JP3258757B2 - Method and apparatus for re-dissolving nickel deposited in plating solution - Google Patents

Method and apparatus for re-dissolving nickel deposited in plating solution

Info

Publication number
JP3258757B2
JP3258757B2 JP10413393A JP10413393A JP3258757B2 JP 3258757 B2 JP3258757 B2 JP 3258757B2 JP 10413393 A JP10413393 A JP 10413393A JP 10413393 A JP10413393 A JP 10413393A JP 3258757 B2 JP3258757 B2 JP 3258757B2
Authority
JP
Japan
Prior art keywords
plating solution
nickel
dissolving
zinc
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10413393A
Other languages
Japanese (ja)
Other versions
JPH06316799A (en
Inventor
浩 中野
薫 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP10413393A priority Critical patent/JP3258757B2/en
Publication of JPH06316799A publication Critical patent/JPH06316799A/en
Application granted granted Critical
Publication of JP3258757B2 publication Critical patent/JP3258757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、不溶性陽極を用いる鋼
帯等の金属帯の連続電気亜鉛ニッケルめっき設備におい
て、消費される金属イオンをめっき液中に補充するに際
して置換析出されるニッケルを再溶解させる方法ならび
にその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous electrolytic zinc-nickel plating facility for a metal strip such as a steel strip using an insoluble anode, and re-uses nickel which is replaced and deposited when replenishing consumed metal ions in a plating solution. The present invention relates to a dissolving method and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、自動車、家電製品等において耐食
性向上の要求が高まり、従来から利用されている亜鉛め
っき鋼板に加えて、最近開発された亜鉛ニッケルめっき
鋼板等の合金めっき鋼板の需要が著しい増加を見せてい
る。こうした需要増に対処するため、高能率生産の可能
な高電流密度による高速めっき法が採用されているが、
高速めっき法においては陽極交換を頻繁に行わねばなら
ない可溶性陽極方式よりも、陽極交換の必要のないイリ
ジウム系等の不溶性陽極を用い、消費される金属イオン
を連続的に補給する方式の方が有利であることはいうま
でもない。
2. Description of the Related Art In recent years, there has been an increasing demand for improved corrosion resistance in automobiles, home electric appliances and the like, and in addition to galvanized steel sheets conventionally used, there has been a remarkable demand for recently developed alloy-coated steel sheets such as zinc-nickel plated steel sheets. Showing an increase. In order to cope with such an increase in demand, a high-speed plating method with a high current density capable of high-efficiency production has been adopted.
In the high-speed plating method, it is more advantageous to use iridium-based insoluble anodes that do not need to be replaced and to continuously replenish the consumed metal ions, rather than the soluble anode method that requires frequent anode replacement. Needless to say,

【0003】めっき液としては通常、硫酸系の電解液が
使用される。また、めっき液中への亜鉛、ニッケル等の
金属イオンの補給方法には、金属亜鉛や金属ニッケルを
直接めっき液に接触させることにより溶解させる方法
と、酸化亜鉛等の金属化合物を溶解させる方法とがあ
る。粉末状の金属化合物を溶解させる方が一見能率的な
ようであるが、このような金属化合物粉は一般に液中に
投入された際、粉体表面に生じる反応熱によって塊状化
(ブロッキング)しやすく、塊状化したものはほとんど
溶解しないという欠点があるため、粒状、あるいは塊状
の金属亜鉛や金属ニッケルを直接溶解させる方法が採用
される場合も多い。
As a plating solution, a sulfuric acid-based electrolytic solution is usually used. Further, a method for replenishing metal ions such as zinc and nickel into the plating solution includes a method in which metal zinc or nickel is dissolved by directly contacting the plating solution, and a method in which a metal compound such as zinc oxide is dissolved. There is. At first glance, it seems to be more efficient to dissolve the powdered metal compound, but such metal compound powder generally tends to block (block) due to the heat of reaction generated on the powder surface when poured into a liquid. However, a method of directly dissolving granular or massive metallic zinc or metallic nickel is often adopted because of the disadvantage that the agglomerated material hardly dissolves.

【0004】ところで、ニッケルイオンの存在している
めっき液中に金属亜鉛を溶解させようとすると、亜鉛に
対してニッケルが貴であるから、亜鉛に代わってニッケ
ルが析出するという現象が生じる。析出したニッケルは
めっきに寄与しないから、析出分だけニッケルの原単位
が悪化し、また、金属亜鉛の表面にニッケルが析出する
と亜鉛の溶解速度が低下し、さらに析出ニッケルが被め
っき材の表面に付着して押し疵などの品質不良を招くと
いう問題点があった。
[0004] When dissolving metallic zinc in a plating solution in which nickel ions are present, since nickel is noble relative to zinc, a phenomenon occurs in which nickel is deposited instead of zinc. Precipitated nickel does not contribute to plating, so the nickel basic unit deteriorates by the amount of precipitation, and when nickel precipitates on the surface of metallic zinc, the dissolution rate of zinc decreases, and the precipitated nickel further deposits on the surface of the material to be plated. There is a problem in that it causes poor quality such as press flaws due to adhesion.

【0005】ニッケルの析出を防止する方法としては、
硫酸等を加えてめっき液のpHを下げる方法、あるいは
特開昭63−238300号公報に見られるようにめっき液中に
コバルト、モリブデン等の添加物を混入する方法などが
あるが、めっき液のpHを下げる方法では肝心の電気め
っき処理におけるめっき電流効率が低下するという難点
があり、また一旦下げたpHを再び上昇させようとして
も困難である。また、添加物を混入する方法ではその濃
度を管理することの困難に加え、めっき液中に他の金属
元素を添加することのめっき製品への影響が懸念される
という新たな問題点がある。
[0005] As a method of preventing nickel deposition,
There is a method of lowering the pH of the plating solution by adding sulfuric acid or the like, or a method of mixing additives such as cobalt and molybdenum into the plating solution as disclosed in JP-A-63-238300. The method of lowering the pH has the disadvantage that the plating current efficiency in the electroplating process that is essential is reduced, and it is difficult to raise the pH once lowered again. In addition, the method of mixing additives has a new problem that, in addition to the difficulty of controlling the concentration, there is a concern that addition of another metal element to the plating solution may affect plated products.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解消し、きわめて容易でかつ確実な手段によ
って析出ニッケルの再溶解を図る方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for re-dissolving deposited nickel by extremely easy and reliable means.

【0007】[0007]

【課題を解決するための手段】本発明のめっき液中の析
出ニッケルの溶解方法は、不溶性陽極を用いる金属帯の
連続電気亜鉛ニッケルめっき設備において、めっき液中
へ金属亜鉛を溶解させて亜鉛イオンを補充する際に置換
析出されるニッケルをめっき液循環経路から固液分離手
段により分離し、酸化剤を添加しためっき液中で攪拌し
て再溶解させることを特徴とする。
According to the present invention, there is provided a method for dissolving precipitated nickel in a plating solution, which comprises dissolving metallic zinc into a plating solution in a continuous zinc electroplating equipment for a metal strip using an insoluble anode. The nickel is replaced and separated from the plating solution circulation path by solid-liquid separation means when replenishing, and is redissolved by stirring in the plating solution to which an oxidizing agent is added.

【0008】また、本発明のめっき液中の析出ニッケル
の再溶解装置は、不溶性陽極を用いる金属帯の連続電気
亜鉛ニッケルめっき設備において、めっき液中へ金属亜
鉛を溶解させて亜鉛イオンを補充する溶解槽とめっき液
循環タンクとを結ぶ配管で構成される循環経路内からめ
っき液中に析出したニッケルを分離する固液分離手段
と、分離した析出ニッケルを移送する移送手段と、移送
された析出ニッケルを再溶解させる攪拌装置を備えた再
溶解槽と、この再溶解槽内のめっき液中へ酸化剤を供給
する酸化剤供給手段と、再溶解したニッケルをふくむめ
っき液を前記循環経路内へ戻す戻し手段とからなること
を特徴とする。
Further, the apparatus for re-dissolving nickel deposited in a plating solution according to the present invention replenishes zinc ions by dissolving metallic zinc in the plating solution in a continuous electro-zinc nickel plating facility for a metal strip using an insoluble anode. Solid-liquid separation means for separating nickel precipitated in the plating solution from a circulation path formed by a pipe connecting the dissolution tank and the plating solution circulation tank, a transfer means for transferring the separated precipitated nickel, and a transferred precipitate A re-dissolving tank provided with a stirring device for re-dissolving nickel, an oxidizing agent supply means for supplying an oxidizing agent to the plating solution in the re-dissolving tank, and a plating solution containing the re-dissolved nickel into the circulation path. And returning means for returning.

【0009】[0009]

【作 用】前記したように、めっき液中に金属亜鉛を溶
解させると、亜鉛がイオン化すると同時にニッケルが電
荷を失って析出する。すなわち、 Zn + Ni2+ → Zn2+ + Ni の反応が起こる。析出したニッケルは微細なため通常の
フィルタでは捕捉することが困難であるが、比重差を利
用して沈静槽で分離するか、磁性体であることを利用し
てマグネットセパレータ等によって分離することができ
る。分離したニッケルを、スラリポンプで再溶解槽に送
り、めっき液中に酸化剤を添加したものの中に投入する
と、酸化剤の作用によって溶解が促進される。
[Operation] As described above, when zinc metal is dissolved in a plating solution, zinc is ionized and nickel loses electric charge and precipitates. That is, a reaction of Zn + Ni2 + → Zn2 ++ Ni occurs. The precipitated nickel is so fine that it is difficult to catch it with a normal filter.However, it can be separated in a sedimentation tank using the specific gravity difference, or it can be separated using a magnetic separator, etc. it can. When the separated nickel is sent to a re-melting tank by a slurry pump and put into a plating solution to which an oxidizing agent has been added, dissolution is promoted by the action of the oxidizing agent.

【0010】亜鉛イオン 35g/l 、ニッケルイオン 65g
/l 、pH 1.7のめっき液を図2に示す実験装置内を循
環させて溶解速度を測定した。pH調整は硫酸で行い、
液の温度は50±2 ℃に管理した。図2において1は亜鉛
溶解槽、2は循環タンク、3は亜鉛溶解槽送りポンプ、
4はバルブ、5は流量計、6は亜鉛溶解槽出側配管、7
は循環タンク行き配管、8は亜鉛溶解槽行き配管、10は
固液分離手段でここではマグネットセパレータである。
[0010] Zinc ion 35g / l, nickel ion 65g
The plating solution having a pH of 1.7 / l and a pH of 1.7 was circulated in the experimental apparatus shown in FIG. 2 to measure the dissolution rate. Adjust the pH with sulfuric acid,
The temperature of the solution was controlled at 50 ± 2 ° C. In FIG. 2, 1 is a zinc dissolving tank, 2 is a circulation tank, 3 is a zinc dissolving tank feed pump,
4 is a valve, 5 is a flow meter, 6 is a zinc dissolution tank outlet pipe, 7
Is a pipe going to a circulation tank, 8 is a pipe going to a zinc dissolving tank, and 10 is a solid-liquid separation means, here a magnet separator.

【0011】亜鉛溶解槽1に 300mmの厚みに亜鉛粒Znを
充填し、流速 2.0cm/秒でめっき液を通液させながら1
時間毎に亜鉛粒Znを補充し、合計 8時間の総補充量を溶
解量と見なして溶解速度を算出した。ついで、固液分離
装置10で分離した析出ニッケルを一定量(たとえば 5リ
ットル)のめっき液中に投入し、攪拌しながら一定時間
(たとえば 3分間)溶解させ、液を濾過して未溶解分の
重量を測定することにより溶解速度を測定した。そし
て、酸化剤を添加しないめっき液のみで溶解させた場合
と、めっき液中に空気、酸素ガス、過酸化水素水を添加
した場合との溶解速度の違いを比較した。酸化剤を添加
しない場合のめっき液に対する溶解速度を1とすると、
空気をめっき液に対し大気圧換算 5ml/l の割合で吹き
込んだ場合、ならびに同じく酸素ガスをめっき液に対し
5ml/l の割合で吹き込んだ場合の析出ニッケルの溶解
速度はいずれも 1.3、35%H2O2水を 0.5g /l の割合で
添加した場合の溶解速度は 1.5で、30〜50%の溶解速度
の向上が見られた。
A zinc dissolving tank 1 is filled with zinc particles Zn to a thickness of 300 mm, and a zinc solution Zn is passed through the plating solution at a flow rate of 2.0 cm / sec.
Zinc particles Zn were replenished every hour, and the dissolution rate was calculated by regarding the total replenishment for a total of 8 hours as the dissolution amount. Next, the precipitated nickel separated by the solid-liquid separator 10 is poured into a fixed amount (for example, 5 liters) of a plating solution, and dissolved for a certain time (for example, 3 minutes) with stirring. The dissolution rate was measured by weighing. Then, the difference in the dissolution rate between the case where the plating solution was dissolved only with no oxidizing agent and the case where air, oxygen gas and hydrogen peroxide solution were added to the plating solution was compared. Assuming that the dissolution rate in the plating solution when the oxidizing agent is not added is 1,
When air is blown into the plating solution at a rate of 5 ml / l in terms of atmospheric pressure, and oxygen gas is also applied to the plating solution.
The dissolution rate of precipitated nickel when blowing at a rate of 5 ml / l was 1.3, and the dissolution rate when 35% H 2 O 2 water was added at a rate of 0.5 g / l was 1.5, which was 30 to 50%. The dissolution rate was improved.

【0012】[0012]

【実施例】本発明の一実施例である鋼帯の連続電気亜鉛
ニッケルめっきラインの一部の構成図を図1に示す。さ
きの図2と同一のものについては同じ符号を使用した。
10は固液分離手段でこの実施例では沈静槽、11はスラリ
ポンプ、12は再溶解槽、13は攪拌機、14は戻しポンプ、
15は酸化剤供給手段、16は酸化剤供給源、17は送気ポン
プ、18は流量計、19はニッケル溶解槽行き配管、20はニ
ッケル溶解槽送りポンプ、21はニッケル供給装置、22は
ニッケル溶解槽、23は攪拌機、24は戻しポンプ、25は循
環タンク行き配管である。ニッケルは炭酸ニッケル(Ni
CO3)の形でめっき液に投入され、ニッケル溶解槽22から
循環タンク2に供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing a part of a steel strip continuous electric zinc nickel plating line according to an embodiment of the present invention. The same reference numerals are used for the same components as those in FIG.
10 is a solid-liquid separation means, in this embodiment a settling tank, 11 is a slurry pump, 12 is a re-dissolution tank, 13 is a stirrer, 14 is a return pump,
15 is an oxidant supply means, 16 is an oxidant supply source, 17 is an air supply pump, 18 is a flow meter, 19 is a pipe going to a nickel melting tank, 20 is a nickel melting tank feed pump, 21 is a nickel supply device, and 22 is nickel. A dissolution tank, 23 is a stirrer, 24 is a return pump, and 25 is piping to a circulation tank. Nickel is nickel carbonate (Ni
CO 3 ) is supplied to the plating solution and supplied from the nickel dissolution tank 22 to the circulation tank 2.

【0013】この実施例では酸化剤として酸素ガスを使
用し、亜鉛溶解槽出側配管6と循環タンク行き配管7の
途中に、固液分離手段10を設け、めっき液中の固体成分
である析出ニッケルを分離し、分離した析出ニッケルを
スラリポンプ11で再溶解槽12へ送るように構成した。再
溶解槽12は攪拌機13を備え、また、酸化剤供給源16(こ
の場合酸素タンク)、送気ポンプ17、流量計18よりなる
酸化剤供給手段15が付設されており、槽内のめっき液中
に酸素ガスが吹き込まれる。イオン化して再溶解したニ
ッケルを含むめっき液は戻しポンプ14によって循環タン
ク2に戻入される。
In this embodiment, an oxygen gas is used as an oxidizing agent, and a solid-liquid separation means 10 is provided in the middle of the pipe 6 on the outlet side of the zinc dissolution tank and the pipe 7 going to the circulation tank, so that a solid component in the plating solution is deposited. The nickel was separated, and the separated precipitated nickel was sent to the remelting tank 12 by the slurry pump 11. The re-dissolving tank 12 is provided with a stirrer 13 and further provided with an oxidizing agent supply means 16 including an oxidizing agent supply source 16 (in this case, an oxygen tank), an air supply pump 17 and a flow meter 18. Oxygen gas is blown into it. The plating solution containing nickel which has been ionized and redissolved is returned to the circulation tank 2 by the return pump 14.

【0014】本発明の酸化剤供給手段において使用する
酸化剤としては空気、酸素ガスなどの気体、過酸化水素
水などの液体のほか粉末状の固体酸化剤も使用できる
が、めっき液中に添加するものであるから、めっきに対
して品質上の悪影響を持たないものであることが重要で
ある。気体を使用した場合、バブリングによる攪拌効果
も期待できる。
The oxidizing agent used in the oxidizing agent supply means of the present invention may be a gas such as air or oxygen gas, a liquid such as hydrogen peroxide solution, or a powdered solid oxidizing agent. Therefore, it is important that the plating has no adverse effect on quality. When gas is used, a stirring effect by bubbling can be expected.

【0015】固液分離手段10としては、前記した沈静槽
やマグネットセパレータのほか、サイクロンやメッシュ
の高いフィルタなどがある。また、固液分離手段10を設
ける位置としては、溶解槽1と循環タンク2とを結ぶ配
管6、7の中間がもっとも適当であるが、他の位置でも
よい。再溶解したニッケルを含むめっき液を戻す位置も
めっき液の循環経路内であれば特に限定しないが、たと
えば循環タンクに直接落下させて戻す構造の場合は、戻
し手段14としてはごく簡単な樋などを設ければよく、ポ
ンプや配管などを必要としない。
The solid-liquid separating means 10 includes a cyclone and a filter with a high mesh in addition to the above-mentioned settling tank and magnet separator. The position where the solid-liquid separation means 10 is provided is most suitable in the middle of the pipes 6 and 7 connecting the dissolution tank 1 and the circulation tank 2, but may be another position. The position at which the plating solution containing the re-dissolved nickel is returned is not particularly limited as long as it is within the circulation path of the plating solution. For example, in the case of a structure in which the plating solution is directly dropped into the circulation tank and returned, the return means 14 may be a very simple gutter. , And no pump or piping is required.

【0016】[0016]

【発明の効果】本発明によれば、析出ニッケルの再溶解
が図られることによってニッケル原単位の低下が防止さ
れるとともに、析出ニッケルが被めっき材の表面に付着
して生じる押し疵の発生が防止されて、不溶性陽極を用
いる連続電気めっきの生産性ならびに品質がが向上する
という、すぐれた効果を奏する。
According to the present invention, the re-dissolution of the deposited nickel prevents the reduction of the nickel basic unit, and the occurrence of the pressing flaw caused by the deposited nickel adhering to the surface of the material to be plated. This has the excellent effect of improving the productivity and quality of continuous electroplating using an insoluble anode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の効果を試験する実験装置の構成図であ
る。
FIG. 2 is a configuration diagram of an experimental device for testing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 亜鉛溶解槽 2 循環タンク 3 亜鉛溶解槽送りポンプ 4 バルブ 5 流量計 6 亜鉛溶解槽出側配管 7 循環タンク行き配管 8 亜鉛溶解槽行き配管 10 固液分離手段 11 スラリポンプ 12 再溶解槽 13 攪拌機 14 戻しポンプ 15 酸化剤供給手段 16 酸化剤供給源 17 送気ポンプ 18 流量計 19 ニッケル溶解槽行き配管 20 ニッケル溶解槽送りポンプ 21 ニッケル供給装置 22 ニッケル溶解槽 23 攪拌機 24 戻しポンプ 25 循環タンク行き配管 DESCRIPTION OF SYMBOLS 1 Zinc dissolution tank 2 Circulation tank 3 Zinc dissolution tank feed pump 4 Valve 5 Flowmeter 6 Zinc dissolution tank outlet pipe 7 Pipe to circulation tank 8 Pipe to zinc dissolution tank 10 Solid-liquid separation means 11 Slurry pump 12 Re-dissolution tank 13 Stirrer 14 Return pump 15 Oxidant supply means 16 Oxidant supply source 17 Air supply pump 18 Flow meter 19 Pipe for nickel dissolution tank 20 Nickel dissolution tank feed pump 21 Nickel supply device 22 Nickel dissolution tank 23 Stirrer 24 Return pump 25 Pipe for circulation tank

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25D 21/14 C25D 3/56 C25D 21/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C25D 21/14 C25D 3/56 C25D 21/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不溶性陽極を用いる金属帯の連続電気亜
鉛ニッケルめっき設備において、めっき液中へ金属亜鉛
を溶解させて亜鉛イオンを補充する際に置換析出される
ニッケルをめっき液循環経路から固液分離手段により分
離し、酸化剤を添加しためっき液中で攪拌して再溶解さ
せることを特徴とするめっき液中の析出ニッケルの再溶
解方法。
In a continuous electro-zinc nickel plating equipment for a metal strip using an insoluble anode, nickel which is displaced and precipitated when metal zinc is dissolved in a plating solution to replenish zinc ions is passed through a plating solution circulating route. A method for re-dissolving precipitated nickel in a plating solution, wherein the nickel is separated by a separating means and redissolved by stirring in a plating solution to which an oxidizing agent has been added.
【請求項2】 めっき液中への酸化剤の添加が、空気ま
たは酸素ガスのめっき液中への吹き込みである請求項1
記載のめっき液中の析出ニッケルの再溶解方法。
2. The method according to claim 1, wherein the oxidizing agent is added to the plating solution by blowing air or oxygen gas into the plating solution.
A method for re-dissolving precipitated nickel in a plating solution as described above.
【請求項3】 めっき液中への酸化剤の添加が、過酸化
水素水のめっき液中への添加である請求項1記載のめっ
き液中の析出ニッケルの再溶解方法。
3. The method according to claim 1, wherein the addition of the oxidizing agent to the plating solution is an addition of a hydrogen peroxide solution to the plating solution.
【請求項4】 不溶性陽極を用いる金属帯の連続電気亜
鉛ニッケルめっき設備において、めっき液中へ金属亜鉛
を溶解させて亜鉛イオンを補充する溶解槽(1)とめっ
き液循環タンク(2)とを結ぶ配管(6、7、8)で構
成される循環経路内からめっき液中に析出したニッケル
を分離する固液分離手段(10)と、分離した析出ニッケ
ルを移送する移送手段(11)と、移送された析出ニッケ
ルをめっき液に再溶解させる攪拌装置(13)を備えた再
溶解槽(12)と、この再溶解槽(12)内のめっき液中へ
酸化剤を供給する酸化剤供給手段(15)と、再溶解した
ニッケルを含むめっき液を前記循環経路内へ戻す戻し手
段(14)とからなることを特徴とするめっき液中の析出
ニッケルの再溶解装置。
4. A continuous electro-zinc nickel plating facility for a metal strip using an insoluble anode, comprising a dissolving tank (1) for dissolving metallic zinc in a plating solution to replenish zinc ions and a plating solution circulation tank (2). Solid-liquid separation means (10) for separating nickel precipitated in the plating solution from within a circulation path composed of connecting pipes (6, 7, 8), and transfer means (11) for transferring the separated precipitated nickel; A re-dissolving tank (12) provided with a stirrer (13) for re-dissolving the transferred deposited nickel in the plating solution, and an oxidizing agent supplying means for supplying an oxidizing agent to the plating solution in the re-dissolving tank (12) (15) An apparatus for re-dissolving nickel deposited in a plating solution, comprising: a return means (14) for returning a plating solution containing re-dissolved nickel into the circulation path.
JP10413393A 1993-04-30 1993-04-30 Method and apparatus for re-dissolving nickel deposited in plating solution Expired - Fee Related JP3258757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10413393A JP3258757B2 (en) 1993-04-30 1993-04-30 Method and apparatus for re-dissolving nickel deposited in plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10413393A JP3258757B2 (en) 1993-04-30 1993-04-30 Method and apparatus for re-dissolving nickel deposited in plating solution

Publications (2)

Publication Number Publication Date
JPH06316799A JPH06316799A (en) 1994-11-15
JP3258757B2 true JP3258757B2 (en) 2002-02-18

Family

ID=14372613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10413393A Expired - Fee Related JP3258757B2 (en) 1993-04-30 1993-04-30 Method and apparatus for re-dissolving nickel deposited in plating solution

Country Status (1)

Country Link
JP (1) JP3258757B2 (en)

Also Published As

Publication number Publication date
JPH06316799A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US8920623B2 (en) Method for replenishing tin and its alloying metals in electrolyte solutions
US8221598B2 (en) System for plating
TW200303938A (en) Electroplating solution containing organic acid complexing agent
JP3258757B2 (en) Method and apparatus for re-dissolving nickel deposited in plating solution
JP3176794B2 (en) Method and apparatus for supplying nickel raw material into nickel-based plating solution
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JP2905426B2 (en) Method and apparatus for dissolving metallic nickel in nickel-based zinc plating solution
JP2848777B2 (en) Method of supplying nickel raw material into nickel plating solution
JPH06316795A (en) Method and device for feeding metal ion into plating liquid
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
JP3258752B2 (en) Method and apparatus for recovering nickel mixed in plating solution
JPS5941488A (en) Method for automatically controlling concentration of ferrous electroplating bath
EP4317537A1 (en) Method for removing ferric ions from sulfate-based iron electroplating solution
JPH11343598A (en) Anode chamber installed at insoluble anode, plating method using the same and plating device
JPH11343600A (en) Plating metal dissolving method and dissolving device
JP3017067B2 (en) Method and equipment for supplying nickel ions to plating solution
JPS5893888A (en) Supplying method for metallic ion in electroplating
JPH10204674A (en) Iron electroplating solution
JP3082985B2 (en) Continuous electroplating equipment
JPS627900A (en) Method for supplying zinc ion to galvanizing bath
JPH0310713B2 (en)
JP2010150606A (en) Electrolytic regeneration type electroless tin plating method
JPH07258900A (en) Method for supplying nickel material into nickel-base plating solution and device therefor
JPS5813639B2 (en) Electric plating method
JP2003073899A (en) Method for supplying zinc ions to plating liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees