JPH08929B2 - Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance - Google Patents
Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistanceInfo
- Publication number
- JPH08929B2 JPH08929B2 JP28383386A JP28383386A JPH08929B2 JP H08929 B2 JPH08929 B2 JP H08929B2 JP 28383386 A JP28383386 A JP 28383386A JP 28383386 A JP28383386 A JP 28383386A JP H08929 B2 JPH08929 B2 JP H08929B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- resistance
- less
- stress corrosion
- corrosion cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は降伏強度が、135ksi(94.5kg/mm2)程度以下
のエネルギー分野で使用される鋼の製造方法に関するも
のであり、とくに応力腐食割れを起さずしかも耐CO2腐
食性に優れた素材製造に関わるものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for producing steel used in the energy field having a yield strength of about 135 ksi (94.5 kg / mm 2 ) or less, and particularly stress corrosion. This is related to the production of materials that do not crack and have excellent CO 2 corrosion resistance.
(従来の技術) 天然ガス開発用のラインパイプとして一般に炭素鋼、
低合金鋼のものが用いられているが、近年開発が進むに
つれて炭素ガスを多く含む天然ガスが対しては上記鋼は
耐食性が十分とは言えなくなってきている。このためこ
の種の天然ガス用の鋼として耐食性が良好なステンレス
鋼の使用が検討されている。例えばAISI410鋼,420鋼に
代表される13%Crを含むマルテンサイト系ステンレス鋼
が炭酸ガスに対する耐食性が良好である。通常焼入れ焼
戻し処理(QT)にて製造されているがQT条件によって強
度が自由に変えられる比較的優れた鋼種と言うことが出
来る。(Prior Art) Generally carbon steel as a line pipe for natural gas development,
Although low-alloy steel is used, as the development progresses in recent years, the corrosion resistance of the above-mentioned steel is becoming insufficient with respect to natural gas containing a large amount of carbon gas. For this reason, the use of stainless steel, which has good corrosion resistance, as a steel for this type of natural gas has been studied. For example, martensitic stainless steel containing 13% Cr represented by AISI 410 steel and 420 steel has good corrosion resistance to carbon dioxide. Although it is usually manufactured by quenching and tempering (QT), it can be said to be a relatively excellent steel type whose strength can be freely changed depending on the QT conditions.
しかしながらこのステンレス鋼の最大の弱点は応力腐
食割れを起すことである。通常応力腐食割れを起す強度
範囲は75ksi(52.5kg/mm2)以上の降伏点に入った場合
とされている。この原因は製造方法がQTなので焼戻しマ
ルテンサイトの構造からくるものでこの焼戻しマルテン
サイトの応力腐食割れ感受性が降伏点に比例して強くな
るためと考えられる。これらの対策として本発明者ら
は、例えば特開昭60-197821号公報に、応力腐食割れ抵
抗の優れたCr系ステンレス鋼油井管の熱処理方法を開示
している。そこで焼入の冷却速度制御と焼戻し温度の最
適な組合せによる組織制御で耐応力腐食割れ性の改善が
可能であることが述べられている。しかしながら、この
方法では熱処理を焼入れと焼戻しの二工程で行なわねば
ならず、コストの低減を図る必要があった。However, the greatest weakness of this stainless steel is that it causes stress corrosion cracking. It is said that the normal stress corrosion cracking strength range is at a yield point of 75 ksi (52.5 kg / mm 2 ) or more. It is considered that this is because the manufacturing method is QT, which is caused by the structure of tempered martensite and the susceptibility of tempered martensite to stress corrosion cracking increases in proportion to the yield point. As measures against these problems, the present inventors have disclosed, for example, in Japanese Patent Application Laid-Open No. 60-197821, a heat treatment method for a Cr-based stainless steel oil country tubular good having excellent resistance to stress corrosion cracking. Therefore, it is stated that it is possible to improve the stress corrosion cracking resistance by controlling the structure by optimally controlling the quenching cooling rate and the tempering temperature. However, in this method, the heat treatment has to be performed in two steps of quenching and tempering, and it is necessary to reduce the cost.
(発明が解決しようとする問題点) 本発明は以上の様な実状から検討を重ねた結果から得
られたもので、上記フェライト系ステンレス鋼の成分を
基本成分とし、この成分中Cr,C,N三元素の相互の添加量
を規制し、一度の熱処理にて均一な針状フェライト組織
をうることにより、この鋼の優れた耐食性をそのまま受
け継いでしかも優れた応力腐食割れ抵抗を付与しうる鋼
の製造方法を提供することを目的とする。(Problems to be Solved by the Invention) The present invention was obtained from the results of repeated studies based on the above-mentioned actual conditions, and the components of the above ferritic stainless steel were used as basic components, and Cr, C, A steel that can inherit the excellent corrosion resistance of this steel as it is and also give excellent stress corrosion cracking resistance by controlling the mutual addition amount of N three elements and obtaining a uniform acicular ferrite structure in one heat treatment. It aims at providing the manufacturing method of.
(問題点を解決するための手段) 本発明者らは先ず均一な組織を得るためにはオーステ
ナイト単相を得る必要があり、とくにCr添加鋼の場合Cr
はγループを作るので熱処理の際に大切なことはこのγ
ループに入れる成分系とすることが大切となることに注
目した。(Means for Solving Problems) The present inventors first need to obtain an austenite single phase in order to obtain a uniform structure.
Forms a γ loop, so what is important in heat treatment is this γ
We paid attention to the fact that it is important to use an ingredient system that is included in the loop.
そこでCr添加量とC,N添加量変化、Ni添加、Mo添加の
γループの範囲に及ぼす影響について検討を行った。Therefore, we investigated the effects of changes in Cr and C and N additions, Ni addition, and Mo addition on the range of the γ loop.
第1表に供試材成分及び加熱温度、冷却速度が異った
ときの組織調査結果を示す。供試材は25kg溶解材を用
い、普通圧延を行ったものを用いた。金属組織の判定は
930℃加熱後加速冷却、空冷、及び炉冷の3種の冷却を
行い断面光学顕微鏡観察により実施した。γループに及
ぼすCr添加量とC,Nの関係について式Cr%≧10×C
(%)+30×N(%)+8を満足させた場合、γ単相の
加熱が出来、組織が加速冷却によりマルテンサイト単
相、特に強制的に冷却しない空冷以下の冷却速度や、炉
令ではフェライトと炭化物からなる組織でアシキューラ
−フェライト組織(AF)が得られることが解った。なお
これらの成分系の場合はよほど冷却を遅くしてもフェラ
イトパーライト組織とはならないことが解った。上記の
式を満さない成分系の場合の組織はα+γ加熱域のため
α部分のフェライトは冷却後もそのまま残り、γ部分が
冷却速度によるマルテンサイト又はAFとなる混合組織と
なる。Ni及びMo添加のγループに対する影響は添加量が
少ないためにほとんどないことも解った。Table 1 shows the results of the microstructure investigation when the components of the test material, the heating temperature, and the cooling rate were different. As the test material, a 25 kg melted material was used after being normally rolled. Judgment of metal structure
After heating at 930 ° C., three types of cooling, that is, accelerated cooling, air cooling, and furnace cooling were performed, and the cross-sectional optical microscope observation was performed. Relation between Cr addition amount and C, N on γ loop Formula Cr% ≧ 10 × C
When (%) + 30 × N (%) + 8 is satisfied, the γ single phase can be heated and the structure is martensite single phase due to accelerated cooling, especially the cooling rate below air cooling that does not forcefully cool, It was found that an acicular-ferrite structure (AF) was obtained with a structure composed of ferrite and carbide. It has been found that in the case of these component systems, the ferrite-pearlite structure does not form even if the cooling is slowed down. In the case of a component system that does not satisfy the above formula, since the α + γ heating region, the ferrite in the α portion remains as it is after cooling, and the γ portion becomes a martensite or AF mixed structure depending on the cooling rate. It was also found that the effect of Ni and Mo addition on the γ loop was almost nonexistent due to the small addition amount.
次に組織と応力腐食割れ性との関係を検討した。 Next, the relationship between the structure and the stress corrosion cracking property was examined.
第2表には第1表で用いた鋼について応力腐食割れ試
験結果を記入した。組織と応力腐食割れ特性が密接に関
係することが明らかとなった。即ち、組織がマルテンサ
イトとなる場合は予想通り応力腐食割れが起り、AF組織
の場合のみ応力腐食割れ抵抗が大きいことが解った。ま
たAF組織の場合に冷却速度によって降伏点の異ったグレ
ードの鋼が得られることが解った。Table 2 shows the results of stress corrosion cracking test for the steels used in Table 1. It was revealed that the structure and the stress corrosion cracking property are closely related. That is, it was found that stress corrosion cracking occurs as expected when the structure becomes martensite, and the stress corrosion cracking resistance is large only in the case of the AF structure. It was also found that in the case of the AF structure, grades of steel with different yield points can be obtained depending on the cooling rate.
なお実験条件は降伏点についてはJIS A2号引張試験で
実施し、応力腐食割れ評価については4点曲げ試験で行
った。曲げ負荷応力は降伏点の1.25倍と1.0倍、0.85倍
を負荷し、腐食液H2S飽和5%NaCl+0.5%酢酸液中に14
日間浸漬した後取出し割れ判定を行う通常の手法を用い
た。The test conditions were a JIS A2 tensile test for the yield point and a 4-point bending test for the stress corrosion cracking evaluation. Bending load stress is 1.25 times, 1.0 times, and 0.85 times the yield point, and the stress is 14% in corrosive solution H 2 S saturated 5% NaCl + 0.5% acetic acid solution.
The usual method of judging cracking after taking out after soaking for a day was used.
試片及び治具について第1図,第2図に示した。第1
図において板厚方向の厚みt=3mm、試片幅W=15mm、
試片長さl=115mmである。第2図において1は3tの試
片であり治具本体2は標点間隔Lを有し、該試片1はセ
ラミック棒3により中央2点部及び両端を支持され、中
央部に止めナットを介して進退自由に設けられたネジ棒
により押圧され曲げ応力σが与えられている。なお各支
点にはセラミック棒を使用しているのは浸漬液中で生じ
る治具と試片の電気化学的特性の違いにより生じる電位
を防ぐために使用している。なお曲げ応力σと押込量δ
の関係式は次式で示される。The test pieces and jigs are shown in FIGS. 1 and 2. First
In the figure, the thickness t = 3 mm in the plate thickness direction, the sample width W = 15 mm,
The sample length l = 115 mm. In FIG. 2, 1 is a 3t test piece, the jig body 2 has a gauge length L, and the test piece 1 is supported by a ceramic rod 3 at two central points and both ends, and a lock nut is provided at the central part. A bending stress σ is given by being pressed by a threaded rod that is freely movable back and forth. The ceramic rods are used at each fulcrum to prevent the potential generated by the difference in the electrochemical characteristics of the jig and the specimen generated in the immersion liquid. Bending stress σ and indentation amount δ
The relational expression of is shown by the following expression.
本発明は以上の新規な知見に基いてなされたものであ
って成分Cr,C及びNの三元素の相互の添加量を規制し
て、オーステナイト均一加熱を実現し、マルテンサイト
としないAF組織とすることにより、焼戻し処理を省略し
てコストダウンを図り、耐応力腐食割れと耐炭酸ガス腐
食抵抗の優れたフェライト系ステンレス鋼の製造を可能
としたものである。 The present invention has been made based on the above new findings, and regulates the mutual addition amounts of the three elements of the components Cr, C and N, realizes austenite uniform heating, and provides an AF structure that does not form martensite. By doing so, the tempering process can be omitted and the cost can be reduced, and the ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide gas corrosion resistance can be manufactured.
即ち本発明の要旨とするところは、重量%で C :0.25%以下 Si:0.1〜0.5% Mn:0.2〜1.0% Cr:9〜16.0% P :0.02%以下 S :0.02%以下 Al:0.01〜0.05% N :0.01〜0.25%を含み残部鉄及び不可避不純物から
成り、且つCr%≧10×C(%)+30×N(%)+8を満
足させる組成の鋼または上記鋼に更に Ni:0.2〜2.5% Mo:0.2〜1.5% V :0.02〜1.5% Ti:0.001〜0.2% Nb:0.02〜1.5%を1種以上含む鋼をオーステナイト域91
0〜1020℃に加熱後空冷以下の冷却速度にて冷却するこ
とを特徴とする耐応力腐食割れ性と耐炭酸ガス腐食性の
優れたフェライト系ステンレス鋼の製造方法にある。That is, the gist of the present invention is, in wt% C: 0.25% or less Si: 0.1 ~ 0.5% Mn: 0.2 ~ 1.0% Cr: 9 ~ 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 ~ 0.05% N: 0.01 to 0.25%, the balance of iron and unavoidable impurities, and the composition of steel satisfying Cr% ≧ 10 × C (%) + 30 × N (%) + 8, or Ni: 0.2 to 2.5% Mo: 0.2 to 1.5% V: 0.02 to 1.5% Ti: 0.001 to 0.2% Nb: 0.02 to 1.5% Steel containing at least one kind in the austenite region 91
A method for producing a ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide gas corrosion resistance, which is characterized in that it is heated at 0 to 1020 ° C. and then cooled at a cooling rate not higher than air cooling.
(作用) 次に本発明が対象とする鋼における成分限定の理由に
つて述べる。(Operation) Next, the reason for limiting the components in the steel targeted by the present invention will be described.
C:Cは鋼の強度増加に対して有効である。しかし添加
量を0.25%超とすると、焼入性を上昇させ組織をマルテ
ンサイトにし易くし、AF組織が出にくくなる。したがっ
てCは0.25%以下とする。C: C is effective for increasing the strength of steel. However, if the addition amount exceeds 0.25%, the hardenability is increased, the structure is easily martensitic, and the AF structure is difficult to appear. Therefore, C is 0.25% or less.
Si:Siは脱酸のために添加する。しかし添加量が0.1%
未満では効果がなく、添加量が0.5%超では脱酸の効果
は充分となるが靭性が劣化する。したがってSiは0.1〜
0.5%とする。Si: Si is added for deoxidation. However, the addition amount is 0.1%
If it is less than 0.5%, there is no effect. If the amount added exceeds 0.5%, the deoxidizing effect is sufficient, but the toughness deteriorates. Therefore Si is 0.1 ~
0.5%
Mn:Mnは靭性を向上させるために添加する。しかし添
加量が0.2%未満では靭性向上に効果がなく1%を超え
ると焼入性を向上させる元素であるため組織をマルテン
サイトにし易くし、AFが出にくくなる。したがって、Mn
は0.2〜1.0%とする。Mn: Mn is added to improve toughness. However, if the added amount is less than 0.2%, it has no effect on improving the toughness, and if it exceeds 1%, it is an element that improves hardenability, so that the structure easily becomes martensite and AF is difficult to occur. Therefore, Mn
Is 0.2 to 1.0%.
Cr:CrはCO2腐食を低減させるに有効な元素である。し
かしながら本発明の対象にしているエネルギー分野での
使用の場合非常にシビアーな条件では添加量が少いとそ
の効果がない。下限値は腐食の低減効果の出初める添加
量で決る。添加量上限は効果がある範囲を超えて添加し
ても添加した意味を持たない。したがってCrの添加範囲
は9〜16.0%とする。Cr: Cr is an element effective in reducing CO 2 corrosion. However, in the case of use in the energy field, which is the object of the present invention, under extremely severe conditions, if the addition amount is small, the effect is not obtained. The lower limit is determined by the addition amount at which the effect of reducing corrosion begins to appear. The upper limit of the amount added does not have the meaning of being added even if it exceeds the effective range. Therefore, the Cr addition range is 9 to 16.0%.
P:Pは鋼を脆化させる。しかし本発明鋼の場合組織が
焼戻しマルテンサイトとなる従来のものと異り、AF組織
とするためPが鋼を脆化させる程度は低い。したがって
通常レベルの0.02%以下としておけば脆化の心配はな
い。したがってPは0.02%以下とする。P: P embrittles steel. However, in the case of the steel of the present invention, unlike the conventional one in which the structure is tempered martensite, since it has an AF structure, the degree of P embrittlement of the steel is low. Therefore, if it is set to 0.02% or less of the normal level, there is no concern about embrittlement. Therefore, P is 0.02% or less.
S:Sも鋼を脆化する。靭性を得るためには低い程良い
がコストがかかるため実質的に問題とならない含有上限
値は0.02%程度である。したがってSは0.02%以下とす
る。S: S also embrittles steel. The lower the content, the better in order to obtain toughness, but since it costs more, the upper limit of the content that does not pose a practical problem is about 0.02%. Therefore, S is 0.02% or less.
Al:Alは脱酸のために添加する。0.01%未満では脱酸
の効果がなく、0.05%超では脱酸効果は十分となるが、
鋼の清浄度を下げ靭性低下を起す。したがって、Al添加
量は0.01〜0.05%とする。Al: Al is added for deoxidation. If it is less than 0.01%, there is no deoxidizing effect, and if it exceeds 0.05%, the deoxidizing effect is sufficient.
It lowers the cleanliness of steel and reduces toughness. Therefore, the amount of Al added is 0.01 to 0.05%.
N:Nは13%Cr前後の鋼に於てはγループを広げる効果
があり組織をコントロールするために重要な働きをす
る。しかし添加量が0.01%未満であるγループを広げる
効果がなく、0.01%以上を添加する必要がある。一方上
限値は多い方が良いが通常のプロセスで容易に添加し得
る添加量は0.25%程度である。したがってNの添加量は
0.01〜0.25%とする。N: N has the effect of expanding the γ loop in steel with around 13% Cr, and plays an important role in controlling the microstructure. However, there is no effect to widen the γ loop whose addition amount is less than 0.01%, and it is necessary to add 0.01% or more. On the other hand, the higher the upper limit value, the better, but the addition amount that can be easily added in a normal process is about 0.25%. Therefore, the amount of N added is
0.01 to 0.25%
Ni,Mo,Nb,V,Ti:これらの元素は任意に1種以上添加可
能な元素である。組織をAFにしたときの炭化物形成によ
り強度上昇を図るために添加する。それぞれの添加量下
限未満では効果に乏しく、上限を超えると巨大炭化物を
形成するのでNi0.2〜2.5%,Mo0.2〜1.5%,V0.02〜1.5
%,Ti0.001〜0.2%,Nb0.02〜1.5%の範囲とする。なお
これらの元素は複合添加した場合と単独添加した場合の
差はないので必要に応じて1種以上添加することができ
る。Ni, Mo, Nb, V, Ti: These elements are elements to which one or more kinds can be arbitrarily added. It is added in order to increase the strength by the formation of carbide when the tissue is made into AF. If the addition amount is less than the lower limit, the effect is poor, and if it exceeds the upper limit, large carbides are formed, so Ni0.2 to 2.5%, Mo0.2 to 1.5%, V0.02 to 1.5
%, Ti 0.001 to 0.2%, Nb 0.02 to 1.5%. Since there is no difference between the case where these elements are added in combination and the case where they are added alone, one or more of these elements can be added if necessary.
Cr,C,N添加量の関係式:均一なAF組織を得るために加
熱時にフェライトを含まないオーステナイト状態にする
ことが必要である。実験の結果Cr%≧10×C(%)+30
×N(%)+8を満足させる空冷以下の冷却を行うと均
一なAF組織が得られることが解った。Relational expression of Cr, C, N addition amount: In order to obtain a uniform AF structure, it is necessary to make the austenite state not containing ferrite during heating. Result of experiment Cr% ≧ 10 × C (%) + 30
It was found that a uniform AF structure can be obtained by cooling below the air cooling satisfying × N (%) + 8.
熱処理条件:本発明に於ては従来の熱処理と異り組織
をAF組織とすることが大切である。したがって冷却速度
は空冷以下の速度にし、焼の入ったマルテンサイト組織
としないことが必要である。本発明における空令以下の
冷却速度とは、炉内や空気中での静置下の冷却速度であ
る。AFにした場合には焼戻しを省略することが可能で、
しかも強度が得られ応力腐食割れを起さない鋼が得られ
る。加熱温度はγ均一になる温度910〜1020℃とする
が、下限はαが混入しない温度、上限はγ粒の粗大化が
起りにくい範囲とする必要性から決る。Heat treatment condition: In the present invention, it is important to make the structure different from the conventional heat treatment into an AF structure. Therefore, it is necessary that the cooling rate be equal to or lower than the air cooling rate and that the martensite structure with quenching not be formed. The cooling rate equal to or less than the empty age in the present invention is a cooling rate while standing still in a furnace or in air. When AF is selected, tempering can be omitted,
Moreover, it is possible to obtain a steel having high strength and free from stress corrosion cracking. The heating temperature is set to a temperature of 910 to 1020 ° C. at which γ becomes uniform, but the lower limit is determined as a temperature at which α is not mixed, and the upper limit is set as a range in which coarsening of γ grains does not easily occur.
以上述べたように本発明によれば降伏強度が135ksi程
度以下のエネルギー関連分野で使用される鋼で応力腐食
割れと炭酸ガス腐食を起さないフェライト系ステンレス
鋼を1回の熱処理で得ることが可能となる。As described above, according to the present invention, it is possible to obtain a ferritic stainless steel, which has a yield strength of about 135 ksi or less and is used in the energy-related fields, which does not cause stress corrosion cracking and carbon dioxide corrosion by one heat treatment. It will be possible.
次に実施例により本発明を説明する。 Next, the present invention will be described with reference to examples.
(実施例) 第3表に示す化学成分を有する各鋼種について溶製後
通常圧延によって鋼板とし、各加熱温度で30分保持後冷
却速度を空冷にて冷却を行った。(Examples) Steels having chemical compositions shown in Table 3 were melted and then subjected to normal rolling to obtain steel plates, which were held at each heating temperature for 30 minutes and then cooled by air cooling at a cooling rate.
冷却条件としては板厚により若干の違いはあるが本発
明の場合はあまり厳密に規制しなくとも空冷以下の冷速
であれば一向に問題とならない。試験方法の詳細な光顕
及び引張試験、応力腐食割れ試験の中の常圧試験につい
ては先に述べた方法と同一であるので省略する。Although there are some differences in the cooling conditions depending on the plate thickness, in the case of the present invention, it does not matter at all if the cooling speed is equal to or lower than the air cooling, even if it is not strictly regulated. Details of the test method, such as the light microscope, the tensile test, and the atmospheric pressure test in the stress corrosion cracking test, are the same as those described above, and therefore will be omitted.
高圧CO2+H2S試験について補足すると、この試験の目
的は言うまでもなく、少しでも実際のラインパイプの使
用条件をシミュレートした条件での割れを調べるために
行う。即ち常圧では酢酸を用いた試験液で液のpHを酸性
にして腐食を起り易くしているために酢酸と鋼の組み合
せによっては実際の高圧の環境を再現しない場合もあり
得るためである。試験片サイズ、応力負荷方法、浸漬液
の塩濃度、浸漬期間については全く常圧の方法と同一で
ある。試験は応力負荷後治具ごとにオートクレーブ中に
入れ、密閉後、まずH2Sを10atm、次にCO2を10atm導入
し、腐食環境とした。ガス添加後浸漬液にガスが吸収さ
れ降圧するのでその場合は適時ガスを再添加して試験を
続行した。As a supplement to the high-pressure CO 2 + H 2 S test, not to mention the purpose of this test, it is carried out in order to investigate cracks under conditions that simulate the actual service conditions of line pipes. That is, at normal pressure, the pH of the solution is made acidic with a test solution using acetic acid to facilitate corrosion, and therefore the actual high-pressure environment may not be reproduced depending on the combination of acetic acid and steel. The test piece size, the stress loading method, the salt concentration of the immersion liquid, and the immersion period are completely the same as the normal pressure method. In the test, each jig was put in an autoclave after stress loading, and after sealing, H 2 S was first introduced at 10 atm and then CO 2 was introduced at 10 atm to obtain a corrosive environment. Since the gas is absorbed in the immersion liquid after the gas is added and the pressure drops, in that case, the gas was added again at an appropriate time and the test was continued.
第4表に応力腐食割れ試験結果を示した。本発明で製
造された鋼は全く割れを発生せず、腐食減量も少いこと
が解る。Table 4 shows the results of the stress corrosion cracking test. It can be seen that the steel produced according to the present invention does not crack at all and has a small corrosion weight loss.
(発明の効果) 上述のように、本発明によれば降伏強度が135ksi(9
4.5kg/mm2)程度以下のエネルギー分野で使用される鋼
に於て、耐応力腐食割れ性に優れしかも耐CO2腐食性に
優れた鋼を低コストで製造可能となり、産業上有効な効
果がもたらされるものである。 (Effects of the Invention) As described above, according to the present invention, the yield strength is 135 ksi (9
Among steels used in the energy field of about 4.5 kg / mm 2 ) or less, it is possible to manufacture steel with excellent stress corrosion cracking resistance and CO 2 corrosion resistance at low cost, which is an effective industrial effect. Is brought about.
第1図は4点曲げ試片の寸法図、第2図は第1図に示し
た試片の曲げ状態を示した断面図である。 1……試験片、2……治具、3……セラミック棒、4…
…支持台、5……押込み棒。FIG. 1 is a dimensional drawing of a 4-point bending test piece, and FIG. 2 is a sectional view showing a bent state of the test piece shown in FIG. 1 ... Test piece, 2 ... Jig, 3 ... Ceramic rod, 4 ...
… Supporting table, 5… Pushing rod.
Claims (2)
×C(%)+30×N(%)+8を満足させる組成の鋼を
オーステナイト域910〜1020℃に加熱後空冷以下の冷却
速度にて冷却することを特徴とする耐応力腐食割れ性と
耐炭酸ガス腐食性の優れたフェライト系ステンレス鋼の
製造方法。1. C: 0.25% or less in weight% Si: 0.1 to 0.5% Mn: 0.2 to 1.0% Cr: 9 to 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 to 0.05% N: 0.01 〜0.25%, balance iron and unavoidable impurities, and Cr% ≧ 10
Stress corrosion cracking resistance and carbonation resistance, characterized in that a steel having a composition satisfying × C (%) + 30 × N (%) + 8 is heated to an austenite range of 910 to 1020 ° C. and then cooled at a cooling rate not higher than air cooling. A method for producing ferritic stainless steel having excellent gas corrosiveness.
可避不純物から成り、且つCr%≧10×C(%)+30×N
(%)+8を満足させる組成の鋼をオーステナイト域91
0〜1020℃に加熱後空冷以下の冷却速度にて冷却するこ
とを特徴とする耐応力腐食割れ性と耐炭酸ガス腐食性の
優れたフェライト系ステンレス鋼の製造方法。2. C: 0.25% or less by weight% Si: 0.1 to 0.5% Mn: 0.2 to 1.0% Cr: 9 to 16.0% P: 0.02% or less S: 0.02% or less Al: 0.01 to 0.05% N: 0.01 〜0.25% and Ni: 0.2〜2.5% Mo: 0.2〜1.5% V: 0.02〜1.5% Ti: 0.001〜0.2% Nb: 0.02〜1.5% and the balance iron and inevitable impurities. And Cr% ≧ 10 × C (%) + 30 × N
(%) + 8 steel with composition satisfying austenite region 91
A method for producing a ferritic stainless steel having excellent stress corrosion cracking resistance and carbon dioxide gas corrosion resistance, which comprises heating at 0 to 1020 ° C. and then cooling at a cooling rate not higher than air cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28383386A JPH08929B2 (en) | 1986-11-28 | 1986-11-28 | Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28383386A JPH08929B2 (en) | 1986-11-28 | 1986-11-28 | Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63137121A JPS63137121A (en) | 1988-06-09 |
JPH08929B2 true JPH08929B2 (en) | 1996-01-10 |
Family
ID=17670750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28383386A Expired - Lifetime JPH08929B2 (en) | 1986-11-28 | 1986-11-28 | Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08929B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10143390B4 (en) * | 2001-09-04 | 2014-12-24 | Stahlwerk Ergste Westig Gmbh | Cold-formed corrosion-resistant chrome steel |
CN109321829B (en) * | 2018-11-06 | 2020-02-18 | 鞍钢股份有限公司 | Stainless steel plate with yield strength of 900MPa and manufacturing method thereof |
-
1986
- 1986-11-28 JP JP28383386A patent/JPH08929B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63137121A (en) | 1988-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111094610B9 (en) | Steel pipe and steel plate | |
JP5728836B2 (en) | Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking | |
JP4609491B2 (en) | Ferritic heat resistant steel | |
JP7156536B2 (en) | Seamless stainless steel pipe and method for producing seamless stainless steel pipe | |
CN1044263C (en) | Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same | |
JP6394835B1 (en) | Low temperature nickel-containing steel sheet and low temperature tank using the same | |
JP7315097B2 (en) | High-strength stainless seamless steel pipe for oil wells and its manufacturing method | |
JP7156537B2 (en) | Seamless stainless steel pipe and method for producing seamless stainless steel pipe | |
JPS63230851A (en) | Low-alloy steel for oil well pipe excellent in corrosion resistance | |
JPS63230847A (en) | Low-alloy steel for oil well pipe excellent in corrosion resistance | |
CN100532617C (en) | Martensitic stainless steel seamless pipe and a manufacturing method thereof | |
JP2791804B2 (en) | Martensitic stainless steel with high strength and excellent corrosion resistance | |
EP3971307B1 (en) | Electric-resistance-welded steel pipe or tube for hollow stabilizer | |
JP5146063B2 (en) | High strength steel with excellent internal fatigue damage resistance and method for producing the same | |
JPS5848024B2 (en) | Oil country tubular steel with excellent corrosion resistance | |
JP3502691B2 (en) | Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same | |
JP3749656B2 (en) | Steel material with excellent toughness | |
JP2018123419A (en) | Nickel-containing steel material for low temperatures and tank for low temperatures therewith | |
WO2022009598A1 (en) | Seamless stainless steel pipe and production method therefor | |
JPH08929B2 (en) | Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance | |
JP3666388B2 (en) | Martensitic stainless steel seamless pipe | |
JP3201081B2 (en) | Stainless steel for oil well and production method thereof | |
JP3800150B2 (en) | Martensitic stainless hot rolled steel strip with excellent manufacturability | |
JP7347714B1 (en) | High strength seamless stainless steel pipe for oil wells | |
JP2018123418A (en) | Nickel-containing steel material for low temperatures and tank for low temperatures therewith |