JPH08926B2 - Mixed sintered body composed of silicon carbide and coke - Google Patents
Mixed sintered body composed of silicon carbide and cokeInfo
- Publication number
- JPH08926B2 JPH08926B2 JP61098350A JP9835086A JPH08926B2 JP H08926 B2 JPH08926 B2 JP H08926B2 JP 61098350 A JP61098350 A JP 61098350A JP 9835086 A JP9835086 A JP 9835086A JP H08926 B2 JPH08926 B2 JP H08926B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- silicon carbide
- sintered body
- silicon
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はキュポラ炉において鋳鉄を製造する際及び高
珪素銑鉄を含む鋳物用銑鉄を製造する際に珪素供給源及
び燃料として使用できるコークス−炭化珪素焼結体(以
下、単に焼結体という)及びその製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a coke-carbonization that can be used as a silicon source and a fuel when producing cast iron in a cupola furnace and when producing pig iron for casting containing high silicon pig iron. The present invention relates to a silicon sintered body (hereinafter, simply referred to as a sintered body) and a method for manufacturing the same.
(従来の技術) 通常、キュポラ炉における鋳鉄の製造方法においては
鋳物用銑鉄、鋼屑、故銑等の地金類のほかに、珪素、満
俺などの金属元素を含む原料を鋳物用コークスと共にキ
ュポラ炉の中に装入し、鋳物用コークスを炉内に送り込
まれた空気によって燃焼させ、炉内を高温に加熱し地金
類を溶解して製造するのである。また、高珪素銑鉄を含
む鋳物用銑鉄の製造方法は鉄鉱石、コークス、珪酸化合
物等を溶鉱炉に装入し空気を炉内に送り込んでコークス
を燃焼させ炉内を高温且つ強還元性雰囲気に保って鉄鉱
石、珪酸化合物を還元し溶解して製造するのである。し
かして、これらの製造方法に使用されるコークスは原料
石炭・石油コークスおよびピッチを原料として粉砕配合
してコークス炉において熱分解温度又はそれ以上の高温
すなわち950〜1100℃で空気を遮断して約17〜24時間程
度加熱して製造する固体の細胞質乾留残留物であって、
その主成分は炭素である。しかしてキュポラ炉において
鋳物を製造するに際して、珪素含有量の少ない鋼屑など
の地金類を使用する場合には鋳鉄溶湯に含有させる所要
のSi値に対しての不足分は補給しなければならないの
で、通常は珪素鉄、高珪素銑鉄、冶金用炭化珪素ブリケ
ット等を添加、装入しており、良質な鋳鉄の溶湯を得る
には炭素、珪素の含有量は所定の値を持っていることが
不可欠である。上記のSi値の不足分として補給した珪素
鉄、高珪素銑鉄は、同時にキュポラ炉内に装入した地金
類と溶融点に差があるので溶融時期が一致せず、また、
地金類が炉内を降下する速度が一定でないために、溶湯
中のSi含有量にバラツキを生じ、また、冶金用炭化珪素
ブリケットはセメントを粘結剤としており地金類が溶解
する温度より低い温度で崩壊して四散するので、地金類
の溶解量に見合った一定量の炭化珪素が溶湯中に溶解す
ることは望むべくもなく、この場合も同様にSi含有量に
バラツキを避けることはできない。また、コークスは還
元剤であると共に燃料源として、また炭素増量材として
使用されているのであるが、コークスは燃焼してCO2又
はCOガス体となって炉外に放散する際に多量の顕熱を持
っている。例えば炭化珪素中のSiの燃焼反応と比較した
場合にはCとSiとの単位重量当りの酸化反応の生成熱は
殆ど差はないが燃焼に必要な酸素使用量はCはSiに比し
て大であるため(Si:C=28:12)CはSiより炉内に吹き
込まれる空気量が多量に必要となり、したがって炉の熱
効率は良好なものとは云い難い欠点があった。更に、キ
ュポラ炉内でのコークス中の炭素は吹き込まれた空気中
の酸素と反応してOZ+C=COZ+97.8Kcal/MolのようにC
OZガスとなる。この発熱によって地金は加熱溶解され、
キュポラ炉内の一定の高さ迄保持されているコークス
(ベッドコークスという)は1700〜1800℃まで上がると
推定されている。此の様な高温下では一部のCO2ガスは
加熱されたベッドコークスと接触してCOZ+C=2CO−3
7.4Kcal/Molのような吸熱反応を起こしてCOガスに変わ
り炉内の温度を低下させる。この様にコークスの燃焼熱
の一部は吸熱されてしまうので熱効率の低下は避けられ
ないのである。(Prior Art) Normally, in the method for producing cast iron in a cupola furnace, in addition to pig iron for casting, steel scrap, and bare metal such as pig iron, a raw material containing a metal element such as silicon and metal is used together with coke for casting. It is charged into a cupola furnace, the coke for casting is burned by the air sent into the furnace, and the inside of the furnace is heated to a high temperature to melt the ingots. Further, the method for producing pig iron for castings containing high silicon pig iron is to charge iron ore, coke, silicic acid compound, etc. into a blast furnace and send air into the furnace to burn the coke and keep the furnace at a high temperature and strongly reducing atmosphere. It is produced by reducing and dissolving iron ore and silicic acid compounds. Therefore, the coke used in these production methods is pulverized and blended with raw material coal / petroleum coke and pitch as raw materials, and cuts off air at a high temperature of pyrolysis temperature or higher in a coke oven, i.e., 950 to 1100 ° C. A solid cytoplasmic distillation residue produced by heating for about 17 to 24 hours,
Its main component is carbon. However, when producing castings in a cupola furnace, when using metal ingots with a low silicon content such as steel scrap, the shortfall of the required Si value to be contained in the cast iron molten metal must be supplemented. Therefore, silicon iron, high silicon pig iron, silicon carbide briquette for metallurgy, etc. are usually added and charged, and the contents of carbon and silicon must have predetermined values in order to obtain a good quality cast iron melt. Is essential. The silicon iron and high-silicon pig iron replenished as the above-mentioned shortage of the Si value have different melting points from the ingots charged in the cupola furnace at the same time, so the melting timing does not match,
Since the speed at which the metal ingots descend in the furnace is not constant, the Si content in the molten metal varies, and the silicon carbide briquette for metallurgy uses cement as a binder, and the temperature at which metal ingots melt Since it disintegrates and disperses at low temperature, it is not hoped that a certain amount of silicon carbide corresponding to the amount of metal ingot will dissolve in the molten metal, and in this case also avoid variations in the Si content. I can't. In addition, coke is used as a fuel source as well as a carbon source, as well as a reducing agent, but when coke burns into CO 2 or CO gas and is released outside the furnace, a large amount of Have a fever For example, when compared with the combustion reaction of Si in silicon carbide, there is almost no difference in the heat of formation of the oxidation reaction between C and Si per unit weight, but the amount of oxygen used for combustion is C compared to Si. Since it is large (Si: C = 28: 12), C requires a larger amount of air to be blown into the furnace than Si, and therefore the thermal efficiency of the furnace is not good. Furthermore, the carbon in the coke in the cupola furnace reacts with the oxygen in the blown air and reacts with C such as O Z + C = CO Z + 97.8Kcal / Mol.
It becomes O Z gas. The heat generated melts the metal,
It is estimated that the coke (called bed coke) held up to a certain height in the cupola furnace rises to 1700-1800 ℃. Under such a high temperature, some CO 2 gas comes into contact with the heated bed coke and CO Z + C = 2CO−3.
An endothermic reaction such as 7.4 Kcal / Mol occurs to change to CO gas and lower the temperature inside the furnace. In this way, a part of the combustion heat of the coke is absorbed, so that a decrease in thermal efficiency cannot be avoided.
(解決しょうとする問題点) 本発明者らは上記の欠点を改良し、キュポラ炉におい
て鋳鉄を製造する際及び高珪素銑鉄を含む鋳物用銑鉄を
製造する際の珪素補給源及び燃料源として使用できる原
料につき種々検討した結果、本発明を完成するに至った
もので本発明の目的は鋳鉄及び鋳物用銑鉄を製造する際
に使用する珪素補給及び燃料として有用な挿入材料を提
供するにある。(Problems to be solved) The present inventors have improved the above-mentioned drawbacks and used as a silicon supplement source and a fuel source when producing cast iron in a cupola furnace and when producing pig iron for casting containing high silicon pig iron. As a result of various studies on possible raw materials, the present invention has been completed, and an object of the present invention is to provide an insertion material useful as a silicon supplement and a fuel used when producing cast iron and pig iron for casting.
(問題点を解決するための手段) 本発明はコークス製造用炭素原料と炭化珪素とからな
る粉粒体状混合焼結体であって、コークス製造用炭素原
料としては石炭、石油コークス及びピッチであり、前に
述べた様にこれらの原料を強還元雰囲気下で乾留したも
のでいずれの原料のものも本発明で使用でき、他方、炭
化珪素は一般にバッチ型電気抵抗炉に原料である珪砂と
石油コークスとを装入、1600℃〜2500℃の温度に加熱し
て作られる。炭化珪素は低温ではβ晶を生じ高温ではα
晶を生ずるが、本発明において使用する炭化珪素はα
晶、β晶の何れも使用できるばかりでなく、珪素鉄や金
属珪素を製造する炉の炉床に生成する炭化珪素含有物質
や炭化珪素を含有する発熱体、炉材、セラミックの廃品
等も使用できる。(Means for Solving Problems) The present invention is a powdery granular mixed sintered body composed of a carbon raw material for coke production and silicon carbide, wherein the carbon raw material for coke production is coal, petroleum coke and pitch. As described above, these raw materials are dry-distilled in a strongly reducing atmosphere, and any raw material can be used in the present invention.On the other hand, silicon carbide is generally used as a raw material for a batch type electric resistance furnace with silica sand. It is made by charging petroleum coke and heating it to a temperature of 1600 ℃ to 2500 ℃. Silicon carbide forms β crystals at low temperatures and α at high temperatures
However, the silicon carbide used in the present invention is α
Not only crystal and β crystal can be used, but also silicon carbide-containing substances generated in the hearth of a furnace that manufactures silicon iron and metallic silicon, heating elements containing silicon carbide, furnace materials, and scrap ceramics are also used. it can.
しかして本発明の焼結体を製造する方法としてはコー
クス製造と同様な方法によるのであって、コークス原料
炭等と炭化珪素とをコークス炉に装入し空気を遮断して
950〜1100℃付近の温度で約17〜24時間加熱して焼結し
たものであって、炭化珪素はコークス炉内において溶解
したり或は他の物質と化学反応を生じて変質するような
ことはなく炭化珪素と炭素は均一に分散した状態で焼結
体となる。However, the method for producing the sintered body of the present invention is similar to the method for producing coke, in which coke raw material carbon and the like and silicon carbide are charged into a coke oven and air is shut off.
Sintered by heating at a temperature of around 950 to 1100 ° C for about 17 to 24 hours. Silicon carbide may be melted in a coke oven or may undergo a chemical reaction with other substances to be altered. Instead, silicon carbide and carbon become a sintered body in a state of being uniformly dispersed.
炭化珪素の添加量としては焼結体の使用目的に応じて
任意に変更できる。すなわち、本発明の焼結体は前述し
たように鋳鉄製造時における珪素源として使用する場合
と鋳物用コークスの代替として使用する場合とがあり本
発明の焼結体は常に両方の作用を呈するものであるが、
前者を主とする場合には焼結体中の炭化珪素含有量は50
%以上の高率配合であって、炭化珪素の粒度は100μ以
上の粗粒のものであり、後者を主とする場合には炭化珪
素含有量は15%程度の低率配合であって、その粒度も10
0μ以下程度の微粉状のものが好ましい。そして、本発
明の焼結体は単独で使用しても、或は他の炭化珪素及び
コークスと組合せて使用してもよい。The amount of silicon carbide added can be arbitrarily changed depending on the purpose of use of the sintered body. That is, as described above, the sintered body of the present invention may be used as a silicon source in the production of cast iron or may be used as a substitute for coke for casting, and the sintered body of the present invention always exhibits both functions. In Although,
When the former is mainly used, the content of silicon carbide in the sintered body is 50
% Or more, and the particle size of silicon carbide is coarse particles of 100 μ or more, and when the latter is mainly used, the silicon carbide content is a low rate composition of about 15%. Granularity is also 10
A fine powder having a size of 0 μ or less is preferable. The sintered body of the present invention may be used alone or in combination with other silicon carbide and coke.
本発明の焼結体の使用法及び焼結体存在による炉内に
ついて説明すると、キュポラ炉中に予め装入されたベッ
トコークスの上に本発明の焼結体を燃料用コークス、銑
鉄、鋼屑、返り材、故銑等の地金類及び造滓用石灰又は
石灰石とを一定の割合で層状に詰め、炉体下部に設けた
羽口より空気を送り込んでコークスを燃焼させると、ベ
ッドコークス直上で溶解した地金類は溶滴となってベッ
ドコークスの間隙を通過しつつ湯溜部に滴下するが溶滴
は焼結体の表面に露出した炭化珪素と接触する。しかし
て炭化珪素の溶湯への溶解速度は炭素(黒鉛)のそれに
比して数倍も早いので炭化珪素と接触した溶滴は速やか
に炭化珪素の微粒子を溶解吸収する。そして炭化珪素を
吸収し、珪素及び炭素の含有量がγichとなった溶滴は
更に降下して羽口先の酸素過剰の高温部分を通過する時
珪素及び炭素が鉄よりも優先的に酸化されるので溶湯の
酸化鉄の生成、即ち目的物の鋳鉄の酸化反応を抑制する
ことができる。また、焼結体は先に述べたようにコーク
スと同様に燃料としての作用を示すのであるが焼結体に
おける珪素の酸化生成物は固体状の酸化珪素であるため
ガス状の一酸化炭素や二酸化炭素のように顕熱をもって
大気中に放散されることはなく、また単位重量当りの必
要酸素量もコークスに比して少ないため空気使用量は大
幅に節減でき、したがって不用な窒素の送入量が減少す
るので炉の熱効率は高められる。そして、その結果炉内
温度を高めることができ、これによって高温の溶湯や流
動性のよいスラグを生成することができ、このため不純
物含有量の少ない良質の鋼屑を高率で配合することや石
灰の増量によって反応性の高い塩基性スラグを造り浴湯
中の酸化物や硫黄を減少させて良質の鋳鉄を作るという
結果をもたらす。更に本発明の焼結体には炭化珪素が均
一にふくまれているので、焼結体の表面に露出する炭素
はコークスに比べて明らかに少なく、したがって前記の
還元反応によって発生するCOガス量は露出している炭素
量の減少分だけ減少することとなるので熱損を少なくす
る利点を存す。Explaining the usage of the sintered body of the present invention and the inside of the furnace due to the presence of the sintered body, the sintered body of the present invention is placed on a bed coke previously charged in a cupola furnace, the fuel coke, pig iron, and steel scrap. When the coke is burned by sending air from the tuyere provided at the bottom of the furnace body, the coke is directly above the coke when the coke is burned by packing the return material, the metal such as the dead pig iron, and the lime or limestone for slag The ingots melted in step 1 become droplets and drop into the molten metal pool while passing through the gap of the bed coke, but the droplets contact the silicon carbide exposed on the surface of the sintered body. However, since the dissolution rate of silicon carbide in the molten metal is several times faster than that of carbon (graphite), the droplets in contact with silicon carbide quickly dissolve and absorb the fine particles of silicon carbide. Then, when the droplets that absorb silicon carbide and the content of silicon and carbon becomes γich further drop and pass through the high temperature portion of the tuyere with excess oxygen, silicon and carbon are oxidized preferentially over iron. Therefore, the generation of iron oxide in the molten metal, that is, the oxidation reaction of the target cast iron can be suppressed. Further, as described above, the sintered body acts as a fuel like coke, but since the oxidation product of silicon in the sintered body is solid silicon oxide, gaseous carbon monoxide or Unlike carbon dioxide, it does not dissipate into the atmosphere with sensible heat, and the required oxygen amount per unit weight is smaller than that of coke, so air consumption can be significantly reduced, and therefore unnecessary nitrogen is introduced. The thermal efficiency of the furnace is increased because the quantity is reduced. As a result, the temperature inside the furnace can be increased, which makes it possible to generate high-temperature molten metal or slag with good fluidity, and therefore, it is possible to mix high-quality steel scrap with a low impurity content at a high rate. By increasing the amount of lime, a highly reactive basic slag is produced, and oxides and sulfur in the bath water are reduced, resulting in high quality cast iron. Further, since silicon carbide is uniformly contained in the sintered body of the present invention, the amount of carbon exposed on the surface of the sintered body is clearly smaller than that of coke, so that the amount of CO gas generated by the above-mentioned reduction reaction is small. Since the amount of exposed carbon is reduced, there is an advantage of reducing heat loss.
なお、実操業においては、羽口直前において、燃焼し
た焼結体の表面に付着したSiOzを羽口より吹込んだCaO
微粉や装入口から投入されたCaOと結合させ低溶融のSiO
z・CaOを生成させて分離除去することは炭化珪素の燃焼
反応を促進させることに有効である。又、SiOz・CaOの
生成はスラグ中の遊離のSiOzを減少させてSiOz活量が下
がるのでSiOz+2C=Si+2COの吸熱反応の進行を抑制し
て、熱損やCOガスの増大を防ぐことが出来る。In actual operation, just before the tuyere, CaO was blown from the tuyere with SiOz adhering to the surface of the burned sintered body.
Low melting SiO combined with fine powder and CaO charged from the charging port
Generating z · CaO and separating and removing it is effective in promoting the combustion reaction of silicon carbide. In addition, since the generation of SiOz · CaO reduces the free SiOz in the slag and lowers the SiOz activity, the progress of the endothermic reaction of SiOz + 2C = Si + 2CO can be suppressed, and heat loss and CO gas increase can be prevented.
以下、実施例を以って本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
(実施例) 4ton/h,酸性、除湿、水冷のキュポラ炉を使用1.本発
明の固体炭素73.2%、炭化珪素15.1%の焼結体を銑鉄鋼
屑等の材料に配合、また、比較として従来使用されてい
る鋳物用コークスを焼結体の代りに使用、その他の配合
は総て同一として操業を行った。一ケ月間の操業値を平
均して比較した結果を第一表として示す。(Example) 4ton / h, acidity, dehumidification, water-cooled cupola furnace was used 1. Solid carbon 73.2% and silicon carbide 15.1% sintered body of the present invention was blended with materials such as pig iron scraps, and as a comparison. The coke for casting, which has been used conventionally, was used instead of the sintered body, and the other components were all operated in the same manner. Table 1 shows the results of averaging the operating values for one month and comparing them.
(効果) 以上述べたように、本発明はキュポラ炉において鋳鉄
を製造する際及び鋳物用銑鉄を製造する際に炭化珪素と
コークスとからなる粉粒体状混合焼結体を使用すること
により、成分Siの安定した溶湯を得ることが出来且つ炉
の熱効率を上げることが出来る等の効果を奏するのであ
る。 (Effect) As described above, according to the present invention, by using the powdery granular mixed sintered body made of silicon carbide and coke when producing cast iron in the cupola furnace and producing pig iron for casting, The effect is that a stable molten metal of the component Si can be obtained and the thermal efficiency of the furnace can be increased.
Claims (2)
鉄製造用粉粒体状混合焼結体。1. A powder-granular mixed sintered body for producing pig iron and cast iron, which comprises silicon carbide and coke.
0〜1100℃付近の温度で焼結することを特徴とする銑鉄
及び鋳鉄製造用粉粒体状混合焼結体の製造方法。2. Air is cut off between silicon carbide and coke.
A method for producing a powdery or granular mixed sintered body for producing pig iron and cast iron, which comprises sintering at a temperature of around 0 to 1100 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61098350A JPH08926B2 (en) | 1986-04-30 | 1986-04-30 | Mixed sintered body composed of silicon carbide and coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61098350A JPH08926B2 (en) | 1986-04-30 | 1986-04-30 | Mixed sintered body composed of silicon carbide and coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62256765A JPS62256765A (en) | 1987-11-09 |
JPH08926B2 true JPH08926B2 (en) | 1996-01-10 |
Family
ID=14217447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61098350A Expired - Lifetime JPH08926B2 (en) | 1986-04-30 | 1986-04-30 | Mixed sintered body composed of silicon carbide and coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08926B2 (en) |
-
1986
- 1986-04-30 JP JP61098350A patent/JPH08926B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62256765A (en) | 1987-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100470089B1 (en) | Method for producing metallic iron | |
AU2009234752B2 (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
JP2010229525A (en) | Method for producing ferronickel and ferrovanadium | |
JP2011246760A (en) | Method of manufacturing ferromolybdenum, and ferromolybdenum | |
JPS6359965B2 (en) | ||
US4728358A (en) | Iron bearing briquet and method of making | |
JP2010090431A (en) | Method for producing ferro-alloy containing nickel and vanadium | |
Tangstad | Handbook of Ferroalloys: Chapter 6. Ferrosilicon and Silicon Technology | |
KR0125761B1 (en) | Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts | |
JPH08926B2 (en) | Mixed sintered body composed of silicon carbide and coke | |
EP2057294A2 (en) | A method for the commercial production of iron | |
JP4705483B2 (en) | Method for producing molten iron | |
KR100257213B1 (en) | Process for smelting reduction of chromium ore | |
JPS59159945A (en) | Method for producing metallic magnesium and calcium ferrite from dolomite | |
JPS591777B2 (en) | Aluminum reduction smelting method | |
JP3844873B2 (en) | Metal iron manufacturing method | |
JPS6352098B2 (en) | ||
RU2248400C1 (en) | Method for scouring of blast furnace | |
Fairchild | Electric furnace manufacture of silicon metal | |
SU1157107A1 (en) | Method of melting carbon ferromanganese from poor ores | |
JP4415690B2 (en) | Method for producing sintered ore | |
SU1470728A1 (en) | Initial composition for making refractory lining | |
SU1632938A1 (en) | Charge for producing phosphorus | |
JP2837282B2 (en) | Production method of chromium-containing hot metal | |
JPS62276391A (en) | Method of operating novel cupola furnace |