電周波数成分信号、14…参照電圧信号、15…部分放電スペクトル成分信号、16…A/D変換器、17…データ処理部、18…CPU、19…表示部、20…DI/O部、21…周波数シフター、22…入出力I/F部、23…通信ポート、24…外部出力接点、25…高速掃引モード、26…低速掃引モード、27…掃引信号発生部、28…低速掃引制御部、29…高速掃引制御部、30…スイッチ部、31…密封端子、32…D/A変換部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for diagnosing the insulation characteristics of a high-voltage device, particularly a gas insulation device using a gas having excellent insulation properties such as SF6 as an insulation medium, and relates to a signal detection / processing method of the device.
[0002]
[Prior art]
High-voltage switchgear used in substations, etc. has a structure that compresses and fills the ground container with gas with excellent insulation characteristics such as SF6 and mechanically supports the high-voltage charging conductor part with a solid insulator. Mainly gas-insulated equipment.
[0003]
In order to confirm the soundness and reliability of the insulation performance of these devices, it is extremely important to check the presence or absence of partial discharge from the insulators, metal conductors, etc. inside the devices. For this reason, various methods for diagnosing insulation of equipment through partial discharge measurement have been proposed and put into practical use.
[0004]
Sensors for measuring partial discharges can be broadly classified into those that mainly capture mechanical signals associated with partial discharges and those that capture electrical signals. As an example of the latter, a method of attaching a sensor (electromagnetic wave detection antenna) to the wall of a container of a high-voltage device and performing an internal insulation diagnosis based on the signal of the sensor is less affected by external noise and has a high sensitivity inside the device. It is used as a method for detecting abnormalities.
[0005]
High-voltage devices in substations are mainly gas-insulated switchgear in which SF6 gas is sealed in a sealed container, and a circuit breaker, disconnector, etc. are incorporated therein. In this case, it is known that the partial discharge generated in the internal gas becomes a steep pulse as compared with the air corona generated outside, and generates an electromagnetic wave with many high-frequency components. For this reason, it has been confirmed that a method of diagnosing the presence / absence of an abnormality without being affected by external noise by analyzing the frequency component of the partial discharge signal is effective.
[0006]
In the prior art, a partial discharge signal is analyzed by a high frequency component with a device such as a spectrum analyzer, and if a signal exceeding a predetermined threshold is detected, the device is fixed at a frequency indicating the maximum signal strength, and then the partial discharge signal is continued. The phase characteristics of the discharge pulse with respect to the power supply voltage were measured.
[0007]
Hereinafter, this method will be described with reference to FIG. In the figure, a high voltage conductor 3 is supported by an insulating spacer 4 made of a solid insulator, and is housed in a metal grounding container 1. The insulating spacer 4 is fixed to each other by a flange portion 2 provided at an end portion of the ground container 1. Moreover, it is comprised by the required shape as an opening / closing device by combining the connection to an axial direction, and is installed on the mount frame which is not shown in figure as a whole. Built-in electrode sensors 6 are provided at various locations on the ground container 1. This sensor is an antenna designed to detect with high sensitivity an electromagnetic wave propagating in a pipeline accompanying partial discharge, and is installed in a structure that does not disturb the electric field distribution in the container. The partial discharge signal detected by the built-in electrode sensor 6 is drawn out of the ground container 1 through the sealing terminal 31 and input to the partial discharge diagnostic device 5 using the coaxial cable 8.
[0008]
In the partial discharge diagnostic device 5, a signal associated with partial discharge is detected through a wideband filter 9 that passes a predetermined frequency band, an amplifier 10 that amplifies a high frequency signal, and a narrowband filter 11 whose center frequency is swept by a frequency shifter 21. The signal line 15 inputs the signal to the A / D converter 16. At the same time, the signal of the frequency shifter 21 is also taken into the A / D converter 16 through the signal line 13.
[0009]
Further, in the reference voltage generator 12 not shown in detail, a reference signal having the same phase as the main circuit applied voltage is generated and taken into the A / D converter 16 through the signal line 14. The partial discharge signal intensity and frequency information digitized by the A / D converter 16 and the phase information of the reference voltage are subjected to determination processing by the data processor 17 using a predetermined algorithm. The data processing unit 17 includes a CPU 18 and a display unit 19, and when the detected partial discharge signal intensity satisfies a preset condition, the frequency shifter unit 21 via the D / A conversion unit 32 in response to a command from the CPU 18. A command is issued to fix the frequency to a predetermined frequency. In this state, a partial discharge signal having a predetermined frequency component is taken in, and abnormality determination data is created along with reference voltage phase information. When the determination result indicates a partial discharge abnormality, the CPU 18 issues a command to the DI / O unit 20 and outputs an alarm contact 24 to the outside via the input / output I / F unit 22.
[0010]
[Problems to be solved by the invention]
In the above prior art, since the frequency characteristic is fixed and the phase characteristic is obtained, a timing difference occurs between the time zone in which the frequency component is measured and the time zone in which the phase component is measured. Further, when the frequency main component of the partial discharge fluctuates, there is a case where the frequency at which the phase characteristic is measured is not necessarily the maximum signal strength point. In order to avoid this, a method has been adopted in which a large number of data is acquired by changing the number of times of measurement and the measurement time, and these are comprehensively determined. Furthermore, in terms of the device configuration, a circuit unit for fixing the frequency shifter to a predetermined frequency by a command from the CPU is required, which increases the cost of the device.
[0011]
The object of the present invention is to switch the frequency sweep speed when capturing the frequency characteristics and the frequency sweep speed when capturing the phase characteristics, so that the signal strength, frequency characteristics, and phase characteristics of the electromagnetic wave can be adjusted when the frequency sweep speed is low. There is to acquire at the same time. As a result, problems such as a capture timing shift can be solved even for partial discharge signals generated intermittently.
[0012]
Another object is to reduce the size and weight of the device and reduce the cost by simplifying the circuit configuration of the diagnostic device.
[0013]
[Means for Solving the Problems]
In order to achieve this object, the invention of claim 1 is a circuit that detects an electromagnetic wave accompanying partial discharge and extracts its frequency component, wherein the sweep speed of the center frequency that becomes the resonance point of the narrowband filter is variable or switchable. It is characterized by doing.
[0014]
The invention of claim 2 is characterized in that a phase characteristic at a frequency point at the maximum intensity of an electromagnetic wave signal accompanying a partial discharge is made in a state of a low sweep speed, thereby eliminating a circuit to be fixed at that point. To do.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. In addition, about the same part as the prior art example shown in FIG. 5, the same code | symbol is attached | subjected and description is abbreviate | omitted.
[0016]
In FIG. 1, the signal from the built-in electrode sensor 6 is taken into the A / D converter 16 by the signal line 15 as the spectral component intensity as in the conventional structure of FIG. 5. The grounding container 1 has a shielding effect against external noise, but the insulating spacer 4 does not have a shielding effect, and electromagnetic waves such as air corona and broadcast / communication waves enter the grounding container 1. On the contrary, the electromagnetic wave accompanying the partial discharge generated inside the ground container 1 leaks out from the insulating spacer 4 part. Therefore, the sensor for partial discharge diagnosis can be combined with the external antenna 7 provided on the outer peripheral surface of the insulating spacer 4 in addition to the type of the built-in electrode sensor 6.
[0017]
Similarly to FIG. 5, voltage information from the reference voltage generator 12 is drawn into the A / D converter 16 through the signal line 14. Similarly, a frequency signal from the frequency shifter 21 is input through the signal line 13. The frequency shifter 21 is configured as shown in FIG. 2 and operates in combination with the sweep signal generation unit 27 in combination with the low-speed sweep control unit 28 or the high-speed sweep control unit 29, and this switching is performed by a switch unit by a signal from the DI / O unit 20. At 30. For example, as shown in FIG. 3, the sweep characteristics are set as in a high-speed sweep mode 25 (repetition of about several tens of ms) and a low-speed sweep mode 26 (repetition of about several seconds).
[0018]
Input signals 13, 14, and 15 are simultaneously processed by the A / D converter 16 and taken into the data processor 17 as instantaneous value data. In the processing device 17, the CPU 18 edits, processes, determines and saves the acquired A / D data by a predetermined program. As a result of the insulation diagnosis, a preset threshold value is compared with the measured signal strength, and when the threshold value is exceeded, an external output is made by the input / output I / F unit 22 via the DI / O unit 20. The contact 24 is turned “ON”. The diagnosis result can also be transmitted to a higher-level device via a communication port 23 not shown in detail.
[0019]
As shown in FIG. 3, the partial discharge signal is repeatedly swept between the center frequency of the narrow-band filter 11 between f1 and f2 by the frequency shifter 21, and the A / D converter 16 corresponds to an arbitrary center frequency therebetween. The signal intensity of the component is taken into the CPU 18 in the form of digital data.
[0020]
The CPU 18 manages the sweep speed of the frequency shifter 21 and normally searches for the presence or absence of a partial discharge signal in the high-speed mode. When a signal component exceeding the threshold is detected, a command is issued to the DI / O unit 20 to switch the frequency shifter 21 to the low speed mode, and the zero point passing point of the voltage signal is determined based on the signal of the reference voltage generating unit 12. As a reference, phase characteristic data for one cycle as shown in FIG. 4 (electrical angle 0 ° to 360 °) is created.
[0021]
The phase characteristics can be obtained by using the data at the maximum point of the partial discharge signal for each repetition of the sweep, or by collecting the data at the same frequency component multiple times and collecting the maximum data or the average data. It is created as characteristic data for one cycle. Further, when capturing a single or sudden partial discharge signal pattern, it is possible to generate phase characteristic data based on one sweep data in the high-speed mode, and this can be handled by a program of the CPU 18.
[0022]
The pattern of the phase characteristic is compared and referred to a characteristic pattern for each partial discharge aspect registered in advance, and if there is a similar pattern, it can be guided as a cause of the detected partial discharge.
[0023]
In addition, the occurrence, disappearance, or continuity of the partial discharge event can be checked by displaying the temporal variation of the phase characteristic on a display device (not shown).
[0024]
【The invention's effect】
The signal processing of the present invention eliminates the time delay between the acquisition of the frequency component data and the phase characteristic data, and even if the frequency component at the maximum point of the partial discharge signal intensity fluctuates, the phase characteristic data at the maximum point can be acquired. The discharge mode judgment is ensured.
[0025]
Even for intermittent and single partial discharges, the phase characteristics for one cycle can be obtained reliably, so that the initial signs of abnormality can be seen. Furthermore, since the function can be realized by a simple mechanism that only switches the sweep speed, the hardware can be reduced in size and cost, and can be applied to a portable diagnostic device or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of the present invention.
FIG. 2 is a diagram showing switching of a frequency shifter.
FIG. 3 is a diagram showing a comparison of sweep speeds.
FIG. 4 is a diagram showing phase characteristics.
FIG. 5 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ground container, 2 ... Flange part, 3 ... High voltage conductor, 4 ... Insulating spacer, 5 ... Partial discharge diagnostic device, 6 ... Built-in type electrode (sensor), 7 ... External antenna (sensor), 8 ... Coaxial cable , 9 ... wideband filter, 10 ... high-frequency amplifier, 11 ... narrowband filter, 12 ... reference voltage generator, 13 ... partial discharge frequency component signal, 14 ... reference voltage signal, 15 ... partial discharge spectrum component signal, 16 ... A / D converter, 17 ... data processing unit, 18 ... CPU, 19 ... display unit, 20 ... DI / O unit, 21 ... frequency shifter, 22 ... input / output I / F unit, 23 ... communication port, 24 ... external output contact 25 ... High-speed sweep mode, 26 ... Low-speed sweep mode, 27 ... Sweep signal generation unit, 28 ... Low-speed sweep control unit, 29 ... High-speed sweep control unit, 30 ... Switch unit, 31 ... Sealed terminal, 32 ... D / A conversion Department.

Claims (1)

ガス絶縁機器の内部に設けられたセンサにより、機器内部で発生する部分放電に伴う電磁波を検出して機器内部の絶縁異常を診断する部分放電診断方法において、狭帯域フイルタの中心周波数を掃引しながら電磁波信号の周波数スペクトル情報を取り込むと共に、その時の印加電圧の位相情報を同時に取り込み、スペクトル信号の最大のポイントにおける位相特性を用いて絶縁診断する際に、
前記狭帯域フイルタの掃引スピードを、部分放電信号の有無を検出する高速モード及び、位相特性を取り込む低速モードに予めセットし、前記検出した部分放電信号の大きさに応じてCPUの指令で前記低速モード又は高速モードの切換を行い、かつ、前記低速モードの掃引スピードのまま前記位相特性を作成し、この位相特性を用いて絶縁診断することを特徴とする部分放電診断方法
By a sensor inside it was kicked set in the gas-insulated equipment, in a partial discharge diagnosing method for diagnosing an insulation abnormality inside the apparatus by detecting an electromagnetic wave caused by the partial discharge occurring inside the apparatus, by sweeping the center frequency of the narrow-band filter While capturing the frequency spectrum information of the electromagnetic wave signal while simultaneously capturing the phase information of the applied voltage at that time, when performing insulation diagnosis using the phase characteristics at the maximum point of the spectrum signal ,
The sweep speed of the narrow band filter is set in advance to a high speed mode for detecting the presence / absence of a partial discharge signal and a low speed mode for capturing phase characteristics, and the low speed is determined by a CPU command according to the detected partial discharge signal size. A partial discharge diagnosis method characterized in that switching between a mode and a high-speed mode is performed, the phase characteristic is generated with the sweep speed in the low-speed mode, and insulation diagnosis is performed using the phase characteristic .
JP2000170400A 2000-06-02 2000-06-02 Partial discharge diagnostic device Expired - Lifetime JP3854783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170400A JP3854783B2 (en) 2000-06-02 2000-06-02 Partial discharge diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170400A JP3854783B2 (en) 2000-06-02 2000-06-02 Partial discharge diagnostic device

Publications (2)

Publication Number Publication Date
JP2001343418A JP2001343418A (en) 2001-12-14
JP3854783B2 true JP3854783B2 (en) 2006-12-06

Family

ID=18673128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170400A Expired - Lifetime JP3854783B2 (en) 2000-06-02 2000-06-02 Partial discharge diagnostic device

Country Status (1)

Country Link
JP (1) JP3854783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328810A (en) * 2003-04-21 2004-11-18 Hitachi Ltd Method and device for partial discharge diagnosis of gas insulated switch
JP6145787B2 (en) * 2013-02-25 2017-06-14 国立大学法人九州工業大学 Insulation diagnostic apparatus and diagnostic method for polyphase power equipment
JP6960880B2 (en) * 2018-03-29 2021-11-05 株式会社日立製作所 Computer system for evaluating electric power equipment and its method
EP3899560A4 (en) 2018-12-19 2022-07-27 ABB Schweiz AG Method and system for condition monitoring electrical equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834161B2 (en) * 1988-11-30 1998-12-09 株式会社日立製作所 Partial discharge diagnosis method for gas insulated equipment
JP2546417B2 (en) * 1990-07-11 1996-10-23 日立電線株式会社 Partial discharge measurement method
JPH10170596A (en) * 1996-12-09 1998-06-26 Hitachi Ltd System for diagnosing insulated apparatus and method for detecting partial discharge

Also Published As

Publication number Publication date
JP2001343418A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP4157636B2 (en) Partial discharge diagnostic equipment for gas insulation equipment
CN106443353A (en) Traveling wave based GIL discharge fault locating method and device
CN202421420U (en) Ultrahigh frequency and pulse current based GIS (gas insulated switchgear) partial-discharge online monitoring device
JP3251593B2 (en) Abnormality detection device and abnormality detection method
KR101402887B1 (en) System and method of monitoring GIS partial discharge having analyzing function linked time and frequency domain, local unit therefor
KR20010012722A (en) Partial discharge detector of gas-insulated apparatus
JP7003703B2 (en) Partial discharge detection device using multi-sensor
CN101598762A (en) A kind of sensor and device for monitoring local discharge of gas insulated metal enclosed switch
CN101833060B (en) Positioning device for monitoring partial discharge of gas-insulater switchgear on line
JPH10104304A (en) Device and method for detecting defective insulation of device connected to power transmission or distribution network
CN208421150U (en) A kind of device for Partial Discharge Detection
JP3854783B2 (en) Partial discharge diagnostic device
JP2004328810A (en) Method and device for partial discharge diagnosis of gas insulated switch
KR100590801B1 (en) Apparatus for measuring electromagnetic waves radiated from electric power equipment
JP2002340969A (en) Partial discharge diagnostic sensor for gas insulated switch gear
JP3682930B2 (en) Insulation deterioration diagnosis device
CN112485620A (en) Switch cabinet partial discharge comprehensive detection and evaluation method and system
KR100518370B1 (en) Discharge diagnostic system of Gas Insulation Switchgea
JPH04194762A (en) Device for monitoring partial discharge of electric apparatus
JP2723902B2 (en) Spectrum subtraction type partial discharge monitoring system
JP3756486B2 (en) Contact failure detection method and apparatus for electric power equipment
CN201489082U (en) Sensor and device for monitoring partial discharge of gas-insulated metal-enclosed switch
JPS61173175A (en) Partial discharge monitor device for high-voltage apparatus
JPH04212076A (en) Method and device for abnormal diagnostic method of electrical equipment
Oh et al. Discrimination of partial discharge signal in Gas insulated switchgear from external noise using internal signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3854783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

EXPY Cancellation because of completion of term