JP3468875B2 - Manufacturing method of high strength and high toughness steel - Google Patents

Manufacturing method of high strength and high toughness steel

Info

Publication number
JP3468875B2
JP3468875B2 JP25765894A JP25765894A JP3468875B2 JP 3468875 B2 JP3468875 B2 JP 3468875B2 JP 25765894 A JP25765894 A JP 25765894A JP 25765894 A JP25765894 A JP 25765894A JP 3468875 B2 JP3468875 B2 JP 3468875B2
Authority
JP
Japan
Prior art keywords
weight
temperature
strength
steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25765894A
Other languages
Japanese (ja)
Other versions
JPH0892634A (en
Inventor
聡 田頭
利郎 山田
昇一 甲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25765894A priority Critical patent/JP3468875B2/en
Publication of JPH0892634A publication Critical patent/JPH0892634A/en
Application granted granted Critical
Publication of JP3468875B2 publication Critical patent/JP3468875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亀裂伝播抵抗が高く、
歯車,チェーン等の各種機械部品や工具,刃物等として
好適な強度及び靭性をもつ高強度高靭性鋼を製造する方
法に関する。
The present invention has a high crack propagation resistance,
The present invention relates to a method for producing high-strength and high-toughness steel having suitable strength and toughness as various machine parts such as gears and chains, tools, and blades.

【0002】[0002]

【従来の技術】高炭素鋼等の高硬度材料は、各種機械部
品,刃物,工具等の広範な分野で使用されている。この
種の部品に要求される機械的特性には、高硬度,高強
度,高靭性,高疲労強度,耐摩耗性等がある。疲労特性
や耐摩耗性は、一般的に硬さや強度を高めることにより
向上する。しかし、硬さや強度を上昇させると、それに
伴い靭性が低下し、特に切欠き感受性の上昇に起因した
問題が大きくなる。各種機械部品等に使用される部材の
多くは、製造工程で先ず素材から打抜き,切削加工等に
よって部材形状に成形された後、熱処理によって調質さ
れる。その際、工業的な大量生産ラインにおいては表面
疵の保証が非常に困難である。たとえば、チェーンのリ
ンクプレートでは、コイル状素材原板の高速打抜きによ
り成形されることが通常である。打抜き後の素材端面に
二次剪断面及びそれに伴ったムシレが多発するが、これ
らを除去することなく製品としての使用に供することが
通常である。
2. Description of the Related Art High hardness materials such as high carbon steel are used in various fields such as various machine parts, blades and tools. The mechanical properties required for this type of part include high hardness, high strength, high toughness, high fatigue strength, and wear resistance. Fatigue properties and wear resistance are generally improved by increasing hardness and strength. However, when the hardness and strength are increased, the toughness is reduced accordingly, and the problem caused by the increase in notch sensitivity becomes more serious. Many members used for various machine parts and the like are first heat-treated after being formed into a member shape by punching, cutting or the like from a raw material in a manufacturing process. At that time, it is very difficult to guarantee surface flaws in an industrial mass production line. For example, a link plate of a chain is usually formed by high-speed punching of a coil-shaped raw material plate. After the punching, a secondary sheared surface and mussles associated therewith frequently occur on the end surface of the material, but it is usually used as a product without removing them.

【0003】生成した二次剪断面やムシレは、切欠き,
初期亀裂等として作用し、リンクプレートの靭性を著し
く低下させる原因となる。また、チェーンの高強度化を
図るためリンクプレート用材料の硬さを高めるとき、打
抜き端面の性状に起因する切欠き感受性が一層高くな
り、脆性破壊の危険を増大させる。機械部品用鋼で、引
張強さが1500N/mm2 以上、或いは硬さがHRC
45以上の高強度材を得る場合、部品成形後の熱処理に
より調質することが一般的である。しかし、焼入れ・焼
戻しで得られる金属組織は、焼戻しマルテンサイト組織
であり、亀裂伝播抵抗が低い。焼入れ・焼戻し処理によ
らない高強度鋼の強化法として、恒温変態処理による方
法が開発されている。たとえば、特公昭51−2949
2号公報では、低合金炭素鋼をマルテンサイト変態温度
以上の温度に恒温保持することにより、ベイナイト組織
をもつ鋼板を製造している。得られた鋼板は、硬さHV
473及び引張強さ1533N/mm2 で高い延性を示
す。
The generated secondary shear planes and mussles are notches,
It acts as an initial crack or the like, which causes a significant decrease in the toughness of the link plate. Further, when the hardness of the link plate material is increased in order to increase the strength of the chain, the notch susceptibility due to the properties of the punched end face becomes even higher, increasing the risk of brittle fracture. Steel for machine parts with tensile strength of 1500 N / mm 2 or more or hardness of HRC
When obtaining a high-strength material of 45 or more, it is general to heat-treat after molding the parts. However, the metal structure obtained by quenching and tempering is a tempered martensite structure and has a low crack propagation resistance. As a strengthening method for high-strength steel that does not rely on quenching and tempering, a method using constant temperature transformation has been developed. For example, Japanese Patent Publication No. 51-2949
According to Japanese Patent Laid-Open No. 2 (1993), a steel sheet having a bainite structure is manufactured by keeping a low-alloy carbon steel at a temperature above the martensitic transformation temperature. The obtained steel sheet has a hardness HV.
High ductility at 473 and a tensile strength of 1533 N / mm 2 .

【0004】[0004]

【発明が解決しようとする課題】ベイナイト化によって
更に引張強さを向上させるためには、恒温変態温度を下
げる必要がある。しかし、この方法では、恒温保持温度
をマルテンサイト変態温度以上に限定しているため、得
られる引張強さに自ら限界が生じる。このようなことか
ら、この方法では、引張強さが1500N/mm2 を超
える鋼板が得られない。恒温変態処理によって高強度化
する方法として、特公昭64−8051号公報に「引上
げオーステンパー法」と称する方法が開示されている。
この方法は、オーステナイト化した鋼をマルテンサイト
変態点以下に一旦焼き入れ、その後にベイナイト変態温
度に再加熱することにより、組織中にマルテンサイトを
混在させて強度を高めようとするものである。しかし、
この方法は、三段階の熱処理を必要とし、温度管理及び
時間管理が厳密であるために連続熱処理ライン以外では
生産効率が悪い。本発明は、このような問題を解消すべ
く案出されたものであり、特定された成分調整及び恒温
保持温度の組合せにより、引張強さが1500N/mm
2 を超え、しかも優れた亀裂伝播抵抗を示す高強度高靭
性鋼板を得ることを目的とする。
In order to further improve the tensile strength by bainizing, it is necessary to lower the isothermal transformation temperature. However, in this method, since the isothermal holding temperature is limited to the martensitic transformation temperature or higher, the obtained tensile strength has its own limit. For this reason, a steel sheet having a tensile strength of more than 1500 N / mm 2 cannot be obtained by this method. As a method for increasing the strength by a constant temperature transformation treatment, Japanese Patent Publication No. Sho 64-8051 discloses a method called "pulling austempering method".
According to this method, the austenitized steel is once quenched below the martensitic transformation point and then reheated to the bainite transformation temperature to mix martensite in the structure to increase the strength. But,
This method requires heat treatment in three stages, and since temperature control and time control are strict, production efficiency is poor except for the continuous heat treatment line. The present invention has been devised to solve such a problem, and the tensile strength is 1500 N / mm by the combination of the specified component adjustment and the constant temperature holding temperature.
The purpose of the present invention is to obtain a high strength and high toughness steel sheet having a crack resistance of more than 2 and excellent crack propagation resistance.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、C:0.3〜0.8重量%及び
Mn:0.5〜2.0重量%を含み、P含有量を0.0
1重量%以下に、Si含有量を0.1重量%以下に規制
した組成をもつ鋼を、Ac3 点以上の温度に加熱してオ
ーステナイト化した後、220℃以上でマルテンサイト
生成温度以下の温度域に急冷し、該温度域に10〜90
分保持することを特徴とする。対象とする鋼は、前掲し
た組成に加え、更にN:0.005〜0.02重量%,
V:0.01〜0.1重量%,Nb:0.01〜0.1
重量%及びTi:0.01〜0.1重量%の1種又は2
種以上を含有することができる。或いは、Cr:0.2
〜2.0重量%,Ni:0.2〜2.0重量%及びM
o:0.1〜1.0重量%の1種又は2種以上を含むこ
ともできる。
In order to achieve the object, the production method of the present invention contains C: 0.3 to 0.8% by weight and Mn: 0.5 to 2.0% by weight, and P Content 0.0
Steel having a composition in which the Si content is regulated to 1 wt% or less and 0.1 wt% or less is heated to a temperature of Ac 3 point or higher to austenite, and then, at 220 ° C. or higher, the martensite formation temperature or lower Quenching to a temperature range, 10-90 in the temperature range
It is characterized by holding minutes. The target steel is, in addition to the composition described above, N: 0.005 to 0.02% by weight,
V: 0.01 to 0.1% by weight, Nb: 0.01 to 0.1
Weight% and Ti: 0.01 to 0.1% by weight of one or two
More than one species can be included. Alternatively, Cr: 0.2
~ 2.0 wt%, Ni: 0.2-2.0 wt% and M
O: 0.1 to 1.0% by weight of one kind or two or more kinds may be included.

【0006】[0006]

【作用】本発明においては、C−Mn鋼を基本成分と
し、P含有量及びSi含有量を低減すると共に、必要な
合金元素を添加した鋼材を使用する。この鋼材をマルテ
ンサイト変態温度以下の温度域に恒温保持するとき、旧
オーステナイト粒界が強化され、且つ旧オーステナイト
粒径が微細化される。また、ベイナイトの靭性が向上
し、優れた亀裂伝播抵抗を呈する複合組織を持った鋼板
が製造される。本発明は、この知見に基づき完成された
ものであり、成分調整と恒温保持条件との特定された組
合せによって、高強度及び高靭性を呈する複合組織にす
るものである。本発明に従って製造された鋼が優れた亀
裂伝播抵抗を示す理由は、次のように推察される。すな
わち、合金成分の含有量を適切に調整し、且つマルテン
サイト変態点以下の温度域で恒温保持するとき、下部ベ
イナイト相を主相とする金属組織が生成する。この金属
組織は、旧オーステナイト粒界破壊,劈開破壊等に起因
した脆性破壊を効果的に抑制する。
In the present invention, a steel material containing C-Mn steel as a basic component, reducing the P content and the Si content, and adding necessary alloying elements is used. When this steel material is kept at a constant temperature below the martensitic transformation temperature, the former austenite grain boundary is strengthened and the former austenite grain size is refined. Further, the toughness of bainite is improved, and a steel sheet having a composite structure exhibiting excellent crack propagation resistance is manufactured. The present invention has been completed based on this finding, and provides a composite structure exhibiting high strength and high toughness by a specified combination of component adjustment and constant temperature holding conditions. The reason why the steel produced according to the present invention exhibits excellent crack propagation resistance is presumed as follows. That is, when the content of the alloy component is appropriately adjusted and the isothermal holding is performed in the temperature range below the martensitic transformation point, a metal structure having a lower bainite phase as a main phase is generated. This metal structure effectively suppresses brittle fracture due to former austenite grain boundary fracture, cleavage fracture, and the like.

【0007】金属組織の作用は、後述する実施例から明
らかなように、本発明者等の実験により確認されたもの
である。すなわち、疲労予亀裂を付けた試験片を引張試
験に供し、亀裂伝播抵抗に及ぼす熱処理の影響を調査し
た。同じ硬さで比較した場合、恒温保持処理した鋼板
は、焼入れ・焼戻し処理を施した鋼板に比べ旧オーステ
ナイト粒界破壊の出現率が低く、亀裂伝播抵抗が高いこ
とが明らかになった。このとき、亀裂伝播抵抗は、P含
有量及びSi含有量の双方を低減することにより大幅に
向上する。保持温度が鋼材のマルテンサイト変態点より
低い恒温保持処理は、マルテンパーと呼ばれており、マ
ルテンサイト変態点以下に急冷された時点でマルテンサ
イト変態点からの過冷度に応じてマルテンサイトが生成
する。このマルテンサイト変態は、非等温変態であるこ
とから恒温保持中には進行せず、生成したマルテンサイ
トが直ちに焼き戻されて焼戻しマルテンサイトとなる。
このとき、未変態オーステナイトから等温変態的に下部
ベイナイトが生成する。
The action of the metallic structure has been confirmed by experiments by the present inventors, as will be apparent from the examples described later. That is, the fatigue precracked test piece was subjected to a tensile test to investigate the effect of heat treatment on the crack propagation resistance. When compared at the same hardness, it was revealed that the steel sheet subjected to the isothermal holding treatment had a lower occurrence rate of prior austenite grain boundary fracture and a higher crack propagation resistance than the steel sheet subjected to the quenching / tempering treatment. At this time, the crack propagation resistance is significantly improved by reducing both the P content and the Si content. The isothermal holding treatment in which the holding temperature is lower than the martensitic transformation point of steel is called martempering, and when it is rapidly cooled below the martensitic transformation point, martensite is generated according to the degree of supercooling from the martensitic transformation point. To do. Since this martensitic transformation does not proceed during the isothermal holding because it is a non-isothermal transformation, the produced martensite is immediately tempered to become tempered martensite.
At this time, lower bainite is isothermally transformed from untransformed austenite.

【0008】マルテンサイト変態点直下の恒温保持温度
では、マルテンサイト変態量が比較的少なく、生成した
マルテンサイトを核としてベイナイト変態が加速され
る。その結果、下部ベイナイトを主相とする組織が形成
される傾向を呈する。このようにマルテンパー処理で得
られる金属組織は、鋼材の成分にもよるが、本発明が対
象としている炭素鋼では多量のベイナイトを含む金属組
織となる。本発明に従って恒温保持処理した鋼板が焼入
れ・焼戻し処理を施した鋼板に比較して優れた亀裂伝播
抵抗を示す理由は明らかでない。しかし、焼戻しマルテ
ンサイトと下部ベイナイトでは析出する炭化物の組成や
形状,析出面方位が異なっていることから、炭化物形態
の相違が靭性向上に影響しているものと推察される。ま
た、恒温保持処理材の方が粒界炭化物の析出が少ないこ
とに伴い、旧オーステナイト粒界割れが抑制されたこと
も一因であると考えられる。
At the isothermal holding temperature just below the martensite transformation point, the amount of martensite transformation is relatively small, and the bainite transformation is accelerated with the produced martensite as a nucleus. As a result, a structure having lower bainite as a main phase tends to be formed. As described above, the metal structure obtained by the martempering treatment is a metal structure containing a large amount of bainite in the carbon steel targeted by the present invention, although it depends on the composition of the steel material. It is not clear why the steel sheet that has been subjected to the isothermal holding treatment according to the present invention exhibits superior crack propagation resistance as compared with the steel sheet that has been subjected to the quenching and tempering treatment. However, since tempered martensite and lower bainite differ in the composition and shape of the precipitated carbide and the orientation of the precipitation plane, it is speculated that the difference in carbide morphology affects the improvement in toughness. It is also considered that the former austenite intergranular cracks were suppressed due to less precipitation of intergranular carbides in the isothermal holding treated material.

【0009】恒温保持処理で1500N/mm2 以上の
引張強さをもつベイナイト組織を得るためには、保持温
度を調整する必要がある。恒温保持処理した鋼材の引張
強さと保持温度との関係は、低合金炭素鋼の場合、成分
系に依らずほぼ一定している。具体的には、1500N
/mm2 以上では、350℃程度以下にすることが要求
される。鋼材のマルテンサイト変態点は成分系に依って
異なり、保持温度がマルテンサイト変態点直上である場
合、ベイナイト変態速度が著しく低下する。この温度域
で恒温保持処理すると、ベイナイト変態が不十分にな
り、保持処理終了後の冷却段階で未変態オーステナイト
がマルテンサイト変態を起こし易い。このとき生成する
マルテンサイトは、不安定な残留オーステナイトを伴っ
たMA相と呼ばれ、靭性に乏しい。すなわち、マルテン
サイト変態点直上で恒温保持したものは、靭性の乏しい
材料となる。
In order to obtain a bainite structure having a tensile strength of 1500 N / mm 2 or more in the isothermal holding treatment, it is necessary to adjust the holding temperature. In the case of low alloy carbon steel, the relationship between the tensile strength and the holding temperature of the steel material subjected to the isothermal holding treatment is almost constant regardless of the component system. Specifically, 1500N
Above / mm 2 , it is required to be about 350 ° C or lower. The martensitic transformation point of steel differs depending on the component system, and when the holding temperature is just above the martensitic transformation point, the bainite transformation rate is significantly reduced. If the isothermal holding treatment is performed in this temperature range, the bainite transformation becomes insufficient, and the untransformed austenite is likely to undergo the martensite transformation in the cooling stage after the holding treatment. The martensite formed at this time is called an MA phase accompanied by unstable retained austenite, and has poor toughness. That is, a material kept at a constant temperature just above the martensitic transformation point becomes a material having poor toughness.

【0010】これに対し、マルテンサイト変態点直下の
温度で恒温保持すると、保持温度に焼き入れされたとき
生成するマルテンサイトが直ちに焼き戻され、靭性が向
上する。また、未変態オーステナイトは、迅速に下部ベ
イナイトに変態する。したがって、マルテンサイト変態
点直下の温度で恒温保持することにより、靭性の高い材
料が得られる。変態に及ぼす成分系の影響をみると、P
含有量の低減は、旧オーステナイト粒界の強度を高め、
粒界破壊を抑制する。Si含有量の低減は、ベイナイト
の靭性を向上させ、劈開破壊を抑制する作用を呈する。
P及びSiを同時に低減したとき、劈開破壊及び粒界破
壊が抑制され、破面形態はディンプル状になり亀裂伝播
抵抗が向上する。P及びSiの低減による効果は、鋼組
成に通常添加されている合金成分によっても影響される
ことなく、所与の作用を呈する合金成分の添加によって
鋼材の特性を更に高めることができる。すなわち、C
r,Ni,Mo等の添加によって焼入れ性を向上させ、
強度レベルを高めた場合でも、P及びSiを低減しない
場合に鋼材に比較し、より高い亀裂伝播抵抗が得られ
る。また、N,V,Nb,Tiの添加により旧オーステ
ナイト粒径を微細化すると、破面単位が微細化されるた
め亀裂伝播抵抗が更に向上する。
On the other hand, when isothermal holding is carried out at a temperature just below the martensite transformation point, the martensite produced when quenching to the holding temperature is immediately tempered and the toughness is improved. In addition, untransformed austenite rapidly transforms into lower bainite. Therefore, by maintaining a constant temperature just below the martensitic transformation point, a material having high toughness can be obtained. Looking at the effect of the component system on the transformation, P
Reducing the content increases the strength of the former austenite grain boundaries,
Suppresses grain boundary destruction. The reduction of Si content has the effect of improving the toughness of bainite and suppressing cleavage fracture.
When P and Si are reduced at the same time, the cleavage fracture and the grain boundary fracture are suppressed, the fracture surface becomes dimple-like, and the crack propagation resistance is improved. The effect of reducing P and Si is not affected by the alloy components usually added to the steel composition, and the addition of alloy components exhibiting a given action can further enhance the properties of the steel material. That is, C
Improves hardenability by adding r, Ni, Mo, etc.
Even when the strength level is increased, higher crack propagation resistance is obtained as compared with the steel material when P and Si are not reduced. Further, if the prior austenite grain size is made fine by adding N, V, Nb, and Ti, the fracture surface unit is made finer, so that the crack propagation resistance is further improved.

【0011】以下、本発明で使用する鋼材に含まれる合
金成分,熱処理条件等について説明する。 C:0.3〜0.8重量% 鋼板の強度向上に有効な合金元素であり、1500N/
mm2 を超える引張強さを得るためには0.3重量%以
上のC含有量が必要である。しかし、C含有量が0.8
重量%を超えると、不可避的に粒界セメンタイトが析出
し、靭性を低下させる。 Mn:0.5〜2.0重量% 鋼板の焼入れ性を確保するために必要な合金元素であ
り、0.5重量%以上のMn含有量で十分な焼入れ性向
上効果が得られる。しかし、2.0重量%を超える多量
のMnが含まれると、熱延板や冷延板の加工性を低下さ
せるばかりでなく、マルテンサイト変態点を低下させる
と共に恒温保持中におけるベイナイト変態が著しく抑制
される。その結果、下部ベイナイトを主相とする組織が
生成される領域が非常に狭くなり、熱処理に厳格な温度
管理が要求される。
The alloy components contained in the steel material used in the present invention, heat treatment conditions, etc. will be described below. C: 0.3 to 0.8% by weight An alloying element effective in improving the strength of the steel sheet, and 1500 N /
In order to obtain a tensile strength exceeding mm 2 , a C content of 0.3% by weight or more is necessary. However, the C content is 0.8
If the content exceeds 100% by weight, grain boundary cementite is inevitably precipitated and the toughness is reduced. Mn: 0.5 to 2.0 wt% It is an alloying element necessary to secure the hardenability of the steel sheet, and a Mn content of 0.5 wt% or more provides a sufficient hardenability improving effect. However, when a large amount of Mn exceeding 2.0% by weight is contained, not only the workability of the hot-rolled sheet or the cold-rolled sheet is lowered, but also the martensite transformation point is lowered and the bainite transformation during the isothermal holding is remarkable. Suppressed. As a result, the region where the structure having the lower bainite as the main phase is generated becomes extremely narrow, and strict temperature control is required for the heat treatment.

【0012】P:0.01重量%以下 旧オーステナイト粒界に偏析し、粒界破壊を助長させる
ことから、P含有量を可能な限り低減することが望まし
い。しかし、過度にP含有量を低くすることは、製造コ
ストを上昇させる原因となる。そこで、靭性低下に実質
的な悪影響を及ぼさない範囲を調査し、P含有量の上限
を0.01重量%に設定した。 Si:0.1重量%以下 ベイナイト相を構成するベイニティックフェライトを脆
化させ、亀裂伝播を促進させる。本発明では、目標とす
る高い亀裂伝播抵抗を確保するため、Si含有量の上限
を0.1重量%に設定した。
P: 0.01% by weight or less It is desirable to reduce the P content as much as possible because it segregates at the former austenite grain boundaries and promotes grain boundary destruction. However, an excessively low P content causes a rise in manufacturing cost. Therefore, the range that does not have a substantial adverse effect on the reduction in toughness was investigated, and the upper limit of the P content was set to 0.01% by weight. Si: 0.1% by weight or less Embrittles the bainitic ferrite forming the bainite phase and promotes crack propagation. In the present invention, in order to secure the target high crack propagation resistance, the upper limit of the Si content is set to 0.1% by weight.

【0013】Cr:0.2〜2.0重量% 目標特性に応じて添加される合金元素であり、焼鈍中に
黒鉛化を防止する作用を呈すると共に、鋼板の焼入れ性
を高めて強度を向上する。このような効果は、0.2重
量%以上のCr含有量で顕著になる。しかし、2.0重
量%を超える多量のCrが含まれると、このような効果
が失われ、球状化焼鈍が困難になると共に、焼鈍材の加
工性が低下する。多量のCr含有は、恒温保持中におい
てベイナイト変態を著しく抑制する作用も呈し、下部ベ
イナイトを主相とする組織が生成する領域を非常に狭く
する。その結果、熱処理に厳格な温度管理が要求され
る。 Ni:0.2〜2.0重量% 目標特性に応じて添加される合金元素であり、鋼板の焼
入れ性を高め、強度を向上させる作用を呈する。Ni添
加の効果は、0.2重量%以上で顕著になる。しかし、
2.0重量%を超える多量添加は、マルテンサイト変態
点を低下させると共に、恒温保持中におけるベイナイト
変態を著しく抑制する。その結果、下部ベイナイトを主
相とする組織が生成する領域は非常に狭くなる。
Cr: 0.2 to 2.0% by weight An alloying element added according to the target characteristics, which acts to prevent graphitization during annealing and enhances the hardenability of the steel sheet to improve its strength. To do. Such an effect becomes remarkable when the Cr content is 0.2% by weight or more. However, when a large amount of Cr exceeding 2.0% by weight is contained, such effects are lost, spheroidizing annealing becomes difficult, and the workability of the annealed material deteriorates. A large amount of Cr content also exerts an action of remarkably suppressing bainite transformation during holding at a constant temperature, and makes a region where a structure having a lower bainite as a main phase is very narrow. As a result, strict temperature control is required for heat treatment. Ni: 0.2 to 2.0% by weight It is an alloy element added according to the target characteristics, and has the effect of enhancing the hardenability of the steel sheet and improving the strength. The effect of adding Ni becomes remarkable at 0.2% by weight or more. But,
Addition of a large amount of more than 2.0% by weight lowers the martensitic transformation point and remarkably suppresses bainite transformation during constant temperature holding. As a result, the region where the structure having the lower bainite as the main phase is generated becomes extremely narrow.

【0014】Mo:0.1〜2.0重量% 目標特性に応じて添加される合金元素であり、強度を向
上させる作用を呈する。Moの添加効果は、0.1重量
%以上の含有量で顕著になる。しかし、Mo含有量が
2.0重量%を超えると、熱延板及び冷延板の加工性が
低下する。 N:0.005〜0.02重量%,V:0.01〜0.
1重量%,Nb:0.01〜0.1重量%及びTi:
0.01〜0.1重量%の1種又は2種以上 N,V,Nb及びTiは、オーステナイト化に際し旧オ
ーステナイト粒径を微細化し、恒温保持処理された鋼板
の亀裂伝播抵抗を高める作用を呈する。旧オーステナイ
ト粒径の微細化には、最低でもN:0.005重量%,
V:0.01重量%,Nb:0.01重量%及びTi:
0.01重量%が必要であり、これら合金元素を複合し
て添加することも可能である。しかし、これら合金元素
を必要量以上に添加すると、所期の効果が得られないば
かりでなく、素材の加工性を低下させる欠点が現れる。
そこで、各合金元素の上限を、N:0.02重量%,
V:0.1重量%,Nb:0.1重量%,Ti:0.1
重量%にそれぞれ設定した。
Mo: 0.1 to 2.0% by weight It is an alloying element added according to the target characteristics and exhibits an action of improving strength. The effect of adding Mo becomes remarkable at a content of 0.1% by weight or more. However, if the Mo content exceeds 2.0% by weight, the workability of the hot-rolled sheet and the cold-rolled sheet deteriorates. N: 0.005-0.02% by weight, V: 0.01-0.
1% by weight, Nb: 0.01 to 0.1% by weight and Ti:
0.01 to 0.1% by weight of one or more of N, V, Nb and Ti have the action of refining the prior austenite grain size during austenitization and increasing the crack propagation resistance of the steel sheet subjected to the isothermal holding treatment. Present. In order to refine the former austenite grain size, at least N: 0.005% by weight,
V: 0.01% by weight, Nb: 0.01% by weight and Ti:
0.01 wt% is necessary, and it is also possible to add these alloy elements in combination. However, if these alloying elements are added in an amount more than the required amount, not only the desired effect cannot be obtained, but also the workability of the raw material deteriorates.
Therefore, the upper limit of each alloying element is N: 0.02% by weight,
V: 0.1% by weight, Nb: 0.1% by weight, Ti: 0.1
The respective weight percentages were set.

【0015】恒温保持処理条件:熱処理される素材は、
通常の高炭素鋼製造工程と同様なプロセスにより製造さ
れる。熱処理においては、Ac3 点以上の温度に加熱し
てオーステナイト化した後、220℃〜マルテンサイト
変態点の温度域で10〜90分保持する。Ac3 点以下
の加熱温度では、オーステナイト化が不十分で、目標強
度が得られない。オーステナイト化を十分に進行させる
ためには、(Ac3 +30℃)以上の温度で5分以上加
熱することが好ましい。恒温保持温度がマルテンサイト
変態点より高いと、マルテンサイト生成量が少なく、ベ
イナイト変態を促進させる効果が得られない。そのた
め、ベイナイト変態の終了までに長時間を要することに
なる。逆に220℃に達しない恒温保持温度では、冷却
時に生成するマルテンサイト量が増加し、ベイナイト量
が減少するため、亀裂伝播抵抗が低下する。保持時間1
0分以上の恒温保持により、十分な量のベイナイトが得
られる。恒温保持による効果は、保持時間90分で飽和
し、それ以上の時間をかけて保持しても実質的な特性の
向上がみられない。
Constant temperature holding treatment condition: The material to be heat treated is
It is manufactured by a process similar to a normal high carbon steel manufacturing process. In the heat treatment, after heating to a temperature of Ac 3 point or higher to austenite, it is held at a temperature range of 220 ° C. to the martensite transformation point for 10 to 90 minutes. At a heating temperature below the Ac 3 point, the target strength cannot be obtained due to insufficient austenitization. In order to sufficiently promote the austenitization, it is preferable to heat at a temperature of (Ac 3 + 30 ° C.) or higher for 5 minutes or longer. When the isothermal holding temperature is higher than the martensite transformation point, the amount of martensite produced is small and the effect of promoting bainite transformation cannot be obtained. Therefore, it takes a long time to complete the bainite transformation. On the other hand, at a constant temperature holding temperature that does not reach 220 ° C., the amount of martensite generated during cooling increases and the amount of bainite decreases, so the crack propagation resistance decreases. Retention time 1
A sufficient amount of bainite can be obtained by keeping the temperature constant for 0 minutes or more. The effect of the constant temperature holding is saturated at the holding time of 90 minutes, and even if the holding time is longer than that, no substantial improvement in the characteristics is observed.

【0016】[0016]

【実施例】表1に示した組成をもつ板厚1.6mmの鋼
材に表2の熱処理を施し、成分及び熱処理条件が鋼材の
特性に及ぼす影響を調査した。表1のAグループは、本
発明に従ったBグループの鋼材と比較するために使用し
た炭素鋼であり、A1及びA3はP及びSiの含有量が
共に高い組成,A2はP含有量が低いもののSi含有量
が高い組成である。
EXAMPLE A steel material having a composition shown in Table 1 and a plate thickness of 1.6 mm was subjected to the heat treatment shown in Table 2, and the effects of the components and the heat treatment conditions on the properties of the steel material were investigated. Group A in Table 1 is a carbon steel used for comparison with group B steel according to the invention, where A1 and A3 are compositions with both high P and Si contents, A2 is low P content. However, the composition has a high Si content.

【0017】[0017]

【表1】 [Table 1]

【0018】表2に示すように異なる条件下の熱処理を
各鋼材に施した。熱処理条件1及び2は、本発明で規定
した温度条件を満足する。他方、熱処理条件3は保持温
度が低過ぎる場合,熱処理条件4は保持温度が高すぎる
場合,熱処理条件5はオーステナイト化温度が低過ぎる
場合である。
As shown in Table 2, each steel material was subjected to heat treatment under different conditions. The heat treatment conditions 1 and 2 satisfy the temperature conditions specified in the present invention. On the other hand, heat treatment condition 3 is when the holding temperature is too low, heat treatment condition 4 is when the holding temperature is too high, and heat treatment condition 5 is when the austenitizing temperature is too low.

【0019】[0019]

【表2】 [Table 2]

【0020】恒温保持処理された鋼材の特性は、表3に
示すように処理条件に応じて異なった特性及び金属組織
を呈した。なお、亀裂伝播抵抗の評価には、素材鋼板か
ら45mm×180mmの試験片を切り出し、図1に示
す寸法で中央部に開けた孔部に放電加工によって溝部を
付けたものを使用した。この試験片に油圧式疲労試験機
で繰返し引張荷重を加えることにより、疲労予亀裂を付
与した。その後、熱処理を施して調質し、引張試験に供
した。亀裂伝播抵抗値には、引張試験における破断まで
の最大荷重を初期断面積で除した値を使用した。恒温保
持温度は、図2に示すような影響を亀裂伝播抵抗値に及
ぼした。
As shown in Table 3, the properties of the steel material subjected to the isothermal holding treatment exhibited different properties and metal structures depending on the processing conditions. For the evaluation of crack propagation resistance, a test piece of 45 mm × 180 mm was cut out from a raw steel plate, and a hole formed in the center with the dimensions shown in FIG. 1 was provided with a groove by electric discharge machining. Fatigue precracking was imparted to the test piece by repeatedly applying a tensile load using a hydraulic fatigue tester. Then, it heat-processed and tempered and used for the tensile test. As the crack propagation resistance value, a value obtained by dividing the maximum load until breakage in the tensile test by the initial cross-sectional area was used. The isothermal holding temperature exerted the effect as shown in FIG. 2 on the crack propagation resistance value.

【0021】[0021]

【表3】 [Table 3]

【0022】P含有量及びSi含有量の両者又は何れか
一方が本発明で規定する要件を満足していないAグルー
プの鋼材では、熱処理後の旧オーステナイト粒界の強度
が低く、且つベイニティックフェライトの靭性が低いた
め、小さな亀裂伝播抵抗値を示した。成分的には本発明
の条件を満足するものであっても、表3に比較例IIとし
て示すように条件3〜5の熱処理を施したとき、何れも
目標とする高強度・高靭性が得られなかった。すなわ
ち、鋼材B1に条件3の熱処理を施したものでは、保持
温度が低過ぎることからマルテンサイトが主相となり、
粒界破壊や劈開破壊が生じ、亀裂伝播抵抗値が低くなっ
ていた。鋼材B1に条件4の熱処理を施したものでは、
保持温度が高すぎることから、低い引張強さが示され
た。また、鋼材B1に条件5の熱処理を施したもので
は、オーステナイト化温度が低いことからオーステナイ
ト化が不十分であり、引張強さが低くなっていた。これ
に対し、本発明で規定した成分に関する条件を満足する
Bグループの鋼材に条件1又は2の恒温保持処理を施し
たとき、破面形態がディンプル状になり、何れも高い亀
裂伝播抵抗値が得られた。また、N,V,Nb,Tiの
添加によって、亀裂伝播抵抗が一層高い値を示した。表
3から明らかなように、強度及び靭性の双方が高い鋼材
を得るためには、特定成分と特定条件の熱処理との組合
せが有効であることが確認された。特にP含有量及びS
i含有量の両者を低減することにより、亀裂伝播抵抗の
改善が図られていた。
Steels of group A in which both P content and / or Si content do not satisfy the requirements specified in the present invention, the strength of the former austenite grain boundary after heat treatment is low, and bainitic Due to the low toughness of ferrite, it showed a small crack propagation resistance value. Even if the components satisfy the conditions of the present invention, when the heat treatment under the conditions 3 to 5 as shown in Table 3 as Comparative Example II, the desired high strength and high toughness are obtained. I couldn't do it. That is, in the case where the steel material B1 is heat-treated under the condition 3, the holding temperature is too low, so that martensite becomes the main phase,
Intergranular fracture and cleavage fracture occurred, and the crack propagation resistance value was low. In the case where the steel material B1 is heat-treated under the condition 4,
The holding temperature was too high, indicating low tensile strength. Further, in the case where the steel material B1 was heat-treated under the condition 5, the austenitizing temperature was low, so that the austenitizing was insufficient and the tensile strength was low. On the other hand, when the steel materials of Group B satisfying the conditions related to the components specified in the present invention are subjected to the constant temperature holding treatment of Condition 1 or 2, the fracture surface form becomes a dimple shape, and both have high crack propagation resistance values. Was obtained. In addition, the addition of N, V, Nb, and Ti showed a higher crack propagation resistance. As is clear from Table 3, in order to obtain a steel material having both high strength and toughness, it was confirmed that the combination of specific components and heat treatment under specific conditions is effective. Especially P content and S
The crack propagation resistance was improved by reducing both the i contents.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、P含有量及びSi含有量を低減し鋼材をオーステナ
イト化した後、マルテンサイト変態点以下の温度で恒温
保持することにより、高強度を維持しながら靭性を向上
させ、切欠き感受性を低下させた金属組織としている。
また、N,V,Nb,Tiで旧オーステナイト粒を微細
化するとき、一層の靭性改善が図られる。得られた鋼材
は、引張強さが1500N/mm2 以上で優れた亀裂伝
播抵抗を示すことから、各種機械部品,刃物,歯車等の
広範な分野で使用される。
As described above, according to the present invention, the P content and the Si content are reduced, the steel material is austenitized, and then the steel material is kept at a temperature below the martensitic transformation point to obtain high strength. The metal structure has improved toughness and reduced notch sensitivity.
Further, when the prior austenite grains are refined with N, V, Nb, and Ti, the toughness is further improved. The obtained steel material has a tensile strength of 1500 N / mm 2 or more and exhibits excellent crack propagation resistance, and thus is used in a wide range of fields such as various machine parts, blades, and gears.

【図面の簡単な説明】[Brief description of drawings]

【図1】 亀裂伝播抵抗を調査した試験片[Fig. 1] Specimen for investigating crack propagation resistance

【図2】 亀裂伝播抵抗値に与える恒温保持温度の影響
を表したグラフ
FIG. 2 is a graph showing the effect of constant temperature holding temperature on crack propagation resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/58 C22C 38/58 (56)参考文献 特開 昭58−107412(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 6/00 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C22C 38/58 C22C 38/58 (56) Reference JP-A-58-107412 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C21D 6/00 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.3〜0.8重量%及びMn:
0.5〜2.0重量%を含み、P含有量を0.01重量
%以下に、Si含有量を0.1重量%以下に規制した組
成をもつ鋼を、Ac3 点以上の温度に加熱してオーステ
ナイト化した後、220℃以上でマルテンサイト生成温
度以下の温度域に急冷し、該温度域に10〜90分保持
する高強度高靭性鋼の製造方法。
1. C: 0.3-0.8% by weight and Mn:
Steel containing 0.5 to 2.0% by weight and having a P content of 0.01% by weight or less and a Si content of 0.1% by weight or less at a temperature of Ac 3 or higher. A method for producing a high-strength and high-toughness steel, which comprises heating and austenitizing, followed by rapid cooling to a temperature range of 220 ° C. or higher and a temperature of martensite or lower and holding the temperature range for 10 to 90 minutes.
【請求項2】 請求項1記載の組成が更にN:0.00
5〜0.02重量%,V:0.01〜0.1重量%,N
b:0.01〜0.1重量%及びTi:0.01〜0.
1重量%の1種又は2種以上を含有するものである高強
度高靭性鋼の製造方法。
2. The composition according to claim 1, further comprising N: 0.00.
5 to 0.02% by weight, V: 0.01 to 0.1% by weight, N
b: 0.01-0.1 wt% and Ti: 0.01-0.
A method for producing a high-strength and high-toughness steel containing 1% by weight of one or more kinds.
【請求項3】 請求項1又は2記載の組成が更にCr:
0.2〜2.0重量%,Ni:0.2〜2.0重量%及
びMo:0.1〜1.0重量%の1種又は2種以上を含
むものである高強度高靭性鋼の製造方法。
3. The composition according to claim 1 or 2 further comprises Cr:
Manufacture of high strength and high toughness steel containing one or more of 0.2 to 2.0% by weight, Ni: 0.2 to 2.0% by weight and Mo: 0.1 to 1.0% by weight. Method.
JP25765894A 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel Expired - Fee Related JP3468875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25765894A JP3468875B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25765894A JP3468875B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Publications (2)

Publication Number Publication Date
JPH0892634A JPH0892634A (en) 1996-04-09
JP3468875B2 true JP3468875B2 (en) 2003-11-17

Family

ID=17309312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25765894A Expired - Fee Related JP3468875B2 (en) 1994-09-27 1994-09-27 Manufacturing method of high strength and high toughness steel

Country Status (1)

Country Link
JP (1) JP3468875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849681C1 (en) * 1998-10-28 2000-01-05 Skf Gmbh Heat treating components of steel or cast iron
JP2000283262A (en) * 1999-03-30 2000-10-13 Fuji Kiko Co Ltd Steel for gear, drive plate gear and manufacture thereof

Also Published As

Publication number Publication date
JPH0892634A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
EP1746176B1 (en) Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
JPH0841535A (en) Production of high hardness wear resistant steel excellent in low temperature toughness
JP4266340B2 (en) High strength wire for induction hardening with excellent cold workability and impact resistance, and steel parts using this wire
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
CN109790602B (en) Steel
JPH09170017A (en) Production of steel plate with high strength and high toughness
JPH11131176A (en) Induction hardened parts and production thereof
JP4210362B2 (en) Method for producing high strength steel with excellent fatigue properties
CN110462083B (en) Steel having high hardness and excellent toughness
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP3468875B2 (en) Manufacturing method of high strength and high toughness steel
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JP2019073763A (en) Method for producing steel processed component
JP3458604B2 (en) Manufacturing method of induction hardened parts
JP3688311B2 (en) Manufacturing method of high strength and high toughness steel
JP2008144270A (en) Non-heat-treated steel for machine structure excellent in fatigue property and toughness, its manufacturing method, component for machine structure, and its manufacturing method
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
JPH0470385B2 (en)
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
JPS59159971A (en) Steel for cold forging with superior hardenability
CN111479938B (en) Heat-treatment-curable high-carbon steel sheet and method for producing same
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees