JPS59159945A - Method for producing metallic magnesium and calcium ferrite from dolomite - Google Patents

Method for producing metallic magnesium and calcium ferrite from dolomite

Info

Publication number
JPS59159945A
JPS59159945A JP58034387A JP3438783A JPS59159945A JP S59159945 A JPS59159945 A JP S59159945A JP 58034387 A JP58034387 A JP 58034387A JP 3438783 A JP3438783 A JP 3438783A JP S59159945 A JPS59159945 A JP S59159945A
Authority
JP
Japan
Prior art keywords
residue
furnace
dolomite
calcium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58034387A
Other languages
Japanese (ja)
Other versions
JPH0237415B2 (en
Inventor
Tadanori Aki
安芸 忠徳
Kazuhiro Akaike
一宏 赤池
Shunsuke Matsumura
松村 俊介
Hiroyasu Ito
裕恭 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Yoshizawa Lime Industry Co Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Yoshizawa Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd, Yoshizawa Lime Industry Co Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP58034387A priority Critical patent/JPS59159945A/en
Publication of JPS59159945A publication Critical patent/JPS59159945A/en
Publication of JPH0237415B2 publication Critical patent/JPH0237415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce metallic Mg at a low cost by heating and reducing the compounded material of dolomite clinker and CaC2 in a vacuum, recovering Mg vapor, and recycling the CaC2 produced from the residue. CONSTITUTION:CaC2 is compounded as a reducing agent with dolomite clinker, and the compounded material is heated and reduced in a vacuum in a reducing furnace, then metallic Mg is separated and recovered as a gaseous phase. On the other hand, a carbon material is compounded with a part of the residue in the reducing furnace contg. CaO and carbon and the residue is subjected to arc heating in a carbide furnace, by which CaC2 is produced. The CaC2 is recycled as the reducing agent for said dolomite clinker. The remaining part of the residue of the reducing furnace is charged, if necessary, into a combustion furnace to burn the carbon-contg. material in the residue, thereby making the residue consisting essentially of CaO. Iron oxide is compounded with such residue and the residue is melted in a melting furnace, by which calcium ferrite is produced.

Description

【発明の詳細な説明】 本発明はドロマイトよ多金属マグネシウム及びカルシウ
ム・フェライトを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polymetallic magnesium and calcium ferrite from dolomite.

マグネシウムは実用金属として最も軽く、比強度及び比
耐力が最高で、また加工性が良好であシ、その他チタン
製造用、合金用、ダイカスト鋳物用等に広い用途を有す
る金属であるが、我国では製造エネルギーコスト高のた
めにアルミニウムに比べて価格が高いことが原因してそ
の使用がはば壕れている状態である。
Magnesium is the lightest practical metal, has the highest specific strength and yield strength, has good workability, and has a wide range of uses such as titanium production, alloys, and die-casting. Its use is discouraged due to its high cost compared to aluminum due to the high energy cost of production.

近来、マグネシウム製造法として、ドロマイトクリンカ
−、マグ坏シアクリンカー等の酸化マグネシウム含有物
質を高温で熱還元して金属マグネシウムを回収する還元
製錬法が行われるようになリ、ドロマイトをフェロシリ
コンで還元する7工ロシリコン還元法、酸化マグネシウ
ムを炭化カルシウムで還元する炭化カルシウム還元法、
酸化マグネシウムを炭素材〔コークス〕で還元する炭素
還元法等その使用する還元剤によシ種々の方式が考案さ
れている。然し、現在のところ金属マグネシウム製造コ
ストの膚からフェロシリコン還元法が多く採用されてい
る。
In recent years, reduction smelting methods have been used to produce magnesium by thermally reducing magnesium oxide-containing substances such as dolomite clinker and magshea clinker at high temperatures to recover metallic magnesium. 7-step silicon reduction method to reduce, calcium carbide reduction method to reduce magnesium oxide with calcium carbide,
Various methods have been devised depending on the reducing agent used, such as a carbon reduction method in which magnesium oxide is reduced with a carbon material (coke). However, at present, the ferrosilicon reduction method is often adopted due to the cost of producing metallic magnesium.

フェロシリコン還元法は、その還元反応が次式2式% によって示されるように、原料中のカルシウム成分はケ
イ酸カルシウムとして固定されるもので、この副製品は
主として土壌改良剤用として販売されている。この方法
は、全般的な製造エネルギーの効果的な利用という点で
未だ十分とは言われず、また副製品の価値があまシ高い
ものではない等の問題点を有する。
In the ferrosilicon reduction method, the reduction reaction is shown by the following formula 2, where the calcium component in the raw material is fixed as calcium silicate, and this by-product is mainly sold as a soil conditioner. There is. This method is still not said to be sufficient in terms of effective utilization of overall production energy, and has problems such as the value of the by-products is not very high.

本発明は、上記従来の金属マグネシウム製造方法の有す
る問題点を解決し、製造工程における熱エネルギーの有
・動態用、原料の効果的力循項使用、価値の高い副製品
の製造等によシ製造コストの低減を可能とする金属マグ
ネシウム製造方法、即ちドロマイトより金属マグネシウ
ム及びカルシウム・フェライトを製造する方法を提供せ
んとするものでおる。
The present invention solves the above-mentioned problems of the conventional metal magnesium production method, and improves the utilization of thermal energy in the production process, the effective use of raw materials, and the production of high-value by-products. It is an object of the present invention to provide a method for manufacturing magnesium metal that enables reduction of manufacturing costs, that is, a method for manufacturing magnesium metal and calcium ferrite from dolomite.

本発明のドロマイトよシ金属マグネシウム及びカルシウ
ム・フェライトを製造する方法は、ドロマイトクリンカ
−に還元剤として炭化カルシウムを配合し、該配合物を
還元炉中で真空下で加熱還元して金属マグネシウムを気
相として分離し回収し、且つ酸化カルシウム及び炭素を
含む前記還元炉の残渣の一部に炭素材を配合してカーバ
イド炉中でアーク加熱することによシ炭化カルシウムを
製造し、これを前記ドロマイトクリンカ−の還元剤とし
て循環使用することを特徴とするものであり、更に前記
の如く還元炉においてドロマイトクリンカ−と還元剤炭
化カルシウムの配合物を真空下で加熱還元して金属マグ
ネシウムを分離し回収すると共に、該還元炉の残渣のう
ち、還元剤の炭化カルシウムとして循環使用される量を
差引いた残部を燃焼炉に装入し、残渣中の含炭素物質を
燃焼させ、酸化カルシウムを主成分とする焼渣をつくり
、これに酸化鉄を配合し、溶融炉中で溶融してカルシウ
ム・フェライトを製造することを特徴とするものである
。以下実施例に基き工程系統図によってその詳細を説明
する。
The method of producing dolomite-metallic magnesium and calcium ferrite according to the present invention involves blending calcium carbide into dolomite clinker as a reducing agent, reducing the mixture by heating under vacuum in a reduction furnace to remove metallic magnesium. Calcium carbide is produced by separating and recovering the phase, blending a carbon material with a part of the residue of the reduction furnace containing calcium oxide and carbon, and heating the mixture with an arc in a carbide furnace. It is characterized by being reused as a reducing agent for clinker, and furthermore, as mentioned above, the mixture of dolomite clinker and reducing agent calcium carbide is heated and reduced under vacuum in a reducing furnace to separate and recover metallic magnesium. At the same time, the residue of the reduction furnace after subtracting the amount to be recycled as calcium carbide as a reducing agent is charged into a combustion furnace, and the carbon-containing substances in the residue are combusted to convert calcium oxide into a main component. This method is characterized by producing a sintered residue, blending it with iron oxide, and melting it in a melting furnace to produce calcium ferrite. The details will be explained below with reference to process diagrams based on examples.

第1図は本発明による製造工程の概要を示す工程系統図
である。
FIG. 1 is a process flow chart showing an outline of the manufacturing process according to the present invention.

原料ドロマイトは予め焼成したドロマイトクリンカ−と
して使用する。ドロマイトクリンカ−は粉砕機1で50
〜100μに粉砕され、秤量されて混合機2に送られ、
ここでカーバイド炉16(後述)で製造された炭化カル
シウムを配合される。炭化カルシウムの配合量はドロマ
イトクリンカ−中の酸化マグネシウムに対してほぼ等モ
ル量とする。十分に攪拌混合された配合物は造粒機6に
送られ、ここで結合材として炭化水素系好ましくはター
ル、ピッチ等の高炭素系物質を10%以下添加されて1
0〜20mのブリケットとされる。
The raw material dolomite is used as pre-fired dolomite clinker. Dolomite clinker is 50 in crusher 1
It is crushed to ~100μ, weighed and sent to mixer 2,
Here, calcium carbide produced in a carbide furnace 16 (described later) is blended. The amount of calcium carbide blended is approximately equimolar to the amount of magnesium oxide in the dolomite clinker. The thoroughly stirred and mixed blend is sent to a granulator 6, where less than 10% of a hydrocarbon-based material, preferably a high-carbon material such as tar or pitch, is added as a binder.
It is said to be briquettes with a length of 0 to 20 m.

上記ブリケットは乾燥・予熱器4に送られ、水分、揮発
分の除去と共に約6(10℃に予熱され還元炉5に装入
される。還元炉としては外部加熱式の竪型連続還元炉等
が使用出来る。還元炉は上部が予備加熱部、中間部が反
応部、下部が冷却部となシ、予備加熱部では金属マグネ
シウム蒸気の凝縮を防止するために1000〜11’O
0℃に、反応部では1100〜1200℃好ましくは1
150℃に少くとも2時間以上加熱保持され、酸化マグ
ネシウムは次式に従って還元されて気相として分離する
The briquettes are sent to a drying/preheating device 4, where moisture and volatile matter are removed, preheated to about 6°C (10°C), and charged into a reduction furnace 5.The reduction furnace may be an externally heated vertical continuous reduction furnace, etc. The reduction furnace has a preheating section at the top, a reaction section at the middle, and a cooling section at the bottom.
0°C, preferably 1100-1200°C in the reaction section
The temperature is maintained at 150° C. for at least 2 hours, and the magnesium oxide is reduced according to the following formula and separated as a gas phase.

Ca O@Mg o十c a Cx−+Mg↑+2ca
o+2C冷却部では、酸化カルシウム、炭素、未反応物
を含む反応残渣物が外部よシ空気によシロ00〜500
℃に冷却される。高温に加熱された空気はガス燃焼炉1
8(後述〕の燃焼用空気としてオU用される。
Ca O@Mg o1c a Cx-+Mg↑+2ca
In the o+2C cooling section, reaction residues containing calcium oxide, carbon, and unreacted substances are removed from the outside by air at a temperature of 00 to 500.
cooled to ℃. The air heated to high temperature is passed through the gas combustion furnace 1.
8 (described later) is used as combustion air.

還元炉5において必要とする熱量は、カーバイド炉16
(後述)で発生した一酸化炭素ガス及びその不足熱量分
補給のための若干の燃料油(重油等)をガス燃焼炉18
(後述)で酸化燃焼することにより、約1600〜16
50℃の熱風をつくシ加熱熱源として供給される。
The amount of heat required in the reduction furnace 5 is the same as that in the carbide furnace 16.
(described later) and some fuel oil (heavy oil, etc.) to make up for the lack of heat in the gas combustion furnace 18.
(described later), approximately 1,600 to 16
It is supplied as a heating heat source that blows hot air at 50°C.

前記の如く還元炉5において気相として分離された金属
マグネシウム蒸気は、冷却器6に導かれ、に送られ、こ
こで再び真空下でガス又は電気加熱により5’oO〜9
50t:に加熱され、高純度の金属゛マグネシウム蒸気
となシ、レトルト冷却器8に入って200〜30011
.に冷却され、液状金属マグネシウムとして回収される
。然して、レトルト蒸留炉7の下部に堆積した酸化マグ
ネシウム、酸化カルシウム、炭素等を含む残渣は一定量
蓄積後取出されて前記の粉砕機1に送られ、原料に繰返
し配合される。
The metal magnesium vapor separated as a gas phase in the reduction furnace 5 as described above is led to the cooler 6 and sent there to 5'oO~9 by gas or electric heating under vacuum again.
It is heated to 50 tons, becomes high purity metal magnesium vapor, and enters the retort cooler 8 to 200 to 30,011 tons.
.. It is cooled to a temperature and recovered as liquid magnesium metal. After a certain amount of the residue containing magnesium oxide, calcium oxide, carbon, etc. deposited in the lower part of the retort distillation furnace 7 is accumulated, it is taken out and sent to the pulverizer 1, where it is repeatedly added to the raw material.

前記し斗ルト冷却器8に蓄えられた液状金属マグネ。シ
ウムは一定量に達したところで鋳造機9に運ばれて鋳造
され、金属マグネシウムインゴットとして製品化される
The liquid metal magnet stored in the funnel cooler 8. When the amount of ium reaches a certain level, it is transported to the casting machine 9 and cast, and is manufactured into a metal magnesium ingot.

尚、前述の還元炉5及び冷却器6は真空発生設備10に
よハまたレトルト蒸留炉7及びレトルト冷却器8は真空
発生設備11により、夫々1〜5 Torr及び10〜
20 Torrの真空状態に保持されるものである。
The above-mentioned reduction furnace 5 and cooler 6 are operated by a vacuum generation equipment 10, and the retort distillation furnace 7 and retort cooler 8 are operated by a vacuum generation equipment 11 at a pressure of 1 to 5 Torr and 10 to 10 Torr, respectively.
It is maintained in a vacuum state of 20 Torr.

還元炉5よシ出た酸化カルシウム、炭素、未反応物等を
含む反応残渣物は、貯槽に貯えられ、その1部(約半量
)は混合機12でコークス等の炭素材を配合される。コ
ーク−スの配合量は、配合後の炭素量が酸化カルシウム
に対してモル量比で6〜3.3:1となるように秤量調
整される。混合機12を出た酸化カルシウム、炭素を主
成分とする配合物は、粉砕機13によシ200〜500
μに粉砕され、造粒機14で20〜401mのブリケラ
九′。
The reaction residue containing calcium oxide, carbon, unreacted substances, etc. discharged from the reduction furnace 5 is stored in a storage tank, and a portion (approximately half) of it is blended with carbon material such as coke in a mixer 12. The amount of coke to be blended is adjusted so that the amount of carbon after blending is in a molar ratio of 6 to 3.3:1 to calcium oxide. The mixture containing calcium oxide and carbon as main components that comes out of the mixer 12 is passed through the crusher 13 to a powder of 200 to 500 ml.
The briquettes 9' are pulverized to 20 to 401 m in the granulator 14.

れ、貯槽を経て乾燥・予熱器15へ送られる。乾燥・予
熱器15においては、製造工程中に発生した高温の空気
又は排ガスを用いてコークス中の水分と揮発分の一部を
除去乾燥すると共に約600〜400℃に予備加熱が行
われる。
The water is then sent to the dryer/preheater 15 via the storage tank. In the drying/preheating device 15, high-temperature air or exhaust gas generated during the manufacturing process is used to remove some of the moisture and volatile matter in the coke and dry it, as well as preheating the coke to about 600 to 400°C.

上記の乾燥予熱されたブリケットは、次にカーバイド炉
16へ送られ、ここでアーク加熱によシ1800〜20
00℃の高温に加熱され、次式−によシ炭化カルシウム
が製造される。
The above dry preheated briquettes are then sent to a carbide furnace 16 where they are heated to 1800 to 20
The mixture is heated to a high temperature of 00°C to produce calcium carbonate according to the following formula.

CaO+3C−+  CaC2+ Co  ↑カーバイ
ド炉16から出た溶融炭化カルシウムは、取鍋等の受は
容器に移され、大気冷却され固化した後、粉砕機17で
50〜100μに粉砕され、前記の混合機2に返され、
ドロマイトクリンカ−の還元剤として循環使用される、 カーバイド炉16で副生ずる一酸化炭素ガスは、回収し
て除塵、洗滌後、ガス燃焼炉18に導いて燃焼させ、高
温の燃焼ガスを還元炉5の加熱用熱源其他に利用する。
CaO+3C-+ CaC2+ Co ↑The molten calcium carbide discharged from the carbide furnace 16 is transferred to a container such as a ladle, cooled in the atmosphere and solidified, and then crushed to a size of 50 to 100 μ by the crusher 17, and then sent to the mixer described above. returned to 2,
Carbon monoxide gas produced as a by-product in the carbide furnace 16, which is recycled and used as a reducing agent for dolomite clinker, is recovered, dust removed and washed, and then led to the gas combustion furnace 18 for combustion, and the high-temperature combustion gas is sent to the reduction furnace 5. Used as a heat source for heating and other purposes.

不足熱量の補給のために重油等が使用されることは前述
の通シである。
As mentioned above, heavy oil and the like are used to replenish the insufficient amount of heat.

次に、還元炉5よシ出た残渣物のうち、前記の如く還元
剤炭化カルシウムとして循環使用される量を差引いた残
部は、残渣燃焼炉19へ送られ、還元炉15で生成した
炭素及び未反応の炭化カルシウム等含炭素物質を空気に
よシ燃焼させて酸化カルシウムを主成分とする残渣(清
澄)とされる。
Next, among the residues discharged from the reduction furnace 5, the remainder after subtracting the amount to be recycled as the reducing agent calcium carbide as described above is sent to the residue combustion furnace 19, where the carbon and carbon produced in the reduction furnace 15 are removed. Unreacted carbon-containing substances such as calcium carbide are combusted with air to form a residue (clarified) whose main component is calcium oxide.

残渣燃焼炉19には廃熱ボイラーが付属しておで回収さ
れた高温ガス及び空気の熱量によシロ0〜4 CI K
f/、、 Gの水蒸気を発生回収し、その大部分は発電
用に使用される。
The residue combustion furnace 19 is equipped with a waste heat boiler, which has a heating capacity of 0 to 4 CI K depending on the calorific value of the high-temperature gas and air recovered by the boiler.
f/,, G water vapor is generated and recovered, most of which is used for power generation.

残渣燃焼炉19よシ出る清澄は、混合機20に送られて
、ここで酸化鉄と攪拌混合される。
The fining from the residue combustion furnace 19 is sent to a mixer 20 where it is stirred and mixed with iron oxide.

酸化鉄としては、製鉄プラントの圧延工程において副生
ずるミルスケール等の使用が可能で、又酸化第〒鉄、酸
化第二鉄のいずれでも、又はその混合物でも差支えはな
い。酸化鉄の配合量は、その組成によって調整する必要
があるが、概ね配合すべき清澄中の酸化カルシウムと等
モル量を配合することが望ましい。
As the iron oxide, mill scale produced as a by-product in the rolling process of a steel plant can be used, and either ferrous oxide, ferric oxide, or a mixture thereof may be used. The amount of iron oxide to be blended needs to be adjusted depending on its composition, but it is generally desirable to blend it in an equimolar amount to the amount of calcium oxide in the clarifier to be blended.

計量された酸化鉄は乾燥・予熱器21に送られ、ここで
残液燃焼炉19よ)の高温排ガスで乾燥され、水分を除
去し予熱された後前記の如く混合機20に送られ、清澄
と配合される。
The weighed iron oxide is sent to the dryer/preheater 21, where it is dried with high-temperature exhaust gas from the residual liquid combustion furnace 19), and after removing moisture and preheating, it is sent to the mixer 20 as described above to be clarified. It is blended with.

酸化カルシウムを主成分とする清澄及び酸化鉄の配合物
は、溶1炉22に送られ、電気加熱等によ、91125
〜1250℃(酸化鉄中の酸化第−鉄及に加熱され、次
式によシカルシウム・フェライトが生成される。
The clarified and iron oxide mixture containing calcium oxide as a main component is sent to the melting furnace 22 and heated by electric heating or the like.
~1250°C (ferric oxide in iron oxide is heated to produce calcium ferrite according to the following formula.

CaO+nFe0 −+ CIL*nF60CaO+n
Fe、93−+ Ca@nFe2O3酸化カルシウム(
清澄)及び酸化鉄は、それぞれ残渣燃焼炉19及び乾燥
・予熱器21よシ高温状態で供給されるため、溶融のだ
めに供給される熱量は小さいものとなる。
CaO+nFe0 −+ CIL*nF60CaO+n
Fe, 93-+ Ca@nFe2O3 Calcium oxide (
Since the fining) and iron oxide are supplied at high temperatures from the residue combustion furnace 19 and the drying/preheater 21, respectively, the amount of heat supplied to the melting reservoir is small.

上記生成したカルシウム・フェライトの溶融物は冷却器
26で約100〜200℃に冷却され、粉砕機24、造
粒機25を経てカルシウム・フェライトのブリケットと
して製品化される。カルシウム噛フェライトは製鋼造滓
剤として価値の高い製品である。
The calcium ferrite melt produced above is cooled to about 100 to 200°C in a cooler 26, passes through a crusher 24 and a granulator 25, and is manufactured into calcium ferrite briquettes. Calcium-grained ferrite is a highly valuable product as a steelmaking slag agent.

以上述べたように、本発明の方法は、原料ドロマイトと
還元剤炭化カルシウムの新規な組合せにより、金属マグ
ネシウムを製造すると共′に、製鉄所で発生する安価な
酸化鉄を副原料として副生品として価値の高いカルシウ
ム・フェライトを製造し、又原料の効果的な循環使用、
製造工程における熱エネルギーの有効な利用により金属
マグネシウムの生産コストの低減を可能とするものであ
る、以上の説明における熱エネルギー利用方法は1例で
あり、ほかにも燃料種類等の相異により別の組合せが可
能であることは言うまでもない。
As described above, the method of the present invention uses a novel combination of raw material dolomite and reducing agent calcium carbide to produce metallic magnesium, and also produces by-products using cheap iron oxide generated in steel mills as an auxiliary raw material. We manufacture calcium ferrite with high value as
The effective use of thermal energy in the manufacturing process makes it possible to reduce the production cost of magnesium metal.The method of utilizing thermal energy explained above is just one example, and there are other methods depending on the type of fuel, etc. It goes without saying that combinations of these are possible.

次に本発明の方法の実施例について述べる。Next, examples of the method of the present invention will be described.

(1)内径28■、長さ600mの管状炉に、ドロマイ
トクリンカ−と炭化カルシウムの配合物を、内径10癩
、長さ15祁のブリケット(ドロマイトクリンカ−中の
MgOと炭化カルシウム中のCaC7のモル比を1:1
とした)としたものを装填し、圧力4〜5Torrの下
で、温度1100〜1200℃に加熱し、2〜3時間反
応させ、金属マグネシウムを還元回収1−だ。そのとき
の原料、回収金属マグネシウム(粉状)、残渣のバラン
スは表−1の通シであった。
(1) In a tube furnace with an inner diameter of 28 mm and a length of 600 m, a mixture of dolomite clinker and calcium carbide is placed in a briquette with an inner diameter of 10 mm and a length of 15 mm (MgO in the dolomite clinker and CaC7 in the calcium carbide). molar ratio 1:1
) was charged, heated to a temperature of 1100 to 1200° C. under a pressure of 4 to 5 Torr, and reacted for 2 to 3 hours to reduce and recover metallic magnesium. At that time, the balance of raw materials, recovered metal magnesium (powder), and residue was as shown in Table 1.

(2)  内径120−1長さ1000−の管状炉を用
いて、実施例(1)で用いた原料を、圧力5 Torr
の真空下で、温度1150℃で2時間反応させて金属マ
グネシウムを回収し、その残渣を焼いて酸化させた清澄
166gに製鋼圧延工程の回収酸化鉄260gを添加し
てよく混合した後、100gを分取し、アルミナ製のル
ツボに入れ、電気炉で溶融した。
(2) Using a tube furnace with an inner diameter of 120 mm and a length of 100 mm, the raw material used in Example (1) was heated to a pressure of 5 Torr.
260 g of iron oxide recovered from the steelmaking rolling process was added to 166 g of clarified magnesium, which was oxidized by burning the residue and thoroughly mixed, and then 100 g of magnesium was recovered. It was collected, placed in an alumina crucible, and melted in an electric furnace.

清澄及び酸化鉄の組成は夫々表−2及び表−6に溶融は
1160℃で開始し、1255℃でほぼ全量溶融した。
The compositions of refined iron oxide and iron oxide are shown in Tables 2 and 6, respectively. Melting started at 1160°C and almost all of the iron oxide melted at 1255°C.

溶融物を冷却後、X線回折分析を行った結果、CaO@
FeO及びCBOsFezOsを主成分とするピークが
検出され、カルシウム・フェライトの生成が確認された
After cooling the melt, X-ray diffraction analysis revealed that CaO@
Peaks containing FeO and CBOsFezOs as main components were detected, confirming the production of calcium ferrite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるドロマイトよ多金属マグネシウム
及びカルシウム・フェライトを製造する方法の工程系統
図である。 代理人 弁理士 木 村 三 朗
FIG. 1 is a process diagram of a method for producing polymetallic magnesium and calcium ferrite from dolomite according to the present invention. Agent Patent Attorney Sanro Kimura

Claims (2)

【特許請求の範囲】[Claims] (1)  ドロマイトクリンカーに還元剤として炭化カ
ルシウムを配合し、該配合物を還元炉中で真空下で加熱
還元して金属マグネシウムを気相として分離し回収し、
且つ酸化カルシウム及び炭素を含む前記還元炉の残渣の
一部に炭素材を配合してカーバイド炉中でアーク加熱す
ることにより炭化カルシウムを製造し、これを前記ドロ
マイトクリンカ−の還元剤として循環使用することを特
徴とするドロマイトより金属マグネシウムを製造する方
法。
(1) Calcium carbide is blended into dolomite clinker as a reducing agent, and the blend is reduced by heating under vacuum in a reduction furnace to separate and recover metallic magnesium as a gas phase;
In addition, a carbon material is blended with a portion of the residue from the reducing furnace containing calcium oxide and carbon, and the mixture is arc-heated in a carbide furnace to produce calcium carbide, which is recycled as a reducing agent for the dolomite clinker. A method for producing metallic magnesium from dolomite, characterized by:
(2)還元炉においてドロマイトクリンカ−と還元剤炭
化カルシウムの配合物を真空下で加熱還元して金属マグ
ネシウムを分離し回収し、該還元炉の残渣のうち、還元
剤の炭化カルシウムとして循環使用される景を差引いた
残部を燃焼炉に装入し、残渣中の含炭素物質を燃焼させ
、酸化カルシウムを主成分とする焼渣をつ〈υ、これに
酸化鉄を配合し、溶融炉中で溶融してカルシウム・フェ
ライトを製造することを特徴とするドロマイトよ多金属
マグネシウム及びカルシウム・フェライトを製造する方
法。
(2) In a reduction furnace, a mixture of dolomite clinker and reducing agent calcium carbide is heated and reduced under vacuum to separate and recover metallic magnesium, and the residue from the reduction furnace is recycled and used as reducing agent calcium carbide. The remaining material after subtracting the carbon content is charged into a combustion furnace, the carbon-containing substances in the residue are burned, and a sintered residue containing calcium oxide as the main component is produced. A method for producing polymetallic magnesium and calcium ferrite from dolomite, which comprises melting dolomite to produce calcium ferrite.
JP58034387A 1983-03-04 1983-03-04 Method for producing metallic magnesium and calcium ferrite from dolomite Granted JPS59159945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034387A JPS59159945A (en) 1983-03-04 1983-03-04 Method for producing metallic magnesium and calcium ferrite from dolomite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034387A JPS59159945A (en) 1983-03-04 1983-03-04 Method for producing metallic magnesium and calcium ferrite from dolomite

Publications (2)

Publication Number Publication Date
JPS59159945A true JPS59159945A (en) 1984-09-10
JPH0237415B2 JPH0237415B2 (en) 1990-08-24

Family

ID=12412754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034387A Granted JPS59159945A (en) 1983-03-04 1983-03-04 Method for producing metallic magnesium and calcium ferrite from dolomite

Country Status (1)

Country Link
JP (1) JPS59159945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965524A (en) * 2012-12-18 2013-03-13 东北大学 Method for smelting magnesium through vacuum thermal reduction of precast pellets
JP2013170286A (en) * 2012-02-20 2013-09-02 Tohoku Univ Method for operating power generation system
CN107541608A (en) * 2016-06-29 2018-01-05 狄保法 A kind of melt carbothermy magnesium technique and refining magnesium system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102506U (en) * 1991-02-01 1992-09-03 古河電気工業株式会社 flexible flat cable
JPH05159632A (en) * 1991-03-29 1993-06-25 Sumitomo Electric Ind Ltd Flat cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170286A (en) * 2012-02-20 2013-09-02 Tohoku Univ Method for operating power generation system
CN102965524A (en) * 2012-12-18 2013-03-13 东北大学 Method for smelting magnesium through vacuum thermal reduction of precast pellets
CN107541608A (en) * 2016-06-29 2018-01-05 狄保法 A kind of melt carbothermy magnesium technique and refining magnesium system

Also Published As

Publication number Publication date
JPH0237415B2 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
US4124404A (en) Steel slag cement and method for manufacturing same
US5198190A (en) Method of recycling hazardous waste
JP5881886B1 (en) Method and apparatus for recovering iron and zinc from electric furnace dust
CA2720896C (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JPS62267409A (en) Accumulation mill apparatus and its operation
AU2008295563A1 (en) Direct smelting of zinc bearing compounds to produce metallic zinc
US5501721A (en) Process for producing pig iron and cement clinker
US6241797B1 (en) Process for reducing oxidic slags
KR101839399B1 (en) Sodium based briquette with high efficiency of de-p and de-s simultaneously and manufacturing method thereof
US5728193A (en) Process for recovering metals from iron oxide bearing masses
JPS59159945A (en) Method for producing metallic magnesium and calcium ferrite from dolomite
KR100764259B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP2004143492A (en) Method of melting extra-low phosphorus stainless steel
JPH1053820A (en) Treatment of metal compounds of steel dust, sludge and/ or ore
CN108342585B (en) A kind of method of comprehensive utilization of magnesium-smelting reduction slag
JP2004285473A (en) METHOD FOR RECOVERING VALUABLE METAL FROM V, Mo, AND NICKEL-CONTAINING WASTE
US2379576A (en) Process for producing metallic magnesium from magnesium silicates
AU2007285415A1 (en) A method for the commercial production of iron
JP4360117B2 (en) Method for manufacturing roadbed material
EP3921447B1 (en) Process for refining steel and dephosphorization agent used in said process
JPS6352098B2 (en)
RU2248400C1 (en) Method for scouring of blast furnace
JPS6154098B2 (en)
US2627458A (en) Production of aluminum-silicon alloys
JPH0125367B2 (en)