JPH0892714A - Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production - Google Patents

Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production

Info

Publication number
JPH0892714A
JPH0892714A JP28438394A JP28438394A JPH0892714A JP H0892714 A JPH0892714 A JP H0892714A JP 28438394 A JP28438394 A JP 28438394A JP 28438394 A JP28438394 A JP 28438394A JP H0892714 A JPH0892714 A JP H0892714A
Authority
JP
Japan
Prior art keywords
steel sheet
phase
plating layer
chemical conversion
electrodeposition coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28438394A
Other languages
Japanese (ja)
Inventor
Shigeru Unno
野 茂 海
Takashi Iwama
間 隆 史 岩
Chiaki Kato
藤 千 昭 加
Hideo Takamura
村 日出夫 高
Kazuo Mochizuki
月 一 雄 望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28438394A priority Critical patent/JPH0892714A/en
Publication of JPH0892714A publication Critical patent/JPH0892714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE: To improve the chemical convertibility and electrodeposition coating properties of a steel sheet by specifying the compsn. of a Zn-Fe-Al alloy plating layer to be applied to the steel sheet and the coating weight and a ζ phase on the surface of the plating. CONSTITUTION: The compsn. of a plating layer on a galvannealed steel sheet is composed of, by weight, 7 to 13% Fe, <=0.40% Al, and the balance Zn. A ζphases is made present on the surface of the plating layer by >=1.0% surface coating ratio and the coating weight is regulated to >=20g/m<2> . The plating layer is provided at least one side of the steel sheet. Furthermore, after the steel sheet is galvanized by the same galvanizing bath, preferably, the plated steel sheet is heated to about 480 to 600 deg.C at about <=20 deg.C/sec temp. rising rate and is alloyed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築材料や、自動車車
体用などに用いられる合金化溶融亜鉛めっき鋼板に関す
るもので、特に、自動車車体の製造時における化成処理
性および電着塗装性の優れた合金化溶融亜鉛めっき鋼板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a construction material and an alloyed hot-dip galvanized steel sheet used for automobile bodies and the like, and particularly excellent in chemical conversion treatability and electrodeposition coating property during production of automobile bodies. Alloyed hot-dip galvanized steel sheet.

【0002】[0002]

【従来の技術】一般に、合金化溶融亜鉛めっき鋼板は、
鋼板に溶融亜鉛めっきを施した後、合金化炉でZnの融
点以上に加熱して、めっき層をFeとZnの合金、すな
わち鋼板側から、Γ、δ1 、ζの各相からなる合金相と
したものである。この合金化溶融亜鉛めっき鋼板は、優
れた塗装後耐食性および溶接性を兼備しているため、従
来より建築材料として使用され、また、最近では、自動
車車体用材料として使用すべく、種々の検討が行われて
いる。
2. Description of the Related Art Generally, galvannealed steel sheets are
After hot-dip galvanizing a steel sheet, it is heated to a temperature not lower than the melting point of Zn in an alloying furnace, and the plating layer is an alloy of Fe and Zn, that is, an alloy phase consisting of Γ, δ 1 , and ζ phases from the steel sheet side. It is what Since this alloyed hot-dip galvanized steel sheet has both excellent post-painting corrosion resistance and weldability, it has been conventionally used as a building material, and recently, various studies have been conducted to use it as a material for automobile bodies. Has been done.

【0003】自動車車体外面に合金化溶融亜鉛めっき鋼
板が適用される場合、耐食性の他に、加工性(耐剥離
性)、塗装前処理としての化成処理性やカチオン電着塗
装性が重要である。合金化溶融亜鉛めっきの耐剥離性が
悪いと、プレス成形時に押し傷を発生させるため、合金
層の相構成を制御することによって、耐剥離性を向上さ
せる方法が知られ、特公平3−55544号公報にΓ
相、ζ相の生成を抑制する技術が開示されている。ま
た、合金化溶融亜鉛めっき鋼板の化成処理が悪いと化成
処理のむらができ、また、カチオン電着塗装性が悪いと
電着塗装時にクレーター状の塗装欠陥を生じる。化成処
理および電着塗装時に生じた欠陥は、上塗り後も外観に
残り、補修の必要があり、また、耐食性も劣化させ、商
品価値を低下させる。
When an alloyed hot-dip galvanized steel sheet is applied to the outer surface of an automobile body, in addition to corrosion resistance, workability (peeling resistance), chemical conversion treatment as pretreatment for coating, and cationic electrodeposition coating property are important. . If the peel resistance of the alloyed hot-dip galvanization is poor, pressing scratches will occur during press forming. Therefore, a method of improving the peel resistance by controlling the phase constitution of the alloy layer is known, and is disclosed in Japanese Patent Publication No. 3-55544. In the gazette
A technique for suppressing the generation of the phase and the ζ phase is disclosed. Further, if the galvannealed steel sheet has poor chemical conversion treatment, the chemical conversion treatment may be uneven, and if the cationic electrodeposition coating property is poor, crater-like coating defects may occur during electrodeposition coating. Defects that occur during chemical conversion treatment and electrodeposition coating remain in appearance even after overcoating, require repair, and also deteriorate corrosion resistance, reducing the commercial value.

【0004】[0004]

【発明が解決しようとする課題】このため、化成処理性
および電着塗装性を改善する技術として、特公昭58−
15554号公報に、合金化溶融亜鉛めっき上にZn4
0%以下のZn−Feめっき層を形成する技術が開示さ
れている。しかしながら、合金化溶融亜鉛めっき上にZ
n40%以下のZn−Feめっき層を形成するには、上
層のZn40%以下のZn−Feめっき層を電気めっき
によって付着させる必要があり、設備費および製造コス
トの上昇が問題であった。本発明では、従来技術ではコ
スト上昇なしに得ることが困難であった化成処理性およ
びカチオン電着塗装性の良好な合金化溶融亜鉛めっき鋼
板およびその製造方法を提供することを目的とする。
Therefore, as a technique for improving the chemical conversion treatment property and the electrodeposition coating property, Japanese Patent Publication No. S58-58-
No. 15554, Zn4 on alloyed hot dip galvanized
A technique for forming a Zn-Fe plated layer of 0% or less is disclosed. However, Z on the galvannealing
In order to form a Zn-Fe plated layer of n40% or less, it is necessary to adhere an upper Zn-Fe plated layer of Zn40% or less by electroplating, which raises a problem of increase in equipment cost and manufacturing cost. It is an object of the present invention to provide an alloyed hot-dip galvanized steel sheet having good chemical conversion treatability and cationic electrodeposition coating property, which were difficult to obtain without increasing costs in the prior art, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、め
っき層組成が;Fe:7〜13wt%、好ましくは9〜
11wt%;Al:0.40wt%以下、好ましくは、
0.10〜0.40wt%;残部Znからなり;めっき
表面にζ相が表面被覆率で1.0%以上、好ましくは1
0.0〜30.0%;めっき付着量が20g/m2 以上
のめっき層を少なくとも片面に有する化成処理性および
カチオン電着塗装性に優れた合金化溶融亜鉛めっき鋼板
である。
That is, in the present invention, the plating layer composition is: Fe: 7 to 13 wt%, preferably 9 to
11 wt%; Al: 0.40 wt% or less, preferably
0.10 to 0.40 wt%; balance Zn; surface coverage of ζ phase is 1.0% or more, preferably 1
0.0 to 30.0%; an alloyed hot dip galvanized steel sheet having a plating layer having a coating weight of 20 g / m 2 or more on at least one surface and having excellent chemical conversion treatment property and cationic electrodeposition coating property.

【0006】また、本発明は、めっき層組成が;Fe:
7〜13wt%、好ましくは9〜11wt%;Al:
0.40wt%以下、好ましくは0.10〜0.40w
t%;残部Znからなり;めっき層中に下記式[1]で
規定されるX線回折強度比I(ζ)で、0.3以上、好
ましくは0.3〜0.8のζ相を有し、めっき付着量が
20g/m2 以上のめっき層を少なくとも片面に有する
化成処理性およびカチオン電着塗装性に優れた合金化溶
融亜鉛めっき鋼板である。 I(ζ)=ζ/(ζ+δ1 +Γ+Γ1 ) ・・・・・・式[1] 但し、式[1]で、ζ、δ1 、Γ、Γ1 は、それぞれ次
の格子間距離(d)で測定されるX線回折強度である。 ζ;d=0.2056nm δ1 ;d=0.213
6nm Γ;d=0.1915nm Γ1 ;d=0.131
5nm
In the present invention, the plating layer composition is; Fe:
7 to 13 wt%, preferably 9 to 11 wt%; Al:
0.40 wt% or less, preferably 0.10 to 0.40 w
t%; balance Zn; 0.3% or more, preferably 0.3 to 0.8, of the ζ phase in the plating layer in the X-ray diffraction intensity ratio I (ζ) defined by the following formula [1] It is a galvannealed steel sheet having a coating layer having a coating weight of 20 g / m 2 or more on at least one surface and having excellent chemical conversion treatment property and cationic electrodeposition coating property. I (ζ) = ζ / (ζ + δ 1 + Γ + Γ 1 ) Equation (1) However, in equation [1], ζ, δ 1 , Γ, and Γ 1 are respectively the following interstitial distances (d ) Is the X-ray diffraction intensity measured by the method. ζ; d = 0.2056 nm δ 1 ; d = 0.213
6 nm Γ; d = 0.915 nm Γ 1 ; d = 0.131
5 nm

【0007】さらに、本発明は、Al濃度0.145w
t%以下、好ましくは0.120〜0.145wt%以
下の溶融亜鉛めっき浴で、鋼板に溶融亜鉛めっきを施し
た後;該めっき鋼板を昇温速度20℃/sec以下、好
ましくは5〜20℃/secで;480〜600℃、好
ましくは490〜560℃に加熱し、合金化することを
特徴とする化成処理性およびカチオン電着塗装性に優れ
た合金化溶融亜鉛めっき鋼板の製造方法である。
Further, according to the present invention, the Al concentration is 0.145 w.
After galvanizing the steel sheet in a hot dip galvanizing bath of t% or less, preferably 0.120 to 0.145 wt% or less; the temperature of the galvanized steel sheet is raised at a rate of 20 ° C./sec or less, preferably 5 to 20. C./sec; by heating to 480 to 600.degree. C., preferably 490 to 560.degree. C., and alloying, a method for producing an alloyed hot-dip galvanized steel sheet excellent in chemical conversion treatment property and cationic electrodeposition coating property. is there.

【0008】[0008]

【作用】以下に本発明を具体的に説明する。本発明の発
明者らは、合金化溶融亜鉛めっき鋼板の化成処理性およ
び電着塗装性とめっき層中のFe、Al含有率および相
構成の関係を調査し、次の知見を得るとともに、本発明
を完成するに至った。
The present invention will be described in detail below. The inventors of the present invention investigated the relationship between the chemical conversion treatability and electrodeposition coatability of the alloyed hot-dip galvanized steel sheet, and the Fe and Al contents in the plating layer and the phase constitution, and obtained the following findings. The invention was completed.

【0009】本発明においてめっき層中のFeの含有率
を7〜13wt%としたのは、Fe含有率が7wt%未
満ではZn−η相が残存しやすく塗装後耐食性が劣化す
るためで、13wt%を越えると化成処理の均一性が劣
化しおよび電着塗装時クレーターの発生(クレータリン
グ)が起こるとともに、犠牲防食性の低下による塗装後
の耐食性も著しくなる。より好ましくは、9〜11wt
%である。
In the present invention, the Fe content in the plating layer is set to 7 to 13 wt%, because if the Fe content is less than 7 wt%, the Zn-η phase tends to remain and the corrosion resistance after coating deteriorates. If it exceeds%, the uniformity of chemical conversion treatment deteriorates and craters occur during electrodeposition coating (cratering), and the sacrificial corrosion resistance deteriorates, resulting in significant corrosion resistance after coating. More preferably, 9 to 11 wt
%.

【0010】めっき層中のAl含有率を0.40wt%
以下としたのは、Al含有率が0.40wt%を超える
と化成処理の均一性が劣化して化成処理むらができやす
く、電着塗装時にクレーターが発生しやすくなる。ま
た、耐剥離性を確保するために0.10wt%以上が必
要とされるため、好ましくは、0.10〜0.40wt
%、より好ましくは、0.20〜0.30wt%であ
る。
The Al content in the plating layer is 0.40 wt%
The reason for the following is that if the Al content exceeds 0.40 wt%, the uniformity of the chemical conversion treatment deteriorates, uneven chemical conversion treatment is likely to occur, and craters are likely to occur during electrodeposition coating. Further, 0.10 wt% or more is required to secure the peel resistance, and therefore, it is preferably 0.10 to 0.40 wt.
%, And more preferably 0.20 to 0.30 wt%.

【0011】ζ相の量を表面被覆率で1.0%以上とし
たのは、1.0%未満では化成処理時に処理むらが発生
しやすく、また同時に電着塗装時にクレーター欠陥が発
生しやすくなるためである。また、ζ相が表面被覆率で
30.0%を超えると、それ以上の化成処理性、耐クレ
ータリング性の改善はないが、η相が残存する場合が生
じ、耐食性が劣化し好ましくない。より好ましくは、1
0.0〜30.0%である。ここで、ζ相の表面被覆率
とは、亜鉛めっき表面にζ相が存在する面積率をいい、
実施例で後述するようにめっき層の表面を電子顕微鏡を
用いて観察し、結晶形態よりζ相の面積率を算出するも
のである。
The amount of the ζ phase is set to 1.0% or more in terms of the surface coverage, because if it is less than 1.0%, uneven treatment is likely to occur during chemical conversion treatment, and at the same time crater defects are likely to occur during electrodeposition coating. This is because On the other hand, if the ζ phase has a surface coverage of more than 30.0%, there is no further improvement in chemical conversion treatment and cratering resistance, but the η phase may remain and corrosion resistance deteriorates, which is not preferable. More preferably 1
It is 0.0 to 30.0%. Here, the surface coverage of the ζ phase means the area ratio in which the ζ phase exists on the galvanized surface,
As described later in Examples, the surface of the plating layer is observed using an electron microscope, and the area ratio of the ζ phase is calculated from the crystal morphology.

【0012】また、本発明の発明者らは、表面被覆率に
代わるより簡便なζ相量の測定方法として、X線回折法
による回折強度比によるζ相の定量を検討し以下の知見
を得た。ζ相の量を定量する方法としては、X線回折法
や電気化学的手法を用いる場合があるが、最表面のζ相
の量を測定するには、鋼板の表面を電子顕微鏡を用いて
観察し、スキンパスのあたっていない部分でδ1 相(粒
状)とζ相(柱状)の結晶形態で分類し、それぞれの被
覆面積を算出する方法が有効である。図1に、本発明の
発明者らの知見による下記式[1]で規定したζ相X線
回折強度比I(ζ)とクレータ発生個数(個/cm2
との関係を示す。
Further, the inventors of the present invention have studied the quantitative determination of the ζ phase by the diffraction intensity ratio by the X-ray diffraction method as a simpler method for measuring the ζ phase amount instead of the surface coverage, and obtained the following findings. It was X-ray diffraction method or electrochemical method may be used to quantify the amount of ζ phase, but to measure the amount of ζ phase on the outermost surface, the surface of the steel sheet is observed with an electron microscope. However, it is effective to classify the crystal forms of the δ 1 phase (granular) and the ζ phase (columnar) in the part where the skin path is not applied, and calculate the respective covered areas. FIG. 1 shows the ζ-phase X-ray diffraction intensity ratio I (ζ) defined by the following formula [1] and the number of craters generated (pieces / cm 2 ) according to the knowledge of the inventors of the present invention.
Shows the relationship with.

【0013】電気化学的手法は、鋼板表面の電気化学的
電位を測定して鋼板表面の状態を表すものであるが、こ
れらの表面の酸化物の影響で初期電位が不安定で再現性
が悪いため、ζ相の定量に向かない。一方、X線回折法
は、上述の電子顕微鏡観察による表面被覆率と比較する
と、めっき層内部の情報も含むものであるが、付着量2
0g/m2 以上の合金化溶融亜鉛めっき鋼板で比較的良
好な定量性が得られることが本発明者らによって見出さ
れ、X線回折によるζ相量と化成処理性およびカチオン
電着塗装性との間には、次の限定値が得られる。すなわ
ち、図1より明らかなように、下記式[1]の値I
(ζ)が0.3未満では化成処理時に処理むらが発生し
やすく、また、電着塗装時にクレーターが発生しやす
い。したがって、ζ相量は、下記式[1]で規定したと
き、0.3以上とする。また、下記式[1]の値I
(ζ)が0.8を超えると、Zn−ηが残存し、塗装後
耐食性が劣化する場合があるので、好ましくは、下記式
[1]の値I(ζ)は0.3〜0.8がよい。より好ま
しくは、0.4〜0.8である。
The electrochemical method is to measure the electrochemical potential of the surface of a steel sheet to show the state of the surface of the steel sheet, but the initial potential is unstable and the reproducibility is poor due to the influence of oxides on these surfaces. Therefore, it is not suitable for quantitative determination of ζ phase. On the other hand, the X-ray diffraction method includes information on the inside of the plating layer as compared with the surface coverage by the above-mentioned electron microscope observation, but the adhesion amount 2
It has been found by the present inventors that a relatively good quantitative property can be obtained with an alloyed hot-dip galvanized steel sheet of 0 g / m 2 or more, and the amount of ζ phase by X-ray diffraction, chemical conversion treatability, and cationic electrodeposition coating property. The following limiting values are obtained between and. That is, as is clear from FIG. 1, the value I of the following formula [1] is I
When (ζ) is less than 0.3, uneven treatment is likely to occur during chemical conversion treatment, and craters are likely to occur during electrodeposition coating. Therefore, the amount of ζ phase is 0.3 or more when defined by the following formula [1]. Also, the value I of the following formula [1]
If (ζ) exceeds 0.8, Zn-η may remain and the corrosion resistance after coating may deteriorate. Therefore, the value I (ζ) of the following formula [1] is preferably 0.3 to 0. 8 is good. More preferably, it is 0.4 to 0.8.

【0014】 I(ζ)=ζ/(ζ+δ1 +Γ+Γ1 ) ・・・式[1] 但し、上記式[1]において、ζ、δ1 、Γ、Γ1 は、
それぞれ次の格子間距離(d)で測定されるX線回折強
度である。 ζ;d=0.2056nm δ1 ;d=0.213
6nm Γ;d=0.1915nm Γ1 ;d=0.131
5nm 目付量を20g/m2 以上と規定したのは、耐食性のた
めである。20g/m2 未満では、Zn−Fe合金層に
よる防食機能が低下する。好ましくは、20g/m2
上90g/m2 以下、より好ましくは、30以上60g
/m2 以下である。
I (ζ) = ζ / (ζ + δ 1 + Γ + Γ 1 ) Equation [1] However, in the above equation [1], ζ, δ 1 , Γ, and Γ 1 are
These are the X-ray diffraction intensities measured at the following interlattice distances (d). ζ; d = 0.2056 nm δ 1 ; d = 0.213
6 nm Γ; d = 0.915 nm Γ 1 ; d = 0.131
The basis weight of 5 nm is defined as 20 g / m 2 or more for the purpose of corrosion resistance. If it is less than 20 g / m 2 , the anticorrosion function of the Zn—Fe alloy layer is lowered. 20 g / m 2 or more and 90 g / m 2 or less, more preferably 30 or more and 60 g or more
/ M 2 or less.

【0015】化成処理反応は、Zn−Feめっき層表面
が化成処理液に接触したときに溶解し、その後めっき層
表面にりん酸亜鉛として析出し皮膜を形成する反応とし
て知られている。めっき層中に0.40wt%を越えて
Alが存在すると、合金化時にAlがめっき表面に多量
に濃化し、部分的に酸化皮膜を形成することによって化
成処理時のZn−Feめっき層表面の溶解が抑制され、
化成皮膜が均一に析出することを妨げられると推察され
る。また、ζ相はδ1 相より電気的に卑であり、化成処
理時の溶解性が高く、均一な化成皮膜の形成に寄与す
る。Fe含有率がさらに低いζ相が残存する場合でも良
好な化成処理性は得られるが、耐食性が劣化するため適
さない。
The chemical conversion treatment reaction is known as a reaction in which the surface of the Zn--Fe plating layer is dissolved when it comes into contact with the chemical conversion treatment liquid, and thereafter zinc phosphate is deposited on the surface of the plating layer to form a film. If Al exceeds 0.40 wt% in the plating layer, Al is concentrated on the plating surface in a large amount during alloying, and an oxide film is partially formed to form a Zn-Fe plating layer surface during chemical conversion treatment. Dissolution is suppressed,
It is presumed that the formation of the chemical conversion film is prevented. Further, the ζ phase is electrically baser than the δ 1 phase, has a high solubility during the chemical conversion treatment, and contributes to the formation of a uniform chemical conversion film. Good chemical conversion treatability is obtained even when the ζ phase having a lower Fe content remains, but it is not suitable because the corrosion resistance deteriorates.

【0016】電着塗装時のクレーターの発生は、一般的
に被電着物表面の電気抵抗の均一性と関連し、被電着物
表面の電気抵抗が不均一であると部分的に放電が起こ
り、その熱で凝析した塗料が硬化し、焼付け時の流動が
おこらず、クレーターが発生すると考えられ、化成処理
が不均一であることがクレーター発生の一因となってい
る。したがって、Al量が多く、ζ相が少ない場合にお
いてクレーターが発生しやすい。
The occurrence of craters during electrodeposition coating is generally related to the uniformity of the electrical resistance of the surface of the electrodeposited object, and if the electrical resistance of the surface of the electrodeposition object is non-uniform, partial discharge occurs, It is considered that the paint coagulated by the heat is hardened, the flow at the time of baking does not occur, and craters are generated, and the nonuniform chemical conversion treatment is one of the causes of craters. Therefore, craters are likely to occur when the amount of Al is large and the amount of ζ phase is small.

【0017】本発明においては、合金化溶融亜鉛めっき
層組成としては、Fe、Alの含有量のみを規定した
が、他の成分、例えばPb、Cd、Sn、In、Li、
Sb、As、Bi、Mg、La、Ce、Ti、Zr、N
i、Co、Cr、Mn、P、S、O、Bなどが少量添加
されたり、不可避的に混入しても、本質的に本発明の効
果は変わらないものである。
In the present invention, as the composition of the galvannealed layer, only the contents of Fe and Al are specified, but other components such as Pb, Cd, Sn, In, Li,
Sb, As, Bi, Mg, La, Ce, Ti, Zr, N
Even if a small amount of i, Co, Cr, Mn, P, S, O, B or the like is added or inevitably mixed, the effect of the present invention is essentially unchanged.

【0018】また、以下に示す本発明の方法によって、
前記の本発明の合金化溶融亜鉛めっき鋼板を製造するこ
とができる。溶融亜鉛めっき浴中のAl濃度0.120
〜0.145wt%とし、所定の浸漬時間鋼板を浸漬し
めっき付着量20g/m2 以上のめっきを施し、合金化
炉に導く。合金化処理は、所望のζ相を得るために、昇
温速度を20℃/sec以下、好ましくは5〜20℃/
secとして、480〜600℃、好ましくは490〜
560℃で所定の時間行い、本発明の合金化溶融亜鉛め
っき鋼板を得る。
Further, according to the method of the present invention shown below,
The alloyed hot-dip galvanized steel sheet of the present invention can be manufactured. Al concentration in hot dip galvanizing bath 0.120
˜0.145 wt%, the steel plate is dipped for a predetermined dipping time, plated with a coating adhesion amount of 20 g / m 2 or more, and introduced into an alloying furnace. In the alloying treatment, in order to obtain a desired ζ phase, the temperature rising rate is 20 ° C./sec or less, preferably 5 to 20 ° C. /
sec is 480 to 600 ° C., preferably 490 to
The alloyed hot-dip galvanized steel sheet of the present invention is obtained by performing the treatment at 560 ° C for a predetermined time.

【0019】一般に、めっき層の耐剥離性の劣化を防止
するためにめっき浴中にAlを添加するが、本発明で溶
融亜鉛めっき浴中のAl濃度を0.145wt%以下と
したのは、Alの含有量が0.145wt%を越える
と、溶融亜鉛めっき時に鋼板−めっき層界面にAl富化
層と呼ばれるFe−Al(−Zn)化合物層が厚く形成
され、合金化時に鋼板中のFeがめっき層中に拡散する
ことが妨げられ、合金化が困難となるためである。ま
た、Al濃度が0.120wt%未満の場合、溶融亜鉛
めっき時にAl富化層が十分には形成されないことがあ
り、Feが鋼板めっきからめっき層中に拡散し、Γ相が
形成されてめっき密着性が劣化するため、Al添加量
は、好ましくは、0.120〜0.145wt%がよ
い。
In general, Al is added to the plating bath in order to prevent deterioration of the peeling resistance of the plating layer. However, in the present invention, the Al concentration in the hot dip galvanizing bath is 0.145 wt% or less. If the Al content exceeds 0.145 wt%, a Fe—Al (—Zn) compound layer called an Al-enriched layer is thickly formed at the steel sheet-plating layer interface during hot dip galvanization, and Fe in the steel sheet during alloying is formed. This hinders the diffusion of Pd into the plated layer, making alloying difficult. Further, when the Al concentration is less than 0.120 wt%, the Al-rich layer may not be sufficiently formed during hot dip galvanizing, and Fe diffuses from the steel plate plating into the plating layer to form a Γ phase and thus plating. Since the adhesiveness deteriorates, the Al addition amount is preferably 0.120 to 0.145 wt%.

【0020】本発明のめっき鋼板のめっき表面のζ相を
得るには、合金化時に低温域で長時間合金化処理する必
要がある。すなわち、めっき付着量20g/m2 以上の
場合、昇温温度が20℃/secを越えるとめっき表面
に所望のζ相を得ることは困難であり、合金化時の昇温
速度は20℃/sec以下とした。また、著しく昇温速
度が遅いと加熱時間が長く、生産性を欠くため、好まし
くは、昇温速度5〜20℃/secがよい。また、合金
化温度が600℃を越えると、めっき−鋼板界面にΓ、
Γ1 相が多量に形成され耐剥離性が悪くなる。また、4
80℃未満では合金化が遅くなり生産性を低下させる。
したがって、合金化温度は、480〜600℃とした。
好ましくは、490〜560℃がよい。
In order to obtain the ζ phase on the plated surface of the plated steel sheet of the present invention, it is necessary to carry out an alloying treatment for a long time at a low temperature region during alloying. That is, when the coating amount is 20 g / m 2 or more, it is difficult to obtain a desired ζ phase on the plating surface when the temperature rise temperature exceeds 20 ° C./sec, and the temperature rise rate during alloying is 20 ° C./sec. It was set to sec or less. Further, when the heating rate is extremely slow, the heating time is long and the productivity is lost. Therefore, the heating rate is preferably 5 to 20 ° C./sec. Further, when the alloying temperature exceeds 600 ° C., Γ,
A large amount of Γ 1 phase is formed, resulting in poor peeling resistance. Also, 4
If it is less than 80 ° C., alloying becomes slow and productivity is lowered.
Therefore, the alloying temperature is set to 480 to 600 ° C.
The temperature is preferably 490 to 560 ° C.

【0021】[0021]

【実施例】以下に、実施例を示して本発明を説明する
が、本発明はこれらに限定されるものではない。 (実施例1〜8および比較例1〜7)通常のゼンジミア
タイプの連続溶融亜鉛めっきラインで、板厚0.7mm
のTi−Nb系極低炭素鋼板に溶融亜鉛めっきを行い、
引き続き合金化処理を施した。溶融亜鉛めっき浴中のA
l濃度、合金化条件、合金化処理後のめっき目付量、め
っき層中のFe含有率およびAl含有率、ζ相の表面被
覆率を表1に示す。
The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Examples 1 to 8 and Comparative Examples 1 to 7) A normal Sendzimir type continuous hot-dip galvanizing line with a plate thickness of 0.7 mm.
Hot dip galvanizing Ti-Nb type ultra low carbon steel sheet of
Subsequently, alloying treatment was performed. A in hot dip galvanizing bath
Table 1 shows the 1 concentration, the alloying conditions, the coating weight after the alloying treatment, the Fe content and Al content in the plating layer, and the surface coverage of the ζ phase.

【0022】めっき層中のζ相の測定、化成処理性、耐
クレータリング性および耐食性は、以下の試験により判
定した。 (1)めっき層中のζ相の測定 a)ζ相の表面被覆率の測定 ζ相の表面被覆率は、走査型電子顕微鏡を使用して倍率
を3,500倍とし、1試料(10mm角)の中でスキ
ンパス圧下部を除いて無作為に5箇所を選び、写真撮影
(65×95mm)を行った。実施例7に上記の写真撮
影を行った結果を図2に示す。ここで、ζ相およびδ1
相を図2中に示した。次に、図2に示した顕微鏡写真上
に10mm間隔で直線を7本横方向に引き、その線の全
長(95mm×7本)中で、図2に示したζ相をこれら
の線が横切る部分の長さを測定し、下記式[2]より算
出して表面被覆率とする。
The measurement of the ζ phase in the plated layer, the chemical conversion treatment property, the cratering resistance and the corrosion resistance were determined by the following tests. (1) Measurement of ζ phase in plating layer a) Measurement of surface coverage of ζ phase The surface coverage of the ζ phase was set to 3,500 times using a scanning electron microscope, and one sample (10 mm square) In 5), five locations were randomly selected except for the skin pass lowering part, and photographs (65 × 95 mm) were taken. The result of the above-mentioned photography in Example 7 is shown in FIG. Where ζ phase and δ 1
The phases are shown in Figure 2. Next, on the photomicrograph shown in FIG. 2, seven straight lines are drawn in the lateral direction at intervals of 10 mm, and these lines cross the ζ phase shown in FIG. 2 within the total length (95 mm × 7 lines) of the line. The length of the portion is measured, and the surface coverage is calculated by the following formula [2].

【0023】[0023]

【数1】 [Equation 1]

【0024】具体的に、上述の実施例7の電子顕微鏡写
真を用いてζ相の表面被覆率の算出方法を説明する。図
2の顕微鏡写真上に、図3に示すように10mm間隔で
直線7本を引いた(L1〜L7)。L1〜L7のそれぞ
れについて、ζ相をこれらの直線が横切る長さ(線分)
を測定し、その合計を得、これらの線分の長さから、上
記式[2]に従ってζ相の表面被覆率を算出した。図3
中に、各線分の長さを示した。
A method of calculating the surface coverage of the ζ phase will be specifically described by using the electron micrograph of the above-mentioned Example 7. As shown in FIG. 3, seven straight lines were drawn on the micrograph of FIG. 2 at intervals of 10 mm (L1 to L7). For each of L1 to L7, the length (line segment) where these straight lines cross the ζ phase
Was measured, the total was obtained, and the surface coverage of the ζ phase was calculated from the lengths of these line segments according to the above formula [2]. Figure 3
The length of each line segment is shown inside.

【0025】[0025]

【数2】 [Equation 2]

【0026】以上より、実施例7のζ相の表面被覆率は
9.9(%)となる。他の実施例および比較例について
も同様にしてζ相の表面被覆率を求めた。
From the above, the surface coverage of the ζ phase of Example 7 is 9.9 (%). The surface coverage of the ζ phase was similarly obtained for the other examples and comparative examples.

【0027】b)X線回折強度比の測定 下記に示す格子間距離におけるX線回折強度、ζ、
δ1 、ΓおよびΓ1 を、実施例1〜8および比較例1〜
7のめっき鋼板のめっき層について測定し、下記式
[1]よりX線回折強度比I(ζ)を求め、ζ相量の指
標とした。 I(ζ)=ζ/(ζ+δ1 +Γ+Γ1 ) ・・・式[1] 下記の格子間距離(d)で、上記式[1]中のζ、
δ1 、Γ、Γ1 のX線回折強度を測定した。 ζ;d=0.2056nm δ1 ;d=0.21
36nm Γ;d=0.1915nm Γ1 ;d=0.13
15nm
B) Measurement of X-ray diffraction intensity ratio X-ray diffraction intensity at the interstitial distance shown below, ζ,
δ 1 , Γ and Γ 1 are calculated as in Examples 1 to 8 and Comparative Examples 1 to 1.
The plated layer of the plated steel sheet of No. 7 was measured, and the X-ray diffraction intensity ratio I (ζ) was obtained from the following formula [1], and used as an index of the ζ phase amount. I (ζ) = ζ / (ζ + δ 1 + Γ + Γ 1 ) Equation [1] In the following inter-lattice distance (d), ζ in the equation [1],
The X-ray diffraction intensities of δ 1 , Γ and Γ 1 were measured. ζ; d = 0.2056 nm δ 1 ; d = 0.21
36 nm Γ; d = 0.915 nm Γ 1 ; d = 0.13
15 nm

【0028】(2)化成処理試験 日本ペイント(株)製のリン酸塩処理液グラノジンSD
5000を用いて、75×150mmに剪断した鋼板に
化成処理を行い、目視にて化成処理皮膜の均一性の優劣
を評価した。評価は、以下のように示した。 ○;化成処理皮膜が均一 ×;化成処理皮膜が不均一
(2) Chemical conversion treatment test Phosphate treatment liquid Granodine SD manufactured by Nippon Paint Co., Ltd.
Using 5000, the steel sheet sheared to 75 × 150 mm was subjected to a chemical conversion treatment, and the superiority or inferiority of the uniformity of the chemical conversion treatment film was visually evaluated. The evaluation is shown as follows. ○: Chemical conversion coating is uniform ×: Chemical conversion coating is not uniform

【0029】(3)耐クレータリング性 化成処理を施した鋼板を、電着塗料U−80(日本ペイ
ント(株)製)を用いて下記の条件で電着塗装し、任意
に選んだ5箇所の1cm2 内で塗装表面に発生したクレ
ーターの個数を目視で数え、平均してクレーター発生密
度(個/cm2)とした。結果を、X線回折強度比(I
(ζ))およびζ相表面被覆率とともに図1に示した。 電着電圧;300V 通電方法;昇圧速度30V/secで0Vから300V
まで電圧を上げた後、電着電圧で保持する。 電着時間;180秒
(3) Cratering resistance A steel sheet subjected to chemical conversion treatment is electrodeposited using the electrodeposition paint U-80 (manufactured by Nippon Paint Co., Ltd.) under the following conditions, and five arbitrarily selected points are selected. The number of craters generated on the coated surface within 1 cm 2 was visually counted and averaged to obtain the crater generation density (pieces / cm 2 ). The results are shown by the X-ray diffraction intensity ratio (I
(Ζ)) and ζ-phase surface coverage are shown in FIG. 1. Electrodeposition voltage: 300V Energizing method: 0V to 300V at boosting speed of 30V / sec
After raising the voltage to, hold it at the electrodeposition voltage. Electrodeposition time: 180 seconds

【0030】(4)耐食性 電着塗装後の鋼板パネル(75×150mm)表面に、
カッターナイフで鋼板の素地に達するクロスカット傷を
入れ、塩水噴霧試験(JIS Z2371)を行い、3
0日後にこのパネルを取り出し、クロスカット傷部分の
塗膜膨れ幅(片側ブリスター幅(mm))を測定して評
価した。以上の結果を表1に示す。
(4) Corrosion resistance On the surface of a steel plate panel (75 × 150 mm) after electrodeposition coating,
Insert a cross-cut scratch that reaches the base of the steel plate with a cutter knife, and perform a salt spray test (JIS Z2371).
After 0 days, the panel was taken out and the swelling width (blister width (mm) on one side) of the coating film at the crosscut scratched portion was measured and evaluated. Table 1 shows the above results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】自動車用表面処理鋼板として塗装後耐食
性が優れている合金化溶融亜鉛めっき鋼板の使用が増大
しているが、合金化溶融亜鉛めっき鋼板は、自動車の製
造工程において化成処理不良やカチオン電着塗装時に塗
膜不良を発生しやすい。本発明によれば、上記の化成処
理、電着塗装時の欠陥発生を防止した合金化溶融亜鉛め
っき鋼板を提供することができ、耐食性や外観の向上の
他、生産性も向上させることができる。
EFFECTS OF THE INVENTION As the surface-treated steel sheet for automobiles, the use of alloyed hot-dip galvanized steel sheet, which has excellent corrosion resistance after painting, is increasing. Defective coatings are likely to occur during cationic electrodeposition coating. According to the present invention, it is possible to provide an alloyed hot-dip galvanized steel sheet that prevents the occurrence of defects during the above chemical conversion treatment and electrodeposition coating, and it is possible to improve productivity in addition to improving corrosion resistance and appearance. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 ζ相のX線回折強度比I(ζ)と電着塗装時
に発生したクレータの関係、およびζ相表面被覆率の関
係を示す図である。
FIG. 1 is a diagram showing a relationship between an X-ray diffraction intensity ratio I (ζ) of a ζ phase, a crater generated during electrodeposition coating, and a relationship of a ζ phase surface coverage.

【図2】 電子顕微鏡であり、金属組織を表す図面代用
写真である。
FIG. 2 is an electron microscope and a drawing-substitute photograph showing a metal structure.

【図3】 図2と同じ電子顕微鏡写真であり、これを用
いてζ相の表面被覆率の測定方法を説明するための、金
属組織を表す図面代用写真である。
FIG. 3 is the same electron micrograph as FIG. 2, and is a drawing-substituting photograph showing a metal structure for explaining a method for measuring the surface coverage of a ζ phase using the same.

【符号の説明】[Explanation of symbols]

ζ 溶融亜鉛めっき鋼板表面に生成されたζ相部分 δ1 溶融亜鉛めっき鋼板表面に生成されたδ1 相部分[delta] 1-phase portion produced generated ζ phase portion [delta] 1 galvanized steel sheet surface ζ galvanized steel sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加 藤 千 昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 (72)発明者 高 村 日出夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 (72)発明者 望 月 一 雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Chiaki Kato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Steel Research Laboratory, Kawasaki Steel Co., Ltd. (72) Hideo Takamura Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba No. 1 Kawasaki Steel Co., Ltd. Steel Research Laboratory (72) Inventor Kazuo Mochizuki No. 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Steel Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】めっき層組成が、Fe:7〜13wt%、
Al:0.40wt%以下、残部Znからなり、めっき
表面にζ相が表面被覆率で1.0%以上、めっき付着量
が20g/m2 以上のめっき層を少なくとも片面に有す
る化成処理性およびカチオン電着塗装性に優れた合金化
溶融亜鉛めっき鋼板。
1. The plating layer composition is Fe: 7 to 13 wt%,
Al: 0.40 wt% or less, balance Zn, a ζ phase on the plating surface is 1.0% or more in the surface coverage, and a plating layer with a plating adhesion amount of 20 g / m 2 or more is provided on at least one surface of the chemical conversion treatability and Alloyed hot-dip galvanized steel sheet with excellent cationic electrodeposition coating properties.
【請求項2】めっき層組成が、Fe:9〜11wt%、
Al:0.10〜0.40wt%、残部Znからなり、
めっき表面にζ相が表面被覆率で10.0〜30.0
%、めっき付着量が20g/m2 以上のめっき層を少な
くとも片面に有する化成処理性およびカチオン電着塗装
性に優れた合金化溶融亜鉛めっき鋼板。
2. The composition of the plating layer is Fe: 9 to 11 wt%,
Al: 0.10 to 0.40 wt%, balance Zn
Ζ phase on the plating surface is 10.0 to 30.0 in terms of surface coverage
%, A galvannealed steel sheet having a plating layer having a coating weight of 20 g / m 2 or more on at least one surface and having excellent chemical conversion treatment properties and cationic electrodeposition coating properties.
【請求項3】めっき層組成が、Fe:7〜13wt%、
Al:0.40wt%以下、残部Znからなり、めっき
表面に下記式[1]で規定されるX線回折強度比I
(ζ)で、0.3以上のζ相を有し、めっき付着量が2
0g/m2 以上のめっき層を少なくとも片面に有する化
成処理性およびカチオン電着塗装性に優れた合金化溶融
亜鉛めっき鋼板。 I(ζ)=ζ/(ζ+δ1 +Γ+Γ1 ) ・・・・・・式[1] (但し、式[1]で、ζ、δ1 、Γ、Γ1 は、それぞれ
次の格子間距離(d)で測定されるX線回折強度を表
す。 ζ;d=0.2056nm δ1 ;d=0.213
6nm Γ;d=0.1915nm Γ1 ;d=0.131
5nm)
3. The plating layer composition is Fe: 7 to 13 wt%,
Al: 0.40 wt% or less, balance Zn, and X-ray diffraction intensity ratio I defined by the following formula [1] on the plating surface
(Ζ) has a ζ phase of 0.3 or more, and the coating weight is 2
An alloyed hot-dip galvanized steel sheet having a coating layer of 0 g / m 2 or more on at least one surface and having excellent chemical conversion treatment property and cationic electrodeposition coating property. I (ζ) = ζ / (ζ + δ 1 + Γ + Γ 1 ) Equation [1] (However, in equation [1], ζ, δ 1 , Γ, and Γ 1 are respectively the following interstitial distances ( represents the X-ray diffraction intensity measured in d) ζ; d = 0.2056 nm δ 1 ; d = 0.213
6 nm Γ; d = 0.915 nm Γ 1 ; d = 0.131
5 nm)
【請求項4】めっき層組成が、Fe:9〜11wt%、
Al:0.10〜0.40wt%、残部Znからなり、
めっき表面に下記式[1]で規定されるX線回折強度比
I(ζ)で、0.3〜0.8のζ相を有し、めっき付着
量が20g/m2 以上のめっき層を少なくとも片面に有
する化成処理性およびカチオン電着塗装性に優れた合金
化溶融亜鉛めっき鋼板。 I(ζ)=ζ/(ζ+δ1 +Γ+Γ1 ) ・・・・・・式[1] (但し、式[1]で、ζ、δ1 、Γ、Γ1 は、それぞれ
次の格子間距離(d)で測定されるX線回折強度を表
す。 ζ;d=0.2056nm δ1 ;d=0.213
6nm Γ;d=0.1915nm Γ1 ;d=0.131
5nm)
4. The composition of the plating layer is Fe: 9 to 11 wt%,
Al: 0.10 to 0.40 wt%, balance Zn
A plating layer having an X-ray diffraction intensity ratio I (ζ) defined by the following formula [1] of 0.3 to 0.8 and a coating amount of 20 g / m 2 or more was formed on the plating surface. A galvannealed steel sheet having excellent chemical conversion treatment property and cationic electrodeposition coating property on at least one surface. I (ζ) = ζ / (ζ + δ 1 + Γ + Γ 1 ) Equation [1] (However, in equation [1], ζ, δ 1 , Γ, and Γ 1 are respectively the following interstitial distances ( represents the X-ray diffraction intensity measured in d) ζ; d = 0.2056 nm δ 1 ; d = 0.213
6 nm Γ; d = 0.915 nm Γ 1 ; d = 0.131
5 nm)
【請求項5】Al濃度0.145wt%以下の溶融亜鉛
めっき浴で、鋼板に溶融亜鉛めっきを施した後、該めっ
き鋼板を昇温速度20℃/sec以下で480〜600
℃に加熱し、合金化することを特徴とする化成処理性お
よびカチオン電着塗装性に優れた合金化溶融亜鉛めっき
鋼板の製造方法。
5. A hot dip galvanizing bath having an Al concentration of 0.145 wt% or less is applied to the steel sheet, and then the galvanized steel sheet is heated at a rate of 20 ° C./sec or less to 480 to 600.
A method for producing an alloyed hot-dip galvanized steel sheet excellent in chemical conversion treatment property and cationic electrodeposition coating property, which comprises heating to ℃ and alloying.
【請求項6】Al濃度0.120〜0.145wt%以
下の溶融亜鉛めっき浴で、鋼板に溶融亜鉛めっきを施し
た後、該めっき鋼板を昇温速度5〜20℃/secで4
90〜560℃に加熱し、合金化することを特徴とする
化成処理性およびカチオン電着塗装性に優れた合金化溶
融亜鉛めっき鋼板の製造方法。
6. A hot-dip galvanizing bath having an Al concentration of 0.120 to 0.145 wt% or less. After hot-dip galvanizing the steel sheet, the galvanized steel sheet is heated at a temperature rising rate of 5 to 20 ° C./sec.
A method for producing an alloyed hot-dip galvanized steel sheet excellent in chemical conversion treatment property and cationic electrodeposition coating property, which comprises heating to 90 to 560 ° C. and alloying.
JP28438394A 1994-07-28 1994-10-24 Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production Pending JPH0892714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28438394A JPH0892714A (en) 1994-07-28 1994-10-24 Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-196092 1994-07-28
JP19609294 1994-07-28
JP28438394A JPH0892714A (en) 1994-07-28 1994-10-24 Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production

Publications (1)

Publication Number Publication Date
JPH0892714A true JPH0892714A (en) 1996-04-09

Family

ID=26509536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28438394A Pending JPH0892714A (en) 1994-07-28 1994-10-24 Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production

Country Status (1)

Country Link
JP (1) JPH0892714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002886A1 (en) * 1998-11-18 2000-05-24 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
WO2012004889A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Hot-dip zinc-coated steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002886A1 (en) * 1998-11-18 2000-05-24 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
US6368728B1 (en) 1998-11-18 2002-04-09 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
AU758929B2 (en) * 1998-11-18 2003-04-03 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
WO2012004889A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Hot-dip zinc-coated steel sheet
CN102753730A (en) * 2010-07-09 2012-10-24 新日本制铁株式会社 Hot-dip zinc-coated steel sheet
US8852753B2 (en) 2010-07-09 2014-10-07 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet
KR101456346B1 (en) * 2010-07-09 2014-11-03 신닛테츠스미킨 카부시키카이샤 Hot-dip zinc-coated steel sheet

Similar Documents

Publication Publication Date Title
US4891274A (en) Hot-dip aluminum coated steel sheet having excellent corrosion resistance and heat resistance
JP2783452B2 (en) Manufacturing method of galvannealed steel sheet
US4670354A (en) Hot-galvanized steel product, notably intended to be phosphated, and method for preparing such a product
JP4102144B2 (en) Hot-dip galvanized steel material excellent in uniform paintability and corrosion resistance and method for producing the same
KR20150133835A (en) Al-Zn-BASED PLATED STEEL SHEET
JP2019090112A (en) Metal plated steel strip
JPH0892714A (en) Galvannealed steel sheet excellent in chemical convertibility and cation electrodeposition coating property and its production
JP3557810B2 (en) Alloyed hot-dip galvanized steel sheet having excellent slidability and cratering resistance during electrodeposition coating, and method for producing the same
JP3159135B2 (en) Micro spangle hot-dip galvanized steel sheet and manufacturing method
JP2912029B2 (en) Alloyed galvanized steel sheet
JP2004156111A (en) Galvannealed steel sheet and its production method
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP2003183800A (en) Hot-dip zinc-base coated steel sheet superior in blackening resistance and corrosion resistance, and manufacturing method therefor
JP6922857B2 (en) Fused Al-Si plated steel sheet and its manufacturing method
JPH10204600A (en) Galvannealed steel sheet excellent in adhesion
KR20010056280A (en) Galvannealing method for decreasing crater
JP2020007586A (en) HOT-DIP Al-Zn BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JPH05171491A (en) Double layer plated steel excellent in corrosion resistance after coating
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH0726360A (en) Production of low surface roughness galvannealed steel sheet
JPH10265925A (en) Production of galvannealed steel sheet excellent in plating adhesion
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPS59162294A (en) Steel sheet having two-layered zn plating provided with superior workability and its manufacture
JPH03243755A (en) Organic composite alloying hot dip galvanized steel sheet excellent in press formability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309