JPH0892794A - Supplying of nickel material into nickel-base plating solution - Google Patents

Supplying of nickel material into nickel-base plating solution

Info

Publication number
JPH0892794A
JPH0892794A JP23147494A JP23147494A JPH0892794A JP H0892794 A JPH0892794 A JP H0892794A JP 23147494 A JP23147494 A JP 23147494A JP 23147494 A JP23147494 A JP 23147494A JP H0892794 A JPH0892794 A JP H0892794A
Authority
JP
Japan
Prior art keywords
nickel
plating solution
hydrogen peroxide
supplying
metallic nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23147494A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogaki
浩 大垣
Ichirou Tanoguchi
一郎 田野口
Takao Ikenaga
孝雄 池永
Osamu Shin
修 進
Akio Sakurai
昭雄 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23147494A priority Critical patent/JPH0892794A/en
Publication of JPH0892794A publication Critical patent/JPH0892794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE: To replenish the grain of metallic nickel directly into a plating soln. to dissolve the grain. CONSTITUTION: A plating soln. in a dissolution tank 1 is heated to 75-100 deg.C by a heat exchanger 5, a granular or powdery metallic nickel is charged into the plating soln. through a metallic nickel feeder 3, aq. hydrogen peroxide is continouosuly injected by an injector 9, and the mixture is agitated by an agitator 2 to dissolve the nickel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不溶性陽極を用いる鋼
帯等の金属帯のニッケル系連続電気めっき設備におい
て、消費されるニッケルイオンをめっき液中に補充する
ニッケル原料の供給方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying a nickel raw material for replenishing a plating solution with consumed nickel ions in a nickel-based continuous electroplating equipment for metal strips such as steel strips using an insoluble anode.

【0002】[0002]

【従来の技術】近年、自動車、家電製品等において耐食
性向上の要求が高まり、従来から使用されている亜鉛め
っき鋼板に加え、亜鉛−ニッケルめっき鋼板等の合金め
っき鋼板の需要が著しい増加を見せている。こうした需
要増に対処するため、高能率生産の可能な高電流密度に
よる高速めっき法が採用されているが、高速めっき法に
おいては陽極交換を頻繁に行う必要がある可溶性陽極方
式よりも、陽極交換を必要としないイリジウム系等の不
溶性陽極を用い、消費される金属イオンをめっき液中へ
連続的に補給する方式の方が有利であることはいうまで
もない。
2. Description of the Related Art In recent years, the demand for improved corrosion resistance in automobiles, home appliances and the like has increased, and in addition to the galvanized steel sheets that have been conventionally used, the demand for alloy-plated steel sheets such as zinc-nickel plated steel sheets has significantly increased. There is. In order to cope with such an increase in demand, high-speed plating method with high current density that enables high-efficiency production is adopted, but in the high-speed plating method, the anode replacement is more difficult than the soluble anode method which requires frequent anode replacement. Needless to say, a method of using an insoluble anode such as an iridium-based material that does not require the use of metal and continuously supplying consumed metal ions to the plating solution is advantageous.

【0003】めっき液としては通常、硫酸系の電解液が
使用される。また、消費されるめっき液中のニッケル等
の金属イオンの補給方法としては、金属ニッケル等を直
接めっき液に接触させて溶解させる方法と、水酸化ニッ
ケル、炭酸ニッケル等の金属化合物の形で溶解させる方
法とがあり、こうした金属イオンの補充はライン内の循
環槽とは別に設けられる溶解槽において行われ、めっき
液は循環ポンプにより溶解槽と循環槽との間を循環する
のが普通である。
As the plating solution, a sulfuric acid type electrolytic solution is usually used. Further, as a method for replenishing metal ions such as nickel in the consumed plating solution, a method of dissolving the metal nickel by directly contacting the plating solution and a method of dissolving it in the form of a metal compound such as nickel hydroxide or nickel carbonate. There is a method of making the replenishment of metal ions performed in a dissolution tank provided separately from the circulation tank in the line, and the plating solution is usually circulated between the dissolution tank and the circulation tank by a circulation pump. .

【0004】従来、工業的には、主として炭酸ニッケル
等の金属化合物を溶解させる方法が行われているが、こ
れらの金属化合物は特開昭63-50328号公報、特開平1-15
3534号公報に記載されているように、溶解、析出分離、
熱分解等の複雑な工程を経て製造される薬品であるから
高価であり、コスト低減を妨げる一因ともなっている
上、粉体であるため発塵等の環境問題もあり、さらにこ
れら金属化合物に通常含有されるナトリウム、カルシウ
ム、塩素、珪素等の不純物により、品質や設備面でさま
ざまな問題も発生している。そこで、ニッケルイオンソ
ースとして金属化合物を使用するめっき処理設備では、
これら不純物を除去するための専用設備を設けるのが一
般的である。
Conventionally, a method of dissolving a metal compound such as nickel carbonate is mainly used industrially, but these metal compounds are disclosed in JP-A-63-50328 and JP-A-1-15.
As described in Japanese Patent No. 3534, dissolution, precipitation separation,
Since it is a chemical that is manufactured through complicated steps such as thermal decomposition, it is expensive, which is one of the factors that prevent cost reduction.Because it is a powder, there are environmental problems such as dust generation. Impurities such as sodium, calcium, chlorine, and silicon that are usually contained cause various problems in terms of quality and equipment. Therefore, in the plating treatment equipment that uses a metal compound as the nickel ion source,
It is common to provide a dedicated facility for removing these impurities.

【0005】一方、粒状、あるいは塊状の金属ニッケル
は金属化合物と比較してニッケル重量当たりの単価が50
〜60%と安価であり、これらを直接溶解させる方法はコ
ストや作業環境面では問題がないが、通常のめっき液の
酸濃度においては溶解速度が低く、大量に溶解させるた
めには何らかの手段を必要とする。特開平1-234598号公
報には、溶解槽内に不溶性の陰極ならびに不溶性のバス
ケット状陽極を設け、バスケット状陽極内に金属ニッケ
ル粒を充填してめっき液を通液しながら電解して金属ニ
ッケル粒をめっき液中に溶解させることが記載されてい
る。
On the other hand, granular or massive metallic nickel has a unit price per nickel weight of 50 compared with metallic compounds.
It is cheap as ~ 60%, and there is no problem in the method of directly dissolving these in terms of cost and working environment, but the dissolution rate is low at the acid concentration of the usual plating solution, and some means for dissolving in large amounts is necessary. I need. In JP-A 1-234598, an insoluble cathode and an insoluble basket-shaped anode are provided in a melting tank, metal nickel particles are filled in the basket-shaped anode, and electrolysis is performed while passing a plating solution. It is described that the grains are dissolved in the plating solution.

【0006】しかし、この方法は、金属ニッケル粒表面
が酸化して不働態化する問題があるばかりでなく、バス
ケット状陽極の耐久性や、バスケット状陽極内への金属
ニッケル粒の連続的供給ができない等の問題点があり、
現実的方法とはいえない。また、特開平4-13900号公報
には、不働態化を防止するため陽極に使用する金属ニッ
ケルに硫黄を含有させるとともに、溶解を促進するため
金属ニッケルの形状を粒状、板状あるいは粉状とし、チ
タン等の耐食性金属のバスケットに充填し、めっき液を
通液しながら電解して金属ニッケル粒をめっき液中に溶
解させることが記載されている。この方法によれば、前
記特開平1-234598号公報記載の方法における問題点の大
半は一応解消されているものの、こうした電解法は、電
解電流を大きくできないため、実施しようとすると電解
槽が 100基以上必要となり、設備コスト、メンテナンス
コスト等を考慮すればやはり現実的方法ではない。
However, this method not only has the problem that the surface of the metallic nickel particles is oxidized and passivated, but also the durability of the basket-shaped anode and the continuous supply of the metallic nickel particles into the basket-shaped anode are not satisfied. There are problems such as not being able to
Not a realistic method. Further, in JP-A-4-13900, in order to prevent passivation, metallic nickel used for the anode contains sulfur, and in order to promote dissolution, the metallic nickel is formed into a granular, plate-like or powder-like shape. It is described that a basket of corrosion resistant metal such as titanium is filled and electrolysis is performed while the plating solution is passed through to dissolve the metal nickel particles in the plating solution. According to this method, most of the problems in the method described in Japanese Patent Laid-Open No. 1-234598 are solved, but since such an electrolysis method cannot increase the electrolysis current, the electrolysis cell is 100 This is not a realistic method, considering the equipment cost and maintenance cost.

【0007】また、特開平5-25700号公報には、消費さ
れるニッケルイオンと亜鉛イオンの組成に合わせ、かつ
粒径を 1mm以下としたニッケル−亜鉛合金を溶解槽にお
いて溶解させることが記載されている。ニッケル−亜鉛
合金を酸性浴中で溶解させると、先ず亜鉛が優先的に溶
解し、残留ニッケルが微細化して表面積が飛躍的に増加
することによりニッケルの溶解も促進されるので、溶解
速度がきわめて高く、かつニッケル−亜鉛系合金めっき
において消費されるニッケルイオンと亜鉛イオンが同時
に補給される。しかし、使用するニッケル−亜鉛合金は
製造条件がきわめて厳しく、大量生産が出来ず、結果と
して合金のコストがきわめて高いものとなって現実性に
乏しい。
Further, JP-A-5-25700 describes that a nickel-zinc alloy having a particle size of 1 mm or less is melted in a melting tank according to the composition of nickel ions and zinc ions to be consumed. ing. When a nickel-zinc alloy is dissolved in an acidic bath, zinc is first dissolved preferentially, residual nickel is refined and the surface area is dramatically increased, so that the dissolution of nickel is also promoted. Nickel ions and zinc ions, which are expensive and consumed in nickel-zinc alloy plating, are replenished at the same time. However, the nickel-zinc alloy used has extremely strict manufacturing conditions, cannot be mass-produced, and as a result, the cost of the alloy becomes extremely high, which is impractical.

【0008】上記のほか、めっき液をたとえば75〜100
℃に昇温し、めっき液に対する投入量を一定値以上とす
ることで金属ニッケルの直接溶解を促進することも検討
されているが、この方法では未溶解の金属ニッケルが大
量に存在し、これのめっき液への混入を防止するための
何らかの方策を必要とする。
In addition to the above, the plating solution is, for example, 75-100.
It has also been studied to promote the direct dissolution of metallic nickel by raising the temperature to ℃ and setting the amount added to the plating solution to a certain value or more, but in this method there is a large amount of undissolved metallic nickel. It is necessary to take some measures to prevent the metal from mixing with the plating solution.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来の技術
における上記の諸問題を解消し、金属ニッケルを直接め
っき液中に補給する方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems in the prior art and to provide a method of directly supplying nickel metal into a plating solution.

【0010】[0010]

【課題を解決するための手段】本発明のニッケル系めっ
き液中へのニッケル原料の供給方法は、溶解槽内のめっ
き液を75〜100 ℃に昇温し、このめっき液中へ粒状ある
いは粉状の金属ニッケルを投入し、過酸化水素水を連続
的に注入し、攪拌しながら金属ニッケルを溶解させるこ
とを特徴とし、さらに望ましくは、注入する過酸化水素
水の濃度が10〜20%、および/または注入する過酸化水
素水の添加速度をめっき液 1m3に対して30〜100 l/hrと
した上記ニッケル系めっき液中へのニッケル原料の供給
方法である。
[Means for Solving the Problems] A method for supplying a nickel raw material to a nickel-based plating solution of the present invention is to heat the plating solution in a melting bath to 75 to 100 ° C. Characteristic nickel is charged, hydrogen peroxide solution is continuously injected, and the nickel metal is dissolved while stirring, more preferably, the concentration of hydrogen peroxide solution to be injected is 10 to 20%, And / or a method of supplying a nickel raw material into the above nickel-based plating solution in which the addition rate of hydrogen peroxide water to be injected is 30 to 100 l / hr per 1 m 3 of the plating solution.

【0011】[0011]

【作 用】現在、工業的に使用されているめっき液(め
っき浴)は、pH2以下、液温55〜65℃程度の硫酸液が
一般的である。このような条件のめっき液に対しては、
金属ニッケルや酸化ニッケル等のニッケルイオンソース
はほとんど溶解しないことが知られている。
[Operation] At present, the plating solution (plating bath) used industrially is generally a sulfuric acid solution having a pH of 2 or less and a solution temperature of about 55 to 65 ° C. For plating solutions under these conditions,
It is known that nickel ion sources such as metallic nickel and nickel oxide are hardly dissolved.

【0012】ところで、金属ニッケルを例にとると、溶
解反応は次のとおりである。 Ni + 2H+ → Ni2+ + H2↑ ・・・(1) また、この反応の反応速度は、次式で示される。 r = k・CNi a ・CH+ b ・・・(2) k = A・exp(−E/RT) ・・・(3) ただし、CNi: 金属ニッケル濃度、CH+: 水素イオン濃
度、 T:めっき液温度、a,b:定数 そこで、金属ニッケル濃度、水素イオン濃度、めっき液
温度のそれぞれを大きくしてやることによって、(3) 式
のkの値が大きくなり、(2) 式のrの値、すなわち溶解
速度を向上させることができる。
Taking metallic nickel as an example, the dissolution reaction is as follows. Ni + 2H + → Ni 2+ + H 2 ↑ (1) The reaction rate of this reaction is shown by the following equation. r = k · C Ni a · C H + b ... (2) k = A · exp (−E / RT) (3) where C Ni : metallic nickel concentration, C H + : hydrogen ion concentration, T: plating solution temperature, a, b: constant Therefore, by increasing the metal nickel concentration, the hydrogen ion concentration, and the plating solution temperature, the value of k in equation (3) increases and r in equation (2) increases. Value, that is, the dissolution rate can be improved.

【0013】ところで、水素イオン濃度を高めるため多
量の硫酸を添加すると、溶解速度は向上するもののめっ
き浴中の過剰の硫酸根(SO4 2- )は操業上支障となるの
で、ニッケル溶解後に電気透析法等により過剰な硫酸根
を除去する必要があり、設備費ならびにランニングコス
トが上昇するという問題がある。また、未溶解金属ニッ
ケルを分離するため、濾過装置等が必要であるが、大量
の金属ニッケルの存在により、濾布が目詰まりし、濾過
速度が低下する問題がある。
By the way, if a large amount of sulfuric acid is added to increase the hydrogen ion concentration, the dissolution rate is improved, but excess sulfate (SO 4 2− ) in the plating bath interferes with the operation. It is necessary to remove excess sulfate by a dialysis method or the like, which causes a problem that equipment cost and running cost increase. In addition, a filter or the like is required to separate undissolved metallic nickel, but the presence of a large amount of metallic nickel causes a problem that the filter cloth is clogged and the filtration speed is reduced.

【0014】したがって本発明においては、未溶解金属
ニッケルならびに水素イオン濃度についてはとくにアク
ションをとらず、溶解助剤として過酸化水素水を使用
し、これをめっき液中に連続的に添加することによって
(1) 式で生成された水素ガス(H2)を連続的に酸化して
水(H2O)に変えることでニッケル粒子回りの水素ガスを
除去し、図2に模式的に示すように、ニッケル粒子と水
素イオン( H+ ) 間の溶解に対する抵抗層をなくし、反
応を促進させることができる。図2(a)は過酸化水素
水のない場合、(b)は過酸化水素水を添加した場合で
ある。なお、余剰の過酸化水素水は水と酸素に分解され
るため、めっき液に対して何らの悪影響もない。
Therefore, in the present invention, no particular action is taken with respect to undissolved metallic nickel and hydrogen ion concentration, and hydrogen peroxide solution is used as a dissolution aid, and this is continuously added to the plating solution.
The hydrogen gas around the nickel particles is removed by continuously oxidizing the hydrogen gas (H 2 ) generated by the equation (1) and converting it to water (H 2 O), as shown schematically in FIG. , It is possible to eliminate the resistance layer against dissolution between nickel particles and hydrogen ions (H + ) and accelerate the reaction. FIG. 2A shows the case where no hydrogen peroxide solution is used, and FIG. 2B shows the case where hydrogen peroxide solution is added. Since the excess hydrogen peroxide solution is decomposed into water and oxygen, there is no adverse effect on the plating solution.

【0015】[0015]

【実施例】図1は、溶解槽付近の設備構成を示す。1は
溶解槽、2は攪拌機、3は金属ニッケル投入装置、4は
送液配管、5、8は熱交換器、6は送液ポンプ、7はめ
っき液循環槽、9は過酸化水素水注入装置である。めっ
き液 1m3を溶解槽1に仕込み、熱交換器5、8により一
定温度に保持し、この中に金属ニッケル投入装置3によ
り金属ニッケルを投入すると同時に、過酸化水素水注入
装置9により過酸化水素水を注入し、攪拌機2を作動さ
せて溶解させる。
EXAMPLE FIG. 1 shows the equipment configuration near the melting tank. 1 is a dissolution tank, 2 is a stirrer, 3 is a metallic nickel charging device, 4 is a liquid supply pipe, 5 and 8 are heat exchangers, 6 is a liquid supply pump, 7 is a plating solution circulation tank, and 9 is hydrogen peroxide water injection. It is a device. 1 m 3 of the plating solution was charged into the melting tank 1 and kept at a constant temperature by the heat exchangers 5 and 8, and metallic nickel was introduced into this by the metallic nickel introducing device 3 and, at the same time, peroxidation was carried out by the hydrogen peroxide water injection device 9. Hydrogen water is injected and the stirrer 2 is operated to dissolve it.

【0016】図3は、液温90℃、pH 1.5のめっき液 1m3
に対して、粒径 0.3mm以下の粒状ニッケルを10kgの割合
で投入するとともに15%の過酸化水素水を注入し、その
注入速度を変化させて溶解時間30分間における金属ニッ
ケルの溶解量を測定した結果を示す。過酸化水素水を添
加しない場合に比べ、15%の過酸化水素水を添加した場
合の方が溶解性が向上しており、とくに30 l/hr 以上に
おいて効果が顕著である。また、過酸化水素水を 100 l
/hr 以上添加しても溶解性はそれほど変化しない。した
がって、本発明では、過酸化水素水のコスト等を考慮
し、添加する上限を 100 l/hr とした。
FIG. 3 shows a plating solution of 1 m 3 with a solution temperature of 90 ° C. and a pH of 1.5.
In contrast, 10% of granular nickel with a particle size of 0.3 mm or less is injected, and 15% hydrogen peroxide solution is injected, and the injection rate is changed to measure the dissolution amount of metallic nickel in the dissolution time of 30 minutes. The result is shown. The solubility is improved when 15% hydrogen peroxide solution is added, compared with the case where hydrogen peroxide solution is not added, and the effect is particularly remarkable at 30 l / hr or more. Also, add 100 l of hydrogen peroxide solution
Even if added over / hr, the solubility does not change so much. Therefore, in the present invention, the upper limit of addition is set to 100 l / hr in consideration of the cost of hydrogen peroxide solution and the like.

【0017】つぎに、注入する過酸化水素水の濃度の影
響について調査した。市販の過酸化水素水は35%のもの
が普通であるが、これを希釈して 0〜35%のものを準備
した。液温90℃、pH 1.5のめっき液 1m3に対して粒径
0.3mm以下の粒状ニッケルを10kgの割合で投入し、攪拌
しながら希釈した過酸化水素水を添加し、30分間溶解さ
せて金属ニッケルの溶解量を測定した結果を図4に示
す。この結果から、過酸化水素水は希釈して添加する方
が効果的であり、とくに濃度10〜20%の範囲において効
果が顕著である。
Next, the influence of the concentration of the hydrogen peroxide solution to be injected was investigated. The commercially available hydrogen peroxide solution is usually 35%, but it was diluted to prepare 0-35%. Particle size for 1 m 3 of plating solution with a solution temperature of 90 ℃ and pH 1.5
FIG. 4 shows the results of measuring the amount of metallic nickel dissolved by adding granular nickel of 0.3 mm or less at a rate of 10 kg, adding hydrogen peroxide solution diluted with stirring, and dissolving the mixture for 30 minutes. From this result, it is more effective to add hydrogen peroxide solution after diluting it, and the effect is remarkable especially in the concentration range of 10 to 20%.

【0018】図5は、めっき液の温度と金属ニッケルの
溶解量との関係を示したものである。めっき液温度の上
昇に伴って金属ニッケルの溶解量も増大しており、とく
に75℃以上において増加が顕著である。一般にめっき設
備によく使用されるゴムライニングの場合、耐熱性は80
℃程度までであり、これ以上になるとゴムが変質、軟化
してしまう。したがってめっき浴の温度を上げるといっ
ても高々70〜75℃までのことであり、あまり有効な手段
とは考えられていなかったが、近年めっき槽にFRP
(繊維強化プラスチック)を採用できるようになったこ
とにより、設備面からは 100℃程度までが可能となっ
た。
FIG. 5 shows the relationship between the temperature of the plating solution and the dissolved amount of metallic nickel. The amount of metallic nickel dissolved also increased with the increase of the plating solution temperature, and the increase was particularly remarkable at 75 ° C or higher. In the case of rubber linings that are commonly used in plating equipment, the heat resistance is 80
The temperature is up to about ℃, and if it exceeds this, the rubber will deteriorate and soften. Therefore, even though the temperature of the plating bath is raised to 70 to 75 ° C at most, it was not considered to be a very effective means, but in recent years FRP has been added to the plating tank.
The adoption of (fiber reinforced plastic) has made it possible to maintain temperatures up to about 100 ° C from a facility perspective.

【0019】したがって、本発明のめっき液温度として
は、75〜100 ℃の範囲とした。なお、溶解が完了した
ら、溶解槽内のめっき液は、熱交換器5により使用温度
まで冷却し、送液ポンプ6によりめっき液循環槽7に送
液される。
Therefore, the temperature of the plating solution of the present invention is in the range of 75 to 100 ° C. When the dissolution is completed, the plating solution in the dissolution tank is cooled to the operating temperature by the heat exchanger 5 and then sent to the plating solution circulation tank 7 by the solution sending pump 6.

【0020】[0020]

【発明の効果】本発明によれば、金属ニッケルを直接め
っき液中に溶解させることができるので、高価な炭酸ニ
ッケル等の薬品を使用する場合に比べて、めっき処理に
おけるコストが大きく削減されるばかりでなく、炭酸ニ
ッケル中に含有される各種マンガン、ナトリウム、カル
シウム、塩素、珪素等の不純物による種々の設備トラブ
ルが解消され、また、従来これら不純物を除去するため
に設置していた専用の除去設備が不要となることによっ
て年間数千万円におよぶ除去費用が節減される。さら
に、溶解効率が向上することにより、未溶解金属ニッケ
ルの分離などの設備が不要であり、溶解槽も小型にでき
るなどのすぐれた効果がある。
According to the present invention, since metallic nickel can be directly dissolved in the plating solution, the cost for the plating treatment is greatly reduced as compared with the case of using expensive chemicals such as nickel carbonate. In addition, various equipment troubles caused by impurities such as manganese, sodium, calcium, chlorine, and silicon contained in nickel carbonate are eliminated, and the dedicated removal that was conventionally installed to remove these impurities is eliminated. By eliminating the need for equipment, annual removal costs of tens of millions of yen can be saved. Further, since the dissolution efficiency is improved, there is no need for equipment such as separation of undissolved metallic nickel, and there is an excellent effect that the dissolution tank can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる溶解槽付近の設備構成を示す構
成図である。
FIG. 1 is a configuration diagram showing an equipment configuration near a melting tank according to the present invention.

【図2】本発明の作用を説明するニッケル粒子付近の模
式図である。
FIG. 2 is a schematic view of the vicinity of nickel particles for explaining the operation of the present invention.

【図3】実施例における金属ニッケルの溶解性を示すグ
ラフである。
FIG. 3 is a graph showing the solubility of metallic nickel in Examples.

【図4】同じく実施例における金属ニッケルの溶解性を
示すグラフである。
FIG. 4 is a graph showing the solubility of metallic nickel in the same example.

【図5】同じく実施例における金属ニッケルの溶解性を
示すグラフである。
FIG. 5 is a graph showing the solubility of metallic nickel in the same example.

【符号の説明】[Explanation of symbols]

1 溶解槽 2 攪拌機 3 金属ニッケル投入装置 4 送液配管 5、8 熱交換器 6 送液ポンプ 7 めっき液循環槽 9 過酸化水素水注入装置 DESCRIPTION OF SYMBOLS 1 Melting tank 2 Stirrer 3 Metal nickel input device 4 Liquid supply piping 5,8 Heat exchanger 6 Liquid supply pump 7 Plating solution circulation tank 9 Hydrogen peroxide water injection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池永 孝雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 進 修 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 桜井 昭雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Ikenaga 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no address) Inside Mizushima Works, Kawasaki Steel Co., Ltd. (72) Osamu Osamu, Kawashima-dori, Mizushima, Kurashiki-shi, Okayama Prefecture Chome (without street number) Inside the Mizushima Steel Works of Kawasaki Steel Co., Ltd. (72) Inventor Akio Sakurai 1-chome of Mizushima Kawasaki Street, Kurashiki City, Okayama Prefecture (without street) Inside the Mizushima Steel Works of Kawasaki Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル系めっき液中へのニッケル原料
の供給方法において、溶解槽内のめっき液を75〜100 ℃
に昇温し、このめっき液中へ粒状あるいは粉状の金属ニ
ッケルを投入し、過酸化水素水を連続的に注入し、攪拌
しながら金属ニッケルを溶解させることを特徴とするニ
ッケル系めっき液中へのニッケル原料の供給方法。
1. A method of supplying a nickel raw material into a nickel-based plating solution, wherein the plating solution in the melting tank is kept at 75 to 100 ° C.
In the nickel-based plating solution, the temperature is raised to 1, the granular or powdery metallic nickel is charged into the plating solution, the hydrogen peroxide solution is continuously injected, and the metallic nickel is dissolved with stirring. Method of supplying nickel raw material to nickel.
【請求項2】 注入する過酸化水素水の濃度が10〜20%
である請求項1に記載のニッケル系めっき液中へのニッ
ケル原料の供給方法。
2. The concentration of hydrogen peroxide water to be injected is 10 to 20%.
The method of supplying a nickel raw material into the nickel-based plating solution according to claim 1.
【請求項3】 注入する過酸化水素水の添加速度をめっ
き液 1m3に対して30〜100 l/hrとした請求項1または2
に記載のニッケル系めっき液中へのニッケル原料の供給
方法。
3. The addition rate of hydrogen peroxide water to be injected is 30 to 100 l / hr per 1 m 3 of plating solution.
The method for supplying a nickel raw material into the nickel-based plating solution according to.
JP23147494A 1994-09-27 1994-09-27 Supplying of nickel material into nickel-base plating solution Pending JPH0892794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23147494A JPH0892794A (en) 1994-09-27 1994-09-27 Supplying of nickel material into nickel-base plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23147494A JPH0892794A (en) 1994-09-27 1994-09-27 Supplying of nickel material into nickel-base plating solution

Publications (1)

Publication Number Publication Date
JPH0892794A true JPH0892794A (en) 1996-04-09

Family

ID=16924066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23147494A Pending JPH0892794A (en) 1994-09-27 1994-09-27 Supplying of nickel material into nickel-base plating solution

Country Status (1)

Country Link
JP (1) JPH0892794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335888A (en) * 1998-05-25 1999-12-07 Hitachi Ltd Plating liquid and plating
WO2023166118A1 (en) * 2022-03-03 2023-09-07 Umicore Continuous process for the oxidative leaching of nickel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335888A (en) * 1998-05-25 1999-12-07 Hitachi Ltd Plating liquid and plating
WO2023166118A1 (en) * 2022-03-03 2023-09-07 Umicore Continuous process for the oxidative leaching of nickel

Similar Documents

Publication Publication Date Title
JPH08501827A (en) Copper electroplating method and apparatus
CN106757149B (en) A method of recycling manganese, lead, silver from electrolytic zinc anode mud
CA2038537C (en) Power assisted dezincing of galvanized steel
Walker Ultrasound improves electrolytic recovery of metals
JPH0892794A (en) Supplying of nickel material into nickel-base plating solution
USRE34191E (en) Process for electroplating metals
US5948140A (en) Method and system for extracting and refining gold from ores
JP2848777B2 (en) Method of supplying nickel raw material into nickel plating solution
JPH0975891A (en) Wet disposal method for iron manufacturing dust
JP4761143B2 (en) Method and apparatus for depositing and recovering copper
JPH07268696A (en) Method for feeding nickel stock into nickel-containing plating solution and device therefor
CA1214748A (en) Process for nickel electroreplenishment for nickel refinery electrolyte
JPH0892795A (en) Supplying of nickel material into nickel-base plating solution
JPH11200099A (en) Plating method and plating apparatus using insoluble anode
JPH11343600A (en) Plating metal dissolving method and dissolving device
JPH0959798A (en) Dissolving method of metal nickel into nickel series zinc plating solution and apparatus therefor
JP2011042820A (en) Method for producing sulfur-containing electrolytic nickel
JPH0959799A (en) Dissolving method of nickel starting material into nickel series zinc plating solution in dissolving tank
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
JPH0428799B2 (en)
JPH07258900A (en) Method for supplying nickel material into nickel-base plating solution and device therefor
US5154806A (en) Process for reducing energy requirements in the electrolytic production of chlorine and sodium hydroxide
JP2959772B2 (en) Adjustment of electrogalvanizing bath
JP3258757B2 (en) Method and apparatus for re-dissolving nickel deposited in plating solution
JPH11343598A (en) Anode chamber installed at insoluble anode, plating method using the same and plating device