JPH0892633A - Production of high strength and high toughness steel - Google Patents

Production of high strength and high toughness steel

Info

Publication number
JPH0892633A
JPH0892633A JP25765794A JP25765794A JPH0892633A JP H0892633 A JPH0892633 A JP H0892633A JP 25765794 A JP25765794 A JP 25765794A JP 25765794 A JP25765794 A JP 25765794A JP H0892633 A JPH0892633 A JP H0892633A
Authority
JP
Japan
Prior art keywords
weight
steel
temperature
strength
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25765794A
Other languages
Japanese (ja)
Other versions
JP3688311B2 (en
Inventor
Satoshi Tagashira
聡 田頭
Toshiro Yamada
利郎 山田
Shoichi Kadani
昇一 甲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25765794A priority Critical patent/JP3688311B2/en
Publication of JPH0892633A publication Critical patent/JPH0892633A/en
Application granted granted Critical
Publication of JP3688311B2 publication Critical patent/JP3688311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a high strength steel improved in crack propagating resistance. CONSTITUTION: A steel having a compsn. contg. 0.3 to 0.8% C, 0.5 to 2.0% Mn and 0.01% P and contg. one or >= two kinds of 0.005 to 0.02% N and 0.01 to 0.1% V, 0.01 to 0.1% Nb and 0.01 to 0.1% Ti is heated to the Ac3 point or above, is austenitized, is thereafter rapidly cooled to the temp. range of the martensite forming temp. or below and is held to the same temp. range. The steel to be used may contain 0.2 to 2.0% Cr, 0.2 to 2.0% Ni and 0.1 to 2.0% Mo as well and is used as various machine parts such as gears and chains, cutting tools or the like excellent in durability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亀裂伝播抵抗が高く、
刃物や工具、或いはチェーン,歯車等の各種機械部品と
して好適な強度及び靭性をもつ高強度高靭性鋼を製造す
る方法に関する。
The present invention has a high crack propagation resistance,
The present invention relates to a method for producing high strength and high toughness steel having suitable strength and toughness as various mechanical parts such as blades, tools, chains, and gears.

【0002】[0002]

【従来の技術】高炭素鋼等の高硬度材料は、各種機械部
品,刃物,工具等の広範な分野で使用されている。この
種の部品に要求される機械的特性には、高硬度,高強
度,高靭性,高疲労強度,耐摩耗性等がある。疲労特性
や耐摩耗性は、一般的に硬さや強度を高めることにより
向上する。しかし、硬さや強度を上昇させると、それに
伴い靭性が低下し、特に切欠き感受性の上昇に起因した
問題が大きくなる。各種機械部品等に使用される部材の
多くは、製造工程で先ず素材から打抜き,切削加工等に
よって部材形状に成形された後、熱処理によって調質さ
れる。その際、工業的な大量生産ラインにおいては表面
疵の保証が非常に困難である。たとえば、チェーンのリ
ンクプレートは、コイル状素材原板の高速打抜きにより
成形されることが通常である。打抜き後の素材端面に二
次剪断面及びそれに伴ったムシレが多発するが、これら
を除去することなく製品としての使用に供することが通
常である。
2. Description of the Related Art High hardness materials such as high carbon steel are used in various fields such as various machine parts, blades and tools. The mechanical properties required for this type of part include high hardness, high strength, high toughness, high fatigue strength, and wear resistance. Fatigue properties and wear resistance are generally improved by increasing hardness and strength. However, when the hardness and strength are increased, the toughness is reduced accordingly, and the problem caused by the increase in notch sensitivity becomes more serious. Many members used for various machine parts and the like are first heat-treated after being formed into a member shape by punching, cutting or the like from a raw material in a manufacturing process. At that time, it is very difficult to guarantee surface flaws in an industrial mass production line. For example, the link plate of a chain is usually formed by high-speed stamping of a coil-shaped raw material plate. After the punching, a secondary sheared surface and mussles associated therewith frequently occur on the end surface of the material, but it is usually used as a product without removing them.

【0003】生成した二次剪断面やムシレは、切欠き,
初期亀裂等として作用し、リンクプレートの靭性を著し
く低下させる原因となる。また、チェーンの高強度化を
図るためリンクプレート用材料の硬さを高めるとき、打
抜き端面の性状に起因する切欠き感受性が一層高くな
り、脆性破壊の危険を増大させる。機械部品用鋼で、引
張強さが1500N/mm2 以上、或いは硬さがHRC
45以上の高強度材を得る場合、部品成形後の熱処理に
より調質することが一般的である。しかし、焼入れ・焼
戻しで得られる金属組織は、焼戻しマルテンサイト組織
であり、亀裂伝播抵抗が低い。焼入れ・焼戻し処理によ
らずに、高強度鋼の強化法として恒温変態処理による方
法が開発されている。たとえば、特公昭51−2949
2号公報では、低合金炭素鋼をマルテンサイト変態温度
以上の温度に恒温保持することにより、ベイナイト組織
をもつ鋼板を製造している。得られた鋼板は、硬さHV
473及び引張強さ1533N/mm2 で高い延性を示
す。
The generated secondary shear planes and mussles are notches,
It acts as an initial crack or the like, which causes a significant decrease in the toughness of the link plate. Further, when the hardness of the link plate material is increased in order to increase the strength of the chain, the notch susceptibility due to the properties of the punched end face becomes even higher, increasing the risk of brittle fracture. Steel for machine parts with tensile strength of 1500 N / mm 2 or more or hardness of HRC
When obtaining a high-strength material of 45 or more, it is general to heat-treat after molding the parts. However, the metal structure obtained by quenching and tempering is a tempered martensite structure and has a low crack propagation resistance. A method of isothermal transformation treatment has been developed as a method of strengthening high-strength steel instead of quenching / tempering treatment. For example, Japanese Patent Publication No. 51-2949
According to Japanese Patent Laid-Open No. 2 (1993), a steel sheet having a bainite structure is manufactured by keeping a low-alloy carbon steel at a temperature above the martensitic transformation temperature. The obtained steel sheet has a hardness HV.
High ductility at 473 and a tensile strength of 1533 N / mm 2 .

【0004】[0004]

【発明が解決しようとする課題】ベイナイト化によって
更に引張強さを向上させるためには、恒温変態温度を下
げる必要がある。しかし、この方法では、恒温保持温度
がマルテンサイト変態温度以上に限定されているため
に、得られる引張強さに自ら限界が生じる。このような
ことから、この方法では、引張強さが1500N/mm
2 を超える鋼板が得られない。恒温変態処理によって高
強度化する方法として、特公昭64−8051号公報に
「引上げオーステンパー法」と称する方法が開示されて
いる。この方法は、オーステナイト化した鋼をマルテン
サイト変態点以下に一旦焼き入れ、その後にベイナイト
変態温度に再加熱することにより、組織中にマルテンサ
イトを混在させて強度を高めようとするものである。し
かし、この方法は、三段階の熱処理を必要とし、温度管
理及び時間管理が厳密であるために連続熱処理ライン以
外では生産効率が悪い。本発明は、このような問題を解
消すべく案出されたものであり、特定された成分調整及
び恒温保持温度の組合せにより、引張強さが1500N
/mm2 を超え、しかも優れた亀裂伝播抵抗を示す高強
度高靭性鋼を得ることを目的とする。
In order to further improve the tensile strength by bainizing, it is necessary to lower the isothermal transformation temperature. However, in this method, since the isothermal holding temperature is limited to the martensitic transformation temperature or higher, the tensile strength to be obtained has its own limit. Therefore, the tensile strength of this method is 1500 N / mm.
Steel sheets exceeding 2 cannot be obtained. As a method for increasing the strength by a constant temperature transformation treatment, Japanese Patent Publication No. Sho 64-8051 discloses a method called "pulling austempering method". According to this method, the austenitized steel is once quenched below the martensitic transformation point and then reheated to the bainite transformation temperature to mix martensite in the structure to increase the strength. However, this method requires three stages of heat treatment, and since temperature control and time control are strict, production efficiency is poor except for a continuous heat treatment line. The present invention has been devised to solve such a problem, and the tensile strength of 1500 N can be obtained by the combination of the specified component adjustment and the constant temperature holding temperature.
The object is to obtain a high-strength and high-toughness steel having a crack resistance of more than 1 / mm 2 and excellent crack propagation resistance.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、C:0.3〜0.8重量%,M
n:0.5〜2.0重量%及びP:0.01重量%以下
を含み残部Feの基本組成にN:0.005〜0.02
重量%,V:0.01〜0.1重量%,Nb:0.01
〜0.1重量%及びTi:0.01〜0.1重量%の1
種又は2種以上を含有させた鋼を、Ac3 点以上の温度
に加熱してオーステナイト化した後、220℃以上でマ
ルテンサイト生成温度以下の温度域に急冷し、該温度域
に10〜90分保持することを特徴とする。本発明で使
用する鋼材は、前掲した基本成分に加え、更にCr:
0.2〜2.0重量%,Ni:0.2〜2.0重量%及
びMo:0.1〜2.0重量%の1種又は2種以上を必
要に応じ含むこともある。
In order to achieve the object, the production method of the present invention is C: 0.3 to 0.8% by weight, M
n: 0.5 to 2.0 wt% and P: 0.01 wt% or less, and N: 0.005 to 0.02 in the basic composition of the balance Fe.
% By weight, V: 0.01 to 0.1% by weight, Nb: 0.01
~ 0.1 wt% and Ti: 0.01-0.1 wt% 1
, Or steel containing two or more kinds is heated to a temperature of Ac 3 point or more to austenite, and then rapidly cooled to a temperature range of 220 ° C. or higher and a temperature of martensite formation temperature or lower, and the temperature range is 10 to 90. It is characterized by holding minutes. The steel material used in the present invention includes, in addition to the above-mentioned basic components, Cr:
If necessary, one or more of 0.2 to 2.0% by weight, Ni: 0.2 to 2.0% by weight, and Mo: 0.1 to 2.0% by weight may be contained.

【0006】[0006]

【作用】本発明においては、C−Mn鋼を基本成分と
し、P含有量を低減すると共に、必要な合金元素を添加
した鋼材を使用する。この鋼材にマルテンサイト変態温
度以下の温度域に恒温保持することを特徴とする熱処理
を施すとき、旧オーステナイト粒界の強靭化及び旧オー
ステナイト粒径の微細化により亀裂伝播抵抗が大きくな
る。本発明は、この知見に基づき完成されたものであ
り、成分調整と恒温保持条件との特定された組合せによ
って、高強度及び高靭性を呈する複合組織にするもので
ある。本発明に従って製造された鋼が優れた亀裂伝播抵
抗を示す理由は、次のように推察される。すなわち、合
金成分の含有量を適切に調整し、且つマルテンサイト変
態点以下の温度域で恒温保持するとき、下部ベイナイト
相を主相とする金属組織が生成する。この金属組織は、
旧オーステナイト粒界破壊に起因した脆性破壊を効果的
に抑制する。
In the present invention, a steel material containing C-Mn steel as a basic component, reducing the P content and adding necessary alloying elements is used. When this steel material is subjected to a heat treatment characterized by being kept at a temperature below the martensitic transformation temperature, the crack propagation resistance increases due to the toughness of the former austenite grain boundaries and the refinement of the former austenite grain size. The present invention has been completed based on this finding, and provides a composite structure exhibiting high strength and high toughness by a specified combination of component adjustment and constant temperature holding conditions. The reason why the steel produced according to the present invention exhibits excellent crack propagation resistance is presumed as follows. That is, when the content of the alloy component is appropriately adjusted and the isothermal holding is performed in the temperature range below the martensitic transformation point, a metal structure having a lower bainite phase as a main phase is generated. This metallic structure is
Effectively suppress brittle fracture due to former austenite grain boundary fracture.

【0007】金属組織の作用は、後述する実施例から明
らかなように、本発明者等の実験により確認されたもの
である。すなわち、疲労予亀裂を付けた試験片を引張試
験に供し、亀裂伝播抵抗に及ぼす熱処理の影響を調査し
た。同じ硬さで比較した場合、恒温保持処理した鋼板
は、焼入れ・焼戻し処理を施した鋼板に比べ旧オーステ
ナイト粒界破壊の出現率が低く、亀裂伝播抵抗が高いこ
とが明らかになった。保持温度が鋼材のマルテンサイト
変態点より低い恒温保持処理は、マルテンパーと呼ばれ
ており、マルテンサイト変態点以下に急冷された時点で
マルテンサイト変態点からの過冷度に応じてマルテンサ
イトが生成する。マルテンサイト変態は、非等温変態で
あることから恒温保持中には進行せず、生成したマルテ
ンサイトが直ちに焼き戻されて焼戻しマルテンサイトと
なる。このとき、未変態オーステナイトから等温変態的
に下部ベイナイトが生成する。
The action of the metallic structure has been confirmed by experiments by the present inventors, as will be apparent from the examples described later. That is, the fatigue precracked test piece was subjected to a tensile test to investigate the effect of heat treatment on the crack propagation resistance. When compared at the same hardness, it was revealed that the steel sheet subjected to the isothermal holding treatment had a lower occurrence rate of the former austenite intergranular fracture and a higher crack propagation resistance than the steel sheet subjected to the quenching / tempering treatment. The isothermal holding treatment in which the holding temperature is lower than the martensitic transformation point of steel is called martemper, and when it is rapidly cooled below the martensitic transformation point, martensite is generated according to the degree of supercooling from the martensitic transformation point. To do. The martensite transformation does not proceed during the isothermal holding because it is a non-isothermal transformation, and the produced martensite is immediately tempered to become tempered martensite. At this time, lower bainite is isothermally transformed from untransformed austenite.

【0008】マルテンサイト変態点直下の恒温保持温度
では、マルテンサイト変態量が比較的少なく、生成した
マルテンサイトを核としてベイナイト変態が加速され
る。その結果、下部ベイナイトを主相とする組織が形成
される傾向を呈する。このようにマルテンパー処理で得
られる金属組織は、鋼材の成分にもよるが、本発明が対
象としている炭素鋼では多量のベイナイトを含む金属組
織となる。本発明に従って恒温保持処理した鋼板が焼入
れ・焼戻し処理を施した鋼板に比較して優れた亀裂伝播
抵抗を示す理由は明らかでない。しかし、焼戻しマルテ
ンサイトと下部ベイナイトでは析出する炭化物の組成や
形状,析出面方位が異なっていることから、炭化物形態
の相違が靭性向上に影響しているものと推察される。ま
た、恒温保持処理材の方が粒界炭化物の析出が少ないこ
とに伴い、旧オーステナイト粒界割れが抑制されたこと
も一因であると考えられる。
At the isothermal holding temperature just below the martensite transformation point, the amount of martensite transformation is relatively small, and the bainite transformation is accelerated with the produced martensite as a nucleus. As a result, a structure having lower bainite as a main phase tends to be formed. As described above, the metal structure obtained by the martempering treatment is a metal structure containing a large amount of bainite in the carbon steel targeted by the present invention, although it depends on the composition of the steel material. It is not clear why the steel sheet that has been subjected to the isothermal holding treatment according to the present invention exhibits superior crack propagation resistance as compared with the steel sheet that has been subjected to the quenching and tempering treatment. However, since tempered martensite and lower bainite differ in the composition and shape of the precipitated carbide and the orientation of the precipitation plane, it is speculated that the difference in carbide morphology affects the improvement in toughness. It is also considered that the former austenite intergranular cracks were suppressed due to less precipitation of intergranular carbides in the isothermal holding treated material.

【0009】恒温保持処理で1500N/mm2 以上の
引張強さをもつベイナイト組織を得るためには、保持温
度を調整する必要がある。恒温保持処理した鋼材の引張
強さと保持温度との関係は、低合金炭素鋼の場合、成分
系に依らずほぼ一定している。具体的には、1500N
/mm2 以上では、350℃程度以下にすることが要求
される。鋼材のマルテンサイト変態点は成分系に依って
異なり、保持温度がマルテンサイト変態点直上である場
合、ベイナイト変態速度が著しく低下する。この温度域
で恒温保持処理すると、ベイナイト変態が不十分にな
り、保持処理終了後の冷却段階で未変態オーステナイト
がマルテンサイト変態を起こし易い。このとき生成する
マルテンサイトは、不安定な残留オーステナイトを伴っ
たMA相と呼ばれ、靭性に乏しい。すなわち、マルテン
サイト変態点直上で恒温保持したものは、靭性の乏しい
材料となる。
In order to obtain a bainite structure having a tensile strength of 1500 N / mm 2 or more in the isothermal holding treatment, it is necessary to adjust the holding temperature. In the case of low alloy carbon steel, the relationship between the tensile strength and the holding temperature of the steel material subjected to the isothermal holding treatment is almost constant regardless of the component system. Specifically, 1500N
Above / mm 2 , it is required to be about 350 ° C or lower. The martensitic transformation point of steel differs depending on the component system, and when the holding temperature is just above the martensitic transformation point, the bainite transformation rate is significantly reduced. If the isothermal holding treatment is performed in this temperature range, the bainite transformation becomes insufficient, and the untransformed austenite is likely to undergo the martensite transformation in the cooling stage after the holding treatment. The martensite formed at this time is called an MA phase accompanied by unstable retained austenite, and has poor toughness. That is, a material kept at a constant temperature just above the martensitic transformation point becomes a material having poor toughness.

【0010】これに対し、マルテンサイト変態点直下の
温度で恒温保持すると、保持温度に焼き入れされたとき
生成するマルテンサイトが直ちに焼き戻され、靭性が向
上する。また、未変態オーステナイトは、迅速に下部ベ
イナイトに変態する。したがって、マルテンサイト変態
点直下の温度で恒温保持することにより、靭性の高い材
料が得られる。成分系の影響をみると、P含有量の低減
は、旧オーステナイト粒界の強度を高め、粒界破壊を抑
制する。しかし、P低減のみでは、亀裂伝播抵抗の改善
が不十分である。この点、N,V,Nb,Tiを添加し
て旧オーステナイト粒径を微細化すると、亀裂伝播抵抗
に関し最大の効果が発揮される。すなわち、P低減に依
って強化した旧オーステナイト粒径を微細化することに
より、亀裂伝播抵抗が大幅に向上する。また、旧オース
テナイト粒径の微細化によってベイナイト変態が促進さ
れるため、熱処理時間も短縮される。
On the other hand, when isothermal holding is carried out at a temperature just below the martensite transformation point, the martensite produced when quenching to the holding temperature is immediately tempered and the toughness is improved. In addition, untransformed austenite rapidly transforms into lower bainite. Therefore, by maintaining a constant temperature just below the martensitic transformation point, a material having high toughness can be obtained. Looking at the influence of the component system, the reduction of the P content increases the strength of the former austenite grain boundary and suppresses the grain boundary destruction. However, improvement of the crack propagation resistance is insufficient only by reducing P. In this regard, if N, V, Nb, and Ti are added to reduce the grain size of the prior austenite, the maximum effect on the crack propagation resistance is exhibited. That is, the crack propagation resistance is significantly improved by refining the former austenite grain size strengthened by reducing P. Further, since the bainite transformation is promoted by the refinement of the grain size of the former austenite, the heat treatment time is shortened.

【0011】以下、本発明で使用する鋼材に含まれる合
金成分,熱処理条件等について説明する。 C:0.3〜0.8重量% 鋼板の強度向上に有効な合金元素であり、1500N/
mm2 を超える引張強さを得るためには0.3重量%以
上のC含有量が必要である。しかし、C含有量が0.8
重量%を超えると、不可避的に粒界セメンタイトが析出
し、靭性を低下させる。 Mn:0.5〜2.0重量% 鋼板の焼入れ性を確保するために必要な合金元素であ
り、0.5重量%以上のMn含有量で十分な焼入れ性向
上効果が得られる。しかし、2.0重量%を超える多量
のMnが含まれると、熱延板や冷延板の加工性を低下さ
せるばかりでなく、マルテンサイト変態点を低下させる
と共に恒温保持中におけるベイナイト変態が著しく抑制
される。その結果、下部ベイナイトを主相とする組織が
生成される領域が非常に狭くなり、熱処理に厳格な温度
管理が要求される。
The alloy components contained in the steel material used in the present invention, heat treatment conditions, etc. will be described below. C: 0.3 to 0.8% by weight An alloying element effective in improving the strength of the steel sheet, and 1500 N /
In order to obtain a tensile strength exceeding mm 2 , a C content of 0.3% by weight or more is necessary. However, the C content is 0.8
If the content exceeds 100% by weight, grain boundary cementite is inevitably precipitated and the toughness is reduced. Mn: 0.5 to 2.0 wt% It is an alloying element necessary to secure the hardenability of the steel sheet, and a Mn content of 0.5 wt% or more provides a sufficient hardenability improving effect. However, when a large amount of Mn exceeding 2.0% by weight is contained, not only the workability of the hot-rolled sheet or the cold-rolled sheet is lowered, but also the martensite transformation point is lowered and the bainite transformation during the isothermal holding is remarkable. Suppressed. As a result, the region where the structure having the lower bainite as the main phase is generated becomes extremely narrow, and strict temperature control is required for the heat treatment.

【0012】P:0.01重量%以下 旧オーステナイト粒界に偏析し、粒界破壊を助長させる
ことから、P含有量を可能な限り低減することが望まし
い。しかし、過度にP含有量を低くすることは、製造コ
ストを上昇させる原因となる。そこで、靭性低下に実質
的な悪影響を及ぼさない範囲を調査し、P含有量の上限
を0.01重量%に設定した。 Cr:0.2〜2.0重量% 目標特性に応じて添加される合金元素であり、焼鈍中に
黒鉛化を防止する作用を呈すると共に、鋼板の焼入れ性
を高めて強度を向上する。このような効果は、0.2重
量%以上のCr含有量で顕著になる。しかし、2.0重
量%を超える多量のCrが含まれると、このような効果
が失われ、球状化焼鈍が困難になると共に、焼鈍材の加
工性が低下する。多量のCr含有は、恒温保持中におい
てベイナイト変態を著しく抑制する作用も呈し、下部ベ
イナイトを主相とする組織が生成する領域を非常に狭く
する。その結果、熱処理に厳格な温度管理が要求され
る。
P: 0.01% by weight or less It is desirable to reduce the P content as much as possible, since it segregates at the austenite grain boundaries and promotes grain boundary destruction. However, an excessively low P content causes a rise in manufacturing cost. Therefore, the range that does not have a substantial adverse effect on the reduction in toughness was investigated, and the upper limit of the P content was set to 0.01% by weight. Cr: 0.2 to 2.0% by weight It is an alloying element added according to the target characteristics, and has the function of preventing graphitization during annealing and enhances the hardenability of the steel sheet to improve the strength. Such an effect becomes remarkable when the Cr content is 0.2% by weight or more. However, when a large amount of Cr exceeding 2.0% by weight is contained, such effects are lost, spheroidizing annealing becomes difficult, and the workability of the annealed material deteriorates. A large amount of Cr content also exerts an action of remarkably suppressing bainite transformation during holding at a constant temperature, and makes a region where a structure having a lower bainite as a main phase is very narrow. As a result, strict temperature control is required for heat treatment.

【0013】Ni:0.2〜2.0重量% 目標特性に応じて添加される合金元素であり、鋼板の焼
入れ性を高め、強度を向上させる作用を呈する。Ni添
加の効果は、0.2重量%以上で顕著になる。しかし、
2.0重量%を超える多量添加は、マルテンサイト変態
点を低下させると共に、恒温保持中におけるベイナイト
変態を著しく抑制する。その結果、下部ベイナイトを主
相とする組織が生成する領域は非常に狭くなる。 Mo:0.1〜2.0重量% 目標特性に応じて添加される合金元素であり、強度を向
上させる作用を呈する。Moの添加効果は、0.1重量
%以上の含有量で顕著になる。しかし、Mo含有量が
2.0重量%を超えると、熱延板及び冷延板の加工性が
低下する。
Ni: 0.2 to 2.0% by weight This is an alloying element added according to the target characteristics and has the effect of enhancing the hardenability of the steel sheet and improving the strength. The effect of adding Ni becomes remarkable at 0.2% by weight or more. But,
Addition of a large amount of more than 2.0% by weight lowers the martensitic transformation point and remarkably suppresses bainite transformation during constant temperature holding. As a result, the region where the structure having the lower bainite as the main phase is generated becomes extremely narrow. Mo: 0.1 to 2.0% by weight It is an alloying element added according to the target characteristics, and exhibits an action of improving strength. The effect of adding Mo becomes remarkable at a content of 0.1% by weight or more. However, if the Mo content exceeds 2.0% by weight, the workability of the hot-rolled sheet and the cold-rolled sheet deteriorates.

【0014】N:0.005〜0.02重量%,V:
0.01〜0.1重量%,Nb:0.01〜0.1重量
%及びTi:0.01〜0.1重量%の1種又は2種以
上 N,V,Nb及びTiは、本発明において最も重要な合
金元素であり、オーステナイト化に際し旧オーステナイ
ト粒径を微細化し、恒温保持処理された鋼板の亀裂伝播
抵抗を高める作用を呈する。旧オーステナイト粒径の微
細化には、最低でもN:0.005重量%,V:0.0
1重量%,Nb:0.01重量%及びTi:0.01重
量%が必要であり、これら合金元素を複合して添加する
ことも可能である。しかし、これら合金元素を必要量以
上に添加すると、亀裂伝播抵抗が飽和するばかりでな
く、素材の加工性を低下させる欠点が現れる。そこで、
各合金元素の上限を、N:0.02重量%,V:0.1
重量%,Nb:0.1重量%,Ti:0.1重量%にそ
れぞれ設定した。
N: 0.005-0.02% by weight, V:
0.01 to 0.1% by weight, Nb: 0.01 to 0.1% by weight and Ti: 0.01 to 0.1% by weight, one or more kinds N, V, Nb and Ti are It is the most important alloying element in the present invention, and has an action of refining the prior austenite grain size during austenitization and increasing the crack propagation resistance of the steel sheet subjected to the isothermal holding treatment. At least N: 0.005% by weight, V: 0.0 for refining the former austenite grain size
1% by weight, Nb: 0.01% by weight, and Ti: 0.01% by weight are required, and it is possible to add these alloying elements in combination. However, if these alloying elements are added in an amount more than necessary, not only the crack propagation resistance is saturated, but also the workability of the material is deteriorated. Therefore,
The upper limit of each alloying element is N: 0.02% by weight, V: 0.1
%, Nb: 0.1% by weight, Ti: 0.1% by weight, respectively.

【0015】恒温保持処理条件:熱処理される素材は、
通常の高炭素鋼製造工程と同様なプロセスによって製造
される。熱処理においては、Ac3 点以上の温度に加熱
してオーステナイト化した後、220℃〜マルテンサイ
ト変態点の温度域で10〜90分保持する。Ac3 点以
下の加熱温度では、オーステナイト化が不十分で、目標
強度が得られない。オーステナイト化を十分に進行させ
るためには、(Ac3 +30℃)以上の温度で5分以上
加熱することが好ましい。恒温保持温度がマルテンサイ
ト変態点より高いと、マルテンサイト生成量が少なく、
ベイナイト変態を促進させる効果が得られない。そのた
め、ベイナイト変態の終了までに長時間を要することに
なる。逆に220℃に達しない恒温保持温度では、冷却
時に生成するマルテンサイト量が増加し、ベイナイト量
が減少するため、亀裂伝播抵抗が低下する。保持時間1
0分以上の恒温保持により、十分な量のベイナイトが得
られる。恒温保持による効果は、保持時間90分で飽和
し、それ以上の時間をかけて保持しても実質的な特性の
向上がみられない。
Constant temperature holding treatment condition: The material to be heat treated is
It is manufactured by a process similar to a normal high carbon steel manufacturing process. In the heat treatment, after heating to a temperature of Ac 3 point or higher to austenite, it is held at a temperature range of 220 ° C. to the martensite transformation point for 10 to 90 minutes. At a heating temperature below the Ac 3 point, the target strength cannot be obtained due to insufficient austenitization. In order to sufficiently promote the austenitization, it is preferable to heat at a temperature of (Ac 3 + 30 ° C.) or higher for 5 minutes or longer. When the isothermal holding temperature is higher than the martensite transformation point, the amount of martensite produced is small,
The effect of promoting bainite transformation cannot be obtained. Therefore, it takes a long time to complete the bainite transformation. On the other hand, at a constant temperature holding temperature that does not reach 220 ° C., the amount of martensite generated during cooling increases and the amount of bainite decreases, so the crack propagation resistance decreases. Retention time 1
A sufficient amount of bainite can be obtained by keeping the temperature constant for 0 minutes or more. The effect of the constant temperature holding is saturated at the holding time of 90 minutes, and even if the holding time is longer than that, no substantial improvement in the characteristics is observed.

【0016】[0016]

【実施例】表1に示した組成をもつ板厚1.6mmの鋼
材に表2の熱処理を施し、成分及び熱処理条件が鋼材の
特性に及ぼす影響を調査した。表1のAグループは、本
発明に従ったBグループの鋼材と比較するために使用し
た炭素鋼である。表2に示すように異なる条件下の熱処
理を各鋼材に施したとき、恒温保持処理された鋼材の特
性は、表3に示すように処理条件に応じて異なった特性
及び金属組織を呈した。なお、亀裂伝播抵抗の評価に
は、素材鋼板から45mm×180mmの試験片を切り
出し、図1に示す寸法で中央部に開けた孔部に放電加工
によって溝部を付けたものを使用した。この試験片に油
圧式疲労試験機で繰返し引張荷重を加えることにより、
疲労予亀裂を付与した。その後、熱処理を施して調質
し、引張試験に供した。亀裂伝播抵抗値には、引張試験
における破断までの最大荷重を初期断面積で除した値を
使用した。恒温保持温度は、図2に示すような影響を亀
裂伝播抵抗値に及ぼした。
EXAMPLE A steel material having a composition shown in Table 1 and a plate thickness of 1.6 mm was subjected to the heat treatment shown in Table 2, and the effects of the components and the heat treatment conditions on the properties of the steel material were investigated. Group A in Table 1 is the carbon steel used for comparison with group B steel according to the present invention. As shown in Table 2, when each steel material was subjected to heat treatment under different conditions, the characteristics of the steel material subjected to the isothermal holding treatment exhibited different characteristics and metallographic structures depending on the processing conditions, as shown in Table 3. For the evaluation of crack propagation resistance, a test piece of 45 mm × 180 mm was cut out from a material steel plate, and a hole formed in the central portion with a dimension shown in FIG. 1 was provided with a groove portion by electric discharge machining. By repeatedly applying tensile load to this test piece with a hydraulic fatigue tester,
Fatigue pre-crack was added. Then, it heat-processed and tempered and used for the tensile test. As the crack propagation resistance value, a value obtained by dividing the maximum load until breakage in the tensile test by the initial cross-sectional area was used. The isothermal holding temperature exerted the effect as shown in FIG. 2 on the crack propagation resistance value.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】P含有量が多く且つN,V,Nb,Tiを
添加していないAグループの鋼材を恒温保持したとき、
表3に比較例Iとして掲げているように亀裂伝播抵抗値
が低くなっている。低い亀裂伝播抵抗値は、熱処理中に
オーステナイト粒径が大きく成長し、しかも旧オーステ
ナイト粒界の強度が十分でないことに由来する。これに
対し、本発明で規定した成分に関する条件を満足するB
グループの鋼材に条件1又は2の恒温保持処理を施した
とき、何れも高い亀裂伝播抵抗値が得られた。
When a steel material of Group A containing a large amount of P and containing no N, V, Nb or Ti is kept at a constant temperature,
As shown in Table 3 as Comparative Example I, the crack propagation resistance value is low. The low crack propagation resistance comes from the fact that the austenite grain size grows large during heat treatment and the strength of the former austenite grain boundaries is not sufficient. On the other hand, B satisfying the conditions concerning the components specified in the present invention
When the steel members of the group were subjected to the constant temperature holding treatment of Condition 1 or 2, high crack propagation resistance values were obtained.

【0021】成分的には本発明の条件を満足するもので
あっても、表3に比較例IIとして示すように条件3〜5
の熱処理を施したとき、何れも目標とする高強度・高靭
性が得られなかった。すなわち、鋼材B1に条件3の熱
処理を施したものでは、保持温度が低過ぎることからマ
ルテンサイトが主相となり、亀裂伝播抵抗値が低くなっ
ていた。鋼材B1に条件4の熱処理を施したものでは、
保持温度が高すぎることから、低い引張強さが示され
た。また、鋼材B1に条件5の熱処理を施したもので
は、オーステナイト化温度が低いことからオーステナイ
ト化が不十分であり、引張強さが低くなっていた。表3
から明らかなように、強度及び靭性の双方が高い鋼材を
得るためには、特定成分と特定条件の熱処理との組合せ
が有効であることが確認された。
Even if the components satisfy the conditions of the present invention, as shown in Table 3 as Comparative Example II, the conditions 3 to 5 are satisfied.
When subjected to the heat treatment of No. 1, neither of the desired high strength and high toughness was obtained. That is, in the case where the steel material B1 was heat-treated under the condition 3, since the holding temperature was too low, martensite became the main phase and the crack propagation resistance value was low. In the case where the steel material B1 is heat-treated under the condition 4,
The holding temperature was too high, indicating low tensile strength. Further, in the case where the steel material B1 was heat-treated under the condition 5, the austenitizing temperature was low, so that the austenitizing was insufficient and the tensile strength was low. Table 3
As is clear from the above, it was confirmed that the combination of the specific components and the heat treatment under the specific conditions is effective in order to obtain a steel material having both high strength and toughness.

【0022】[0022]

【発明の効果】以上に説明したように、本発明において
は、P含有量を低減し、N,V,Nb,Tiで旧オース
テナイト粒径を微細化した鋼材をマルテンサイト変態点
以下の温度で恒温保持することにより、高強度を維持し
ながら靭性を向上させ、切欠き感受性を低下させた金属
組織としている。得られた鋼材は、引張強さが1500
N/mm2 以上で優れた亀裂伝播抵抗を示すことから、
各種機械部品,刃物等の広範な分野で使用される。
As described above, in the present invention, a steel material in which the P content is reduced and the former austenite grain size is refined with N, V, Nb, and Ti is used at a temperature below the martensitic transformation point. By maintaining a constant temperature, the toughness is improved while maintaining high strength, and the metal structure has reduced notch sensitivity. The steel material obtained has a tensile strength of 1500.
Since it exhibits excellent crack propagation resistance at N / mm 2 or more,
It is used in a wide range of fields such as various machine parts and blades.

【図面の簡単な説明】[Brief description of drawings]

【図1】 亀裂伝播抵抗を調査した試験片[Fig. 1] Specimen for investigating crack propagation resistance

【図2】 亀裂伝播抵抗値に与える恒温保持温度の影響
を表したグラフ
FIG. 2 is a graph showing the effect of constant temperature holding temperature on crack propagation resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.3〜0.8重量%,Mn:0.
5〜2.0重量%及びP:0.01重量%以下を含み残
部Feの基本組成にN:0.005〜0.02重量%,
V:0.01〜0.1重量%,Nb:0.01〜0.1
重量%及びTi:0.01〜0.1重量%の1種又は2
種以上を含有させた鋼を、Ac3 点以上の温度に加熱し
てオーステナイト化した後、220℃以上でマルテンサ
イト生成温度以下の温度域に急冷し、該温度域に10〜
90分保持する高強度高靭性鋼の製造方法。
1. C: 0.3 to 0.8% by weight, Mn: 0.
5 to 2.0 wt% and P: 0.01 wt% or less, and the balance of the basic composition of Fe is N: 0.005 to 0.02 wt%,
V: 0.01 to 0.1% by weight, Nb: 0.01 to 0.1
Weight% and Ti: 0.01 to 0.1% by weight of one or two
The steel containing at least the seeds is heated to a temperature of Ac 3 point or higher to austenite, and then rapidly cooled to a temperature range of 220 ° C. or higher and a temperature of martensite generation temperature or lower, and the temperature range is 10 to 10
A method for producing a high-strength and high-toughness steel that holds 90 minutes.
【請求項2】 請求項1記載の鋼が更にCr:0.2〜
2.0重量%,Ni:0.2〜2.0重量%及びMo:
0.1〜2.0重量%の1種又は2種以上を含むもので
ある高強度高靭性鋼の製造方法。
2. The steel according to claim 1, further comprising Cr: 0.2 to
2.0% by weight, Ni: 0.2 to 2.0% by weight and Mo:
A method for producing a high-strength and high-toughness steel containing 0.1 to 2.0% by weight of one type or two or more types.
JP25765794A 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel Expired - Fee Related JP3688311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25765794A JP3688311B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25765794A JP3688311B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Publications (2)

Publication Number Publication Date
JPH0892633A true JPH0892633A (en) 1996-04-09
JP3688311B2 JP3688311B2 (en) 2005-08-24

Family

ID=17309300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25765794A Expired - Fee Related JP3688311B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Country Status (1)

Country Link
JP (1) JP3688311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136952A (en) * 2004-11-10 2006-06-01 Tokusen Kogyo Co Ltd Electrode wire for electric discharge machining
JP2010169252A (en) * 2008-12-25 2010-08-05 Daido Kogyo Co Ltd Seal chain with small width
CN115287541A (en) * 2022-08-09 2022-11-04 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136952A (en) * 2004-11-10 2006-06-01 Tokusen Kogyo Co Ltd Electrode wire for electric discharge machining
JP2010169252A (en) * 2008-12-25 2010-08-05 Daido Kogyo Co Ltd Seal chain with small width
CN115287541A (en) * 2022-08-09 2022-11-04 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method
CN115287541B (en) * 2022-08-09 2023-08-15 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method

Also Published As

Publication number Publication date
JP3688311B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
EP1746176B1 (en) Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
JP6089131B2 (en) High carbon cold rolled steel sheet and method for producing the same
EP0745696A1 (en) High strength steel composition having enhanced low temperature toughness
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
CN109790602B (en) Steel
JPH09170017A (en) Production of steel plate with high strength and high toughness
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JP4210362B2 (en) Method for producing high strength steel with excellent fatigue properties
KR101736614B1 (en) Wire rod and steel wire for spring having excellent corrosion resistance and method for manufacturing thereof
CN110462083B (en) Steel having high hardness and excellent toughness
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP2019073763A (en) Method for producing steel processed component
JP3468875B2 (en) Manufacturing method of high strength and high toughness steel
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JP3688311B2 (en) Manufacturing method of high strength and high toughness steel
JP2002060888A (en) Steel sheet for blanking
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
CN111479938B (en) Heat-treatment-curable high-carbon steel sheet and method for producing same
JPH0470385B2 (en)
JPS59159971A (en) Steel for cold forging with superior hardenability
KR100584765B1 (en) Method for manufacturing high strength working product having delayed fracture resistance and enlongation percentage
KR100363194B1 (en) A method for high toughness bolts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees