JPH0892164A - Production of pivaloylacetic acid ester - Google Patents

Production of pivaloylacetic acid ester

Info

Publication number
JPH0892164A
JPH0892164A JP7181791A JP18179195A JPH0892164A JP H0892164 A JPH0892164 A JP H0892164A JP 7181791 A JP7181791 A JP 7181791A JP 18179195 A JP18179195 A JP 18179195A JP H0892164 A JPH0892164 A JP H0892164A
Authority
JP
Japan
Prior art keywords
reaction
pivaloyl
methyl
yield
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7181791A
Other languages
Japanese (ja)
Other versions
JP3206379B2 (en
Inventor
Katsuhiko Mitaru
克彦 水垂
Masayoshi Oku
正吉 奥
Takeshi Kamiyama
剛 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP18179195A priority Critical patent/JP3206379B2/en
Publication of JPH0892164A publication Critical patent/JPH0892164A/en
Application granted granted Critical
Publication of JP3206379B2 publication Critical patent/JP3206379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To readily obtain the ester useful as a synthetic intermediate for photographic materials, etc., in a high yield by carrying out decarbonylation reaction of pivaloylpyruvic acid ester using a stable specific catalyst having high activity. CONSTITUTION: (C) This method for producing a pivaloylpyruvic acid ester of formula II (e.g. methyl pivaloylpyruvate) is to subject (B) a pivaloylpuruvic acid ester of formula I (R is a 1-4C alkyl) (e.g. methyl pivaloylpyruvate) to decarbonylation reaction in the presence of (A) an inorganic oxide containing >=10wt.%, preferably >=30%, further preferably >=90% alumina expressed in terms of aluminum oxide (Al2 O3 ) and not containing a heavy metal. Furthermore, the component A is preferably added to the component B in an amount of 0.1-10%, preferably 0.5-5% based on the component B. The component A has preferably 0.5-3mm particle diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピバロイル酢酸エステ
ルの製造法、より詳しくはピバロイルピルビン酸エステ
ルを脱カルボニル反応せしめて高收率でピバロイル酢酸
エステルを製造する方法に関する。ピバロイル酢酸エス
テルは、写真材料等の合成中間体として非常に有用な化
合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pivaloyl acetate, and more particularly to a method for producing a pivaloyl acetate with a high yield by decarbonylating pivaloyl pyruvate. Pivaloyl acetate is a very useful compound as a synthetic intermediate for photographic materials and the like.

【0002】[0002]

【従来の技術】ピバロイルピルビン酸エステルを脱カル
ボニル反応せしめてピバロイル酢酸エステルを製造する
方法としては、触媒として、鉄、銅、ニッケル、マンガ
ン、クロム、モリブデン及びコバルトよりなる群から選
ばれる金属の存在下で脱カルボニル反応せしめる方法
(特公昭62−47170号公報参照)や粉末状ガラス
の存在下で脱カルボニル反応せしめる方法(US252
7306参照)が知られている。
2. Description of the Related Art As a method for producing a pivaloyl acetate by decarbonylating a pivaloyl pyruvate, a metal selected from the group consisting of iron, copper, nickel, manganese, chromium, molybdenum and cobalt is used as a catalyst. (See Japanese Patent Publication No. 62-47170) and a decarbonylation reaction in the presence of powdered glass (US252).
7306) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも触媒の活性が高いとは言えず、更に工
業的に満足できない問題をそれぞれ有している。即ち、
前者の方法では、触媒として前記のような重金属を用い
るため、その回収及び後処理がより煩雑なものになるの
みならず、副生する一酸化炭素とこれら重金属が反応し
て有毒な金属カルボニルを生成する危険性も存在する。
また、最も活性の高い鉄粉を用いた場合には鉄粉の回収
率が低いという大きな問題が存在している。一方、後者
の方法では、ピバロイル酢酸エステルを收率よく得るた
めに原料の10〜11重量%という多量の触媒を使用し
て液相で反応を行うことから、反応後の触媒の回収及び
後処理が煩雑になるという問題がある。
However, none of these methods can be said to have high activity of the catalyst, and further, there are problems which are industrially unsatisfactory. That is,
In the former method, since the heavy metal as described above is used as a catalyst, not only the recovery and post-treatment thereof become more complicated, but also carbon monoxide as a by-product reacts with these heavy metals to produce toxic metal carbonyls. There is also the risk of creating.
Further, there is a big problem that the recovery rate of iron powder is low when the most active iron powder is used. On the other hand, in the latter method, the reaction is carried out in a liquid phase using a large amount of the catalyst of 10 to 11% by weight of the raw material in order to obtain the pivaloyl acetate in a good yield. There is a problem that it becomes complicated.

【0004】本発明は、ピバロイルピルビン酸エステル
を脱カルボニル反応せしめてピバロイル酢酸エステルを
製造する方法において、高活性でかつ安定な触媒を使用
してピバロイル酢酸エステルを高收率で製造することが
でき、更に触媒の回収及び後処理も容易なピバロイル酢
酸エステルの製造方法を提供することを目的とするもの
である。
The present invention provides a method for producing a pivaloyl acetic acid ester by decarbonylating a pivaloyl pyruvic acid ester to produce a high yield of pivaloyl acetic acid ester using a highly active and stable catalyst. It is an object of the present invention to provide a method for producing pivaloyl acetic acid ester, which is capable of producing a pivaloyl acetate and in which the catalyst can be easily recovered and post-treated.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、アルミ
ニウムを酸化アルミニウム(Al2 3 )に換算して1
0重量%以上含有し、かつ重金属を含有しない無機酸化
物の存在下で、ピバロイルピルビン酸エステルを脱カル
ボニル反応せしめることを特徴とするピバロイル酢酸エ
ステルの製造法により達成される。
The object of the present invention is to convert aluminum into aluminum oxide (Al 2 O 3 ).
This is achieved by a method for producing a pivaloyl acetic acid ester, which comprises subjecting a pivaloyl pyruvic acid ester to a decarbonylation reaction in the presence of an inorganic oxide containing 0% by weight or more and not containing a heavy metal.

【0006】以下に本発明を詳しく説明する。ピバロイ
ルピルビン酸エステルは一般式(I)で示される化合物
である。
The present invention will be described in detail below. Pivaloyl pyruvate is a compound represented by the general formula (I).

【化1】 (式中、Rは炭素数1〜4のアルキル基を示す)[Chemical 1] (In the formula, R represents an alkyl group having 1 to 4 carbon atoms)

【0007】具体的には、ピバロイルピルビン酸メチ
ル、ピバロイルピルビン酸エチル、ピバロイルピルビン
酸n−プロピル等が挙げられる。
Specific examples thereof include methyl pivaloylpyruvate, ethyl pivaloylpyruvate and n-propyl pivaloylpyruvate.

【0008】また、ピバロイルピルビン酸エステルの脱
カルボニル化により生成するピバロイル酢酸エステルは
一般式(II)で示される化合物で、具体的にはピバロイ
ル酢酸メチル、ピバロイル酢酸エチル、ピバロイル酢酸
n−プロピル等が挙げられる。
The pivaloyl acetic acid ester produced by decarbonylation of pivaloyl pyruvic acid ester is a compound represented by the general formula (II), specifically, methyl pivaloyl acetate, ethyl pivaloyl acetate, n-propyl pivaloyl acetate. Etc.

【化2】 (式中、Rは炭素数1〜4のアルキル基を示す)[Chemical 2] (In the formula, R represents an alkyl group having 1 to 4 carbon atoms)

【0009】本発明では、アルミニウムを酸化アルミニ
ウム(Al2 3 )に換算して10重量%以上、好まし
くは30重量%以上、更に好ましくは90重量%以上含
有し、かつ鉄、銅、ニッケル、マンガン、クロム、モリ
ブデン及びコバルト等の重金属を含有しない無機酸化物
を触媒として存在させて、ピバロイルピルビン酸エステ
ルの脱カルボニル反応が行われる。無機酸化物中のアル
ミニウム含量が少ないと、液相で反応を行う場合は反応
時間が長くなり、気相で反応を行う場合には転化率を上
げるために触媒量を増やさなければならず、更にピバロ
イルピルビン酸エステルの熱分解も起こりやすくなって
目的のピバロイル酢酸エステルの收率が低下するように
なる。
In the present invention, aluminum is contained in an amount of 10% by weight or more, preferably 30% by weight or more, more preferably 90% by weight or more in terms of aluminum oxide (Al 2 O 3 ), and iron, copper, nickel, The decarbonylation reaction of pivaloylpyruvate ester is carried out in the presence of an inorganic oxide containing no heavy metals such as manganese, chromium, molybdenum and cobalt as a catalyst. When the aluminum content in the inorganic oxide is low, the reaction time becomes long when the reaction is carried out in the liquid phase, and the catalyst amount must be increased in order to increase the conversion rate when the reaction is carried out in the gas phase. Thermal decomposition of pivaloyl pyruvic acid ester is also likely to occur and the yield of the target pivaloyl acetic acid ester will be reduced.

【0010】前記無機酸化物としては、例えばα−アル
ミナ、γ−アルミナ、η−アルミナ、β−アルミナ、δ
−アルミナ等のアルミナ、ゼオライトA、ゼオライトB
等のゼオライト、モレキュラーシーブ3A、モレキュラ
ーシーブ4A、モレキュラーシーブ5A、モレキュラー
シーブ13X等の合成ゼオライト、及びシリカアルミナ
が挙げられる。このうち、イオン交換能を有するゼオラ
イトや合成ゼオライトでは、そのイオン交換点に鉄、
銅、ニッケル、マンガン、クロム、モリブデン及びコバ
ルト等の重金属以外のイオン、例えばアルカリ金属イオ
ン、アルカリ土類金属イオン、水素イオン、アンモニウ
ムイオンがイオン交換担持されていても差し支えない。
なお、前記無機酸化物としては、触媒活性の面からは粒
径の小さいものが好ましく、ハンドリングの面からは粒
径の大きいものが好ましいため、通常0.05〜10m
mφ、好ましくは0.5〜3mmφの粒径のものが好適
に使用される。
Examples of the inorganic oxides include α-alumina, γ-alumina, η-alumina, β-alumina and δ.
-Alumina such as alumina, zeolite A, zeolite B
And the like, synthetic sieves such as molecular sieve 3A, molecular sieve 4A, molecular sieve 5A, and molecular sieve 13X, and silica-alumina. Of these, in zeolites and synthetic zeolites that have ion-exchange capacity, iron is used as the ion-exchange point,
Ions other than heavy metals such as copper, nickel, manganese, chromium, molybdenum, and cobalt, for example, alkali metal ions, alkaline earth metal ions, hydrogen ions, and ammonium ions may be ion-exchanged and carried.
The inorganic oxide preferably has a small particle size from the viewpoint of catalytic activity, and preferably has a large particle size from the viewpoint of handling.
Those having a particle diameter of mφ, preferably 0.5 to 3 mmφ are suitably used.

【0011】本発明では、ピバロイルピルビン酸エステ
ルの脱カルボニル反応は液相でも気相でも行うことがで
きる。液相法の場合、反応は、通常、ピバロイルピルビ
ン酸エステルと前記無機酸化物を反応器に入れて、10
0〜280℃、好ましくは150〜200℃で液相を加
熱することによって行われる。このとき、反応圧力は特
に制限されるものではないが、通常は常圧である。ま
た、前記無機酸化物は原料のピバロイルピルビン酸エス
テルに対して通常0.1〜10重量%、好ましくは0.
5〜5重量%添加される。反応は通常0.5〜5時間で
完結し、反応後、反応生成物は反応液をそのまま蒸留す
ることによって分離精製され、触媒は濾過などにより容
易に回収される。
In the present invention, the decarbonylation reaction of pivaloylpyruvate can be carried out in the liquid phase or the gas phase. In the case of the liquid phase method, the reaction is usually carried out by adding the pivaloyl pyruvate ester and the inorganic oxide to a reactor and
It is carried out by heating the liquid phase at 0 to 280 ° C, preferably 150 to 200 ° C. At this time, the reaction pressure is not particularly limited, but is usually atmospheric pressure. The inorganic oxide is usually 0.1 to 10% by weight, preferably 0.1% by weight, based on the pivaloylpyruvate ester as a raw material.
5 to 5% by weight is added. The reaction is usually completed in 0.5 to 5 hours. After the reaction, the reaction product is separated and purified by distilling the reaction solution as it is, and the catalyst is easily recovered by filtration or the like.

【0012】また、気相法の場合、反応は、通常、前記
無機酸化物を充填した反応管に、気化器又は気化層で気
化させたピバロイルピルビン酸エステルと窒素ガス等の
不活性ガスとの混合ガスを、原料ガスとして連続的に供
給することによって行われる。このとき、反応圧は特に
制限されるものではないが、通常は常圧である。また、
反応温度は通常150〜300℃、好ましくは180〜
250℃であり、ピバロイルピルビン酸エステルを含有
する原料ガスの空間速度は通常50〜3000hr-1
好ましくは100〜1500hr-1で、原料ガス中のピ
バロイルピルビン酸エステルの濃度は不活性ガス1リッ
トルに対して通常1〜300g、好ましくは2〜100
gである。気相法では、反応生成物は、反応管を通過し
たガスを冷却して得られる凝縮液を蒸留することによっ
て容易に分離精製される。
[0012] In the case of the gas phase method, the reaction is usually carried out in a reaction tube filled with the above-mentioned inorganic oxide in a vaporizer or a vaporization layer, and an inert gas such as pivaloyl pyruvate ester and nitrogen gas. It is carried out by continuously supplying a mixed gas of and as a raw material gas. At this time, the reaction pressure is not particularly limited, but is usually atmospheric pressure. Also,
The reaction temperature is usually 150 to 300 ° C, preferably 180 to
250 ° C., the space velocity of the raw material gas containing pivaloyl pyruvate is usually 50 to 3000 hr −1 ,
Preferably at 100~1500Hr -1, the concentration of pivaloyl pyruvic acid ester in the feed gas is typically 1~300g against inert gas 1 liter, preferably from 2 to 100
g. In the gas phase method, the reaction product is easily separated and purified by cooling the gas passing through the reaction tube and distilling a condensate obtained.

【0013】なお、気相法で活性の低下した触媒は反応
管から取り出して容易に回収することができるが、本発
明では、反応管に充填された触媒をそのままアセトン、
メチルエチルケトン、メチルイソブチルケトン等の低級
アルキルケトン、メタノール、エタノール、プロパノー
ル等の低級アルコールなどの有機溶媒で洗浄することに
より容易に再生することもできる。洗浄は、通常、窒素
ガス等の不活性ガスと共に該有機溶媒を20〜40℃で
反応管の触媒層に通じることによって行われる。このた
め、本発明では触媒を交換することなく長期間連続的に
反応を行うことが可能である。
The catalyst whose activity has been lowered by the gas phase method can be easily recovered by taking it out of the reaction tube. However, in the present invention, the catalyst packed in the reaction tube is used as it is in acetone.
It can also be easily regenerated by washing with an organic solvent such as a lower alkyl ketone such as methyl ethyl ketone and methyl isobutyl ketone, a lower alcohol such as methanol, ethanol and propanol. The washing is usually carried out by passing the organic solvent together with an inert gas such as nitrogen gas at 20 to 40 ° C. through the catalyst layer of the reaction tube. Therefore, in the present invention, it is possible to carry out the reaction continuously for a long time without replacing the catalyst.

【0014】[0014]

【実施例】次に、実施例を挙げて本発明を具体的に説明
する。なお、反応は全て常圧下で実施し、ピバロイルピ
ルビン酸エステルの転化率及びピバロイル酢酸エステル
の收率はモル換算で求めた。また、触媒のアルミニウム
含量は酸化アルミニウム(Al2 3 )に換算したアル
ミニウム含量を示す。
EXAMPLES Next, the present invention will be specifically described with reference to examples. All the reactions were carried out under normal pressure, and the conversion of pivaloylpyruvate and the yield of pivaloylacetate were calculated in mol. The aluminum content of the catalyst is the aluminum content converted to aluminum oxide (Al 2 O 3 ).

【0015】実施例1 50ml容ガラス製反応器に、純度98.9重量%のピ
バロイルピルビン酸メチル20gと触媒として粒径1m
mのγ−アルミナ〔ネオビードRP−4A(酸化アルミ
ニウムに換算したアルミニウム含量:94.5重量
%)、水沢化学製〕0.8gを入れて、170〜175
℃で液相を4時間攪拌した。反応の進行と共に一酸化炭
素が徐々に発生した。反応終了後、反応液をガスクロマ
トグラフィーにより分析したところ、ピバロイル酢酸メ
チルが15.4g生成していた(転化率91.8%、收
率91.8%)。また、触媒は、反応液を濾過した後、
メタノール洗浄、減圧乾燥を行うことによって0.8g
が回収された(回収率100%)。
Example 1 In a 50 ml glass reactor, 20 g of methyl pivaloylpyruvate having a purity of 98.9% by weight and a particle size of 1 m as a catalyst were used.
170-175 by adding 0.8 g of m-γ-alumina [Neobead RP-4A (aluminum content converted to aluminum oxide: 94.5% by weight), manufactured by Mizusawa Chemical Co., Ltd.]
The liquid phase was stirred at 0 ° C for 4 hours. Carbon monoxide was gradually generated as the reaction proceeded. After completion of the reaction, the reaction solution was analyzed by gas chromatography to find that 15.4 g of methyl pivaloyl acetate was produced (conversion rate 91.8%, yield 91.8%). Also, the catalyst, after filtering the reaction solution,
0.8g by washing with methanol and drying under reduced pressure
Were recovered (recovery rate 100%).

【0016】実施例2 50ml容ガラス製反応器に、純度98.0重量%のピ
バロイルピルビン酸メチル20gと触媒として粒径1m
mのγ−アルミナ〔KHA−24(酸化アルミニウムに
換算したアルミニウム含量:99.7重量%)、住友化
学製〕0.8gを入れて、170〜175℃で液相を2
時間攪拌した。反応の進行と共に一酸化炭素が徐々に発
生した。反応終了後、反応液をガスクロマトグラフィー
により分析したところ、ピバロイル酢酸メチルが14.
3g生成していた(転化率97.2%、收率86.0
%)。
Example 2 In a 50 ml glass reactor, 20 g of methyl pivaloylpyruvate having a purity of 98.0% by weight and a particle size of 1 m as a catalyst were used.
0.8 g of [gamma] -alumina [KHA-24 (aluminum content converted to aluminum oxide: 99.7% by weight), manufactured by Sumitomo Chemical Co., Ltd.] of m was added and the liquid phase was adjusted to 2 at 170 to 175 ° C.
Stir for hours. Carbon monoxide was gradually generated as the reaction proceeded. After completion of the reaction, the reaction solution was analyzed by gas chromatography to find that methyl pivaloyl acetate was 14.
3g was produced (conversion rate 97.2%, yield 86.0)
%).

【0017】実施例3 実施例1において、触媒を70〜230メッシュのα−
アルミナ(酸化アルミニウムに換算したアルミニウム含
量:99重量%、関東化学製)0.8gに変え、180
〜185℃で液相を5時間攪拌したほかは、実施例1と
同様に反応を行った。分析の結果、ピバロイル酢酸メチ
ルが14.3g生成していた(転化率95.6%、收率
85.4%)。
Example 3 In Example 1, the catalyst was 70-230 mesh α-
180 g of alumina (aluminum content converted to aluminum oxide: 99% by weight, manufactured by Kanto Kagaku)
The reaction was performed as in Example 1 except that the liquid phase was stirred at 185 ° C for 5 hours. As a result of the analysis, 14.3 g of methyl pivaloyl acetate was produced (conversion rate 95.6%, yield rate 85.4%).

【0018】実施例4 実施例1において、触媒をモレキュラーシーブ3A 1
/8(酸化アルミニウムに換算したアルミニウム含量:
30重量%、和光純薬製)0.8gに変え、150〜1
60℃で液相を2時間攪拌したほかは、実施例1と同様
に反応を行った。分析の結果、ピバロイル酢酸メチルが
14.7g生成していた(転化率97.6%、收率8
7.7%)。
Example 4 In Example 1, the catalyst was changed to molecular sieve 3A 1
/ 8 (aluminum content converted to aluminum oxide:
30% by weight, manufactured by Wako Pure Chemical Industries, Ltd.) changed to 0.8 g, 150-1
The reaction was performed in the same manner as in Example 1 except that the liquid phase was stirred at 60 ° C for 2 hours. As a result of the analysis, 14.7 g of methyl pivaloyl acetate was produced (conversion rate 97.6%, yield 8
7.7%).

【0019】比較例1 実施例1において触媒を使用せずに175〜180℃で
液相を7時間攪拌したほかは、実施例1と同様に反応を
行った。分析の結果、ピバロイル酢酸メチルが6.8g
生成していた(転化率54.3%、收率40.2%)。
Comparative Example 1 The reaction was performed in the same manner as in Example 1 except that the liquid phase was stirred for 7 hours at 175 to 180 ° C. without using a catalyst. As a result of the analysis, 6.8 g of methyl pivaloyl acetate was obtained.
It was generated (conversion rate 54.3%, yield 40.2%).

【0020】比較例2 実施例1において、触媒を60〜100メッシュのシリ
カゲル(石津製薬製)0.8gに変え、液相を190〜
200℃で7時間攪拌したほかは、実施例1と同様に反
応を行った。分析の結果、ピバロイル酢酸メチルが1
0.3g生成していた(転化率77.4%、收率61.
3%)。
Comparative Example 2 In Example 1, the catalyst was changed to 0.8 g of 60-100 mesh silica gel (manufactured by Ishizu Seiyaku), and the liquid phase was set to 190-90.
The reaction was performed in the same manner as in Example 1 except that the mixture was stirred at 200 ° C for 7 hours. As a result of analysis, methyl pivaloyl acetate was 1
0.3 g was produced (conversion rate 77.4%, yield 61.
3%).

【0021】比較例3 実施例1において、触媒を1mmφ×10mmのゼオラ
イト〔HSD−640NAD(酸化アルミニウムに換算
したアルミニウム含量:7.7重量%)、東ソー製〕
0.8gに変え、液相を160〜170℃で7時間攪拌
したほかは、実施例1と同様に反応を行った。分析の結
果、ピバロイル酢酸メチルが11.5g生成していた
(転化率97.5%、收率68.1%)。
Comparative Example 3 In Example 1, the catalyst was 1 mmφ × 10 mm zeolite [HSD-640NAD (aluminum content converted to aluminum oxide: 7.7% by weight), manufactured by Tosoh Corporation].
The reaction was performed in the same manner as in Example 1 except that the amount was changed to 0.8 g and the liquid phase was stirred at 160 to 170 ° C. for 7 hours. As a result of the analysis, 11.5 g of methyl pivaloyl acetate was produced (conversion rate 97.5%, yield 68.1%).

【0022】比較例4 50ml容ガラス製反応器に、純度96.7重量%のピ
バロイルピルビン酸メチル30gと触媒として100メ
ッシュの電解鉄粉(和光純薬製)1.2gを入れて、液
相を200℃で3時間攪拌した。反応の進行と共に一酸
化炭素が徐々に発生した。反応終了後、反応液をガスク
ロマトグラフィーにより分析したところ、ピバロイル酢
酸メチルが21.0g生成していた(転化率100%、
收率85.4%)。実施例1と同様に触媒の回収を行っ
たところ、0.85gが回収されたのみであった(回収
率71%)。実施例1〜4及び比較例1〜4の結果をま
とめて表1に示す。
Comparative Example 4 A 50 ml glass reactor was charged with 30 g of methyl pivaloylpyruvate having a purity of 96.7% by weight and 1.2 g of 100 mesh electrolytic iron powder (manufactured by Wako Pure Chemical Industries) as a catalyst. The liquid phase was stirred at 200 ° C. for 3 hours. Carbon monoxide was gradually generated as the reaction proceeded. After completion of the reaction, the reaction solution was analyzed by gas chromatography to find that 21.0 g of methyl pivaloyl acetate was produced (conversion rate 100%,
Yield 85.4%). When the catalyst was recovered in the same manner as in Example 1, only 0.85 g was recovered (recovery rate 71%). The results of Examples 1 to 4 and Comparative Examples 1 to 4 are summarized in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例5 内径29mm、長さ500mmのステンレス製反応管に
触媒として粒径1mmのγ−アルミナ〔ネオビードRP
−4A(酸化アルミニウムに換算したアルミニウム含
量:94.5重量%)、水沢化学製〕60mlを充填
し、窒素ガスを350ml/minの流量で流しながら
230℃に加熱した。次いで、純度99.5重量%のピ
バロイルピルビン酸メチルを気化させて窒素ガスに同伴
させることによって、2g/minの流量で反応管に添
加して反応を行った。反応を開始して1時間後から30
分間に触媒層を通過したガスを冷却して得られた凝縮液
を分析したところ、ピバロイル酢酸メチルが42.6g
生成していた(転化率99.0%、收率83.5%、空
時収量1420g/l・hr)。なお、ピバロイル酢酸
メチルの空時収量(STY)(g/l・hr)は、反応
時間をθ(hr)、その間に生成したピバロイル酢酸メ
チルをa(g)、反応管への触媒の充填量をb(l)と
して次式により求めた。
Example 5 A reaction tube made of stainless steel having an inner diameter of 29 mm and a length of 500 mm was used as a catalyst to form γ-alumina having a particle diameter of 1 mm [NEOBEAD RP].
-4A (aluminum content converted to aluminum oxide: 94.5% by weight, manufactured by Mizusawa Chemical Co., Ltd.) 60 ml, and heated to 230 ° C. while flowing nitrogen gas at a flow rate of 350 ml / min. Next, methyl pivaloylpyruvate having a purity of 99.5% by weight was vaporized and entrained in nitrogen gas, and added to the reaction tube at a flow rate of 2 g / min to carry out the reaction. 1 hour after starting the reaction, 30
When the condensate obtained by cooling the gas passing through the catalyst layer in 4 minutes was analyzed, it was found that methyl pivaloylacetate was 42.6 g.
It was produced (conversion rate 99.0%, yield rate 83.5%, space-time yield 1420 g / l · hr). The space-time yield (STY) (g / l · hr) of methyl pivaloylacetate was calculated by setting the reaction time to θ (hr), the amount of methyl pivaloylacetate formed during that period to a (g), and the amount of catalyst packed in the reaction tube. Was calculated by the following formula.

【0025】[0025]

【数1】 [Equation 1]

【0026】実施例6 実施例5において、触媒を粒径1mmのγ−アルミナ
〔ネオビードRP−4A(酸化アルミニウムに換算した
アルミニウム含量:94.5重量%)、水沢化学製〕3
0mlに変え、窒素ガスの流量を100ml/minに
変えたほかは、実施例5と同様に反応を行った。反応を
開始して1時間後から30分間に触媒層を通過したガス
を冷却して得られた生成物を分析したところ、ピバロイ
ル酢酸メチルが41.3g生成していた(転化率93.
2%、收率81.4%、空時収量2753g/l・h
r)。
Example 6 In Example 5, the catalyst was γ-alumina having a particle diameter of 1 mm [Neobead RP-4A (aluminum content converted to aluminum oxide: 94.5% by weight), manufactured by Mizusawa Chemical Co., Ltd.] 3.
The reaction was performed in the same manner as in Example 5, except that the flow rate of nitrogen gas was changed to 0 ml and the flow rate of nitrogen gas was changed to 100 ml / min. The product obtained by cooling the gas that passed through the catalyst layer from 1 hour to 30 minutes after starting the reaction was analyzed and found to have produced 41.3 g of methyl pivaloyl acetate (conversion rate 93.
2%, yield 81.4%, space-time yield 2753 g / l · h
r).

【0027】実施例7 実施例5において、触媒を粒径3mmのγ−アルミナ
〔ネオビードDB−48(酸化アルミニウムに換算した
アルミニウム含量:95.3重量%)、水沢化学製〕6
0mlに変え、窒素ガスの流量を25ml/minに変
えたほかは、実施例5と同様に反応を行った。反応を開
始して1時間後から30分間に触媒層を通過したガスを
冷却して得られた生成物を分析したところ、ピバロイル
酢酸メチルが45.2g生成していた(転化率95.5
%、收率88.8%、空時収量1507g/l・h
r)。
Example 7 In Example 5, the catalyst was γ-alumina having a particle size of 3 mm [Neobead DB-48 (aluminum content converted to aluminum oxide: 95.3% by weight), manufactured by Mizusawa Chemical Co., Ltd.] 6.
The reaction was performed in the same manner as in Example 5 except that the flow rate of nitrogen gas was changed to 0 ml and the flow rate of nitrogen gas was changed to 25 ml / min. The product obtained by cooling the gas that passed through the catalyst layer 1 hour to 30 minutes after starting the reaction was analyzed, and as a result, 45.2 g of methyl pivaloyl acetate was produced (conversion rate 95.5).
%, Yield 88.8%, space-time yield 1507 g / l · h
r).

【0028】実施例8 実施例5において、触媒を粒径3mmのγ−アルミナ
〔ネオビードGB−45(酸化アルミニウムに換算した
アルミニウム含量:100重量%)、水沢化学製〕30
mlに変え、窒素ガスの流量を100ml/minに、
そしてピバロイルピルビン酸メチルの流量を1g/mi
nに変えたほかは、実施例5と同様に反応を行った。反
応を開始して1時間後から30分間に触媒層を通過した
ガスを冷却して得られた生成物を分析したところ、ピバ
ロイル酢酸メチルが22.0g生成していた(転化率9
0.8%、收率86.2%、空時収量1467g/l・
hr)。
Example 8 In Example 5, the catalyst was γ-alumina having a particle size of 3 mm [Neobead GB-45 (aluminum content converted to aluminum oxide: 100% by weight), manufactured by Mizusawa Chemical Co., Ltd.] 30
ml, and the flow rate of nitrogen gas to 100 ml / min,
Then, the flow rate of methyl pivaloylpyruvate was set to 1 g / mi.
The reaction was carried out in the same manner as in Example 5 except that n was changed. The product obtained by cooling the gas that passed through the catalyst layer from 1 hour to 30 minutes after starting the reaction was analyzed and found to have produced 22.0 g of methyl pivaloyl acetate (conversion rate 9
0.8%, yield 86.2%, space-time yield 1467g / l
hr).

【0029】実施例9 実施例5において、触媒を粒径1mmのγ−アルミナ
〔ネオビードRP−4B(酸化アルミニウムに換算した
アルミニウム含量:94.5重量%):水沢化学製〕6
0mlに変え、窒素ガスの流量を100ml/min
に、そしてピバロイルピルビン酸メチルの流量を4g/
minに変えたほかは、実施例5と同様に反応を行っ
た。反応を開始して1時間後から15分間に触媒層を通
過したガスを冷却して得られた生成物を分析したとこ
ろ、ピバロイル酢酸メチルが47.9g生成していた
(転化率96.5%、收率94.0%、空時収量319
3g/l・hr)。
Example 9 In Example 5, the catalyst was γ-alumina having a particle size of 1 mm [Neobead RP-4B (aluminum content converted to aluminum oxide: 94.5% by weight): manufactured by Mizusawa Chemical Co., Ltd.] 6.
Change to 0 ml and change the flow rate of nitrogen gas to 100 ml / min
And a flow rate of methyl pivaloyl pyruvate of 4 g /
The reaction was performed in the same manner as in Example 5 except that the amount was changed to min. The product obtained by cooling the gas that passed through the catalyst layer 1 hour to 15 minutes after starting the reaction was analyzed and found to have produced 47.9 g of methyl pivaloyl acetate (conversion rate 96.5%). , Yield 94.0%, space-time yield 319
3 g / l · hr).

【0030】比較例5 実施例5において触媒を充填しなかったほかは、実施例
5と同様に反応を行った。反応を開始して1時間後から
30分間に触媒層を通過したガスを冷却して得られた生
成物を分析したところ、ピバロイル酢酸メチルが0.0
36g生成していた(転化率0.14%、收率0.14
%)。
Comparative Example 5 The reaction was performed in the same manner as in Example 5 except that the catalyst was not charged in Example 5. The product obtained by cooling the gas that passed through the catalyst layer from 1 hour to 30 minutes after starting the reaction was analyzed, and it was found that methyl pivaloyl acetate was 0.0
36g was produced (conversion rate 0.14%, yield 0.14
%).

【0031】比較例6 実施例5において触媒を粒径2mmのガラスビーズ(酸
化アルミニウムに換算したアルミニウム含量:2重量
%)30mlに変えたほかは、実施例5と同様に反応を
行った。反応を開始して1時間後から30分間に触媒層
を通過したガスを冷却して得られた生成物を分析したと
ころ、ピバロイル酢酸メチルが0.18g生成していた
(転化率0.36%、收率0.36%、空時収量12g
/l・hr)。
Comparative Example 6 The reaction was carried out in the same manner as in Example 5 except that the catalyst in Example 5 was changed to 30 ml of glass beads having a particle diameter of 2 mm (aluminum content converted to aluminum oxide: 2% by weight). The product obtained by cooling the gas that passed through the catalyst layer from 1 hour to 30 minutes after starting the reaction was analyzed and found to have produced 0.18 g of methyl pivaloyl acetate (conversion rate 0.36% , Yield 0.36%, space-time yield 12g
/ L · hr).

【0032】比較例7 実施例5において触媒を粒径1mmのシリカゲル〔シル
ビードN(酸化アルミニウムに換算したアルミニウム含
量:2重量%)、水沢化学製〕30mlに変え、窒素ガ
スの流量を100ml/minに変えたほかは、実施例
5と同様に反応を行った。反応を開始して1時間後から
1時間の間に触媒層を通過したガスを冷却して得られた
生成物を分析したところ、ピバロイル酢酸メチルが1
1.0g生成していた(転化率15.5%、收率10.
8%、空時収量367g/l・hr)。
Comparative Example 7 The catalyst used in Example 5 was changed to 30 ml of silica gel having a particle size of 1 mm [Silbead N (aluminum content converted to aluminum oxide: 2% by weight), manufactured by Mizusawa Chemical Co.], and the flow rate of nitrogen gas was 100 ml / min. The reaction was performed in the same manner as in Example 5 except that The product obtained by cooling the gas that passed through the catalyst layer between 1 hour and 1 hour after starting the reaction was analyzed, and it was found that methyl pivaloyl acetate was 1%.
1.0 g was produced (conversion rate 15.5%, yield 10.
8%, space-time yield 367 g / l · hr).

【0033】比較例8 実施例5において触媒を1mmφ×10mmのゼオライ
ト〔HSD−640NAD(酸化アルミニウムに換算し
たアルミニウム含量:7.7重量%)、東ソー製〕30
mlに変え、窒素ガスの流量を100ml/minに変
えたほかは、実施例5と同様に反応を行った。反応を開
始して1時間後から1時間の間に触媒層を通過したガス
を冷却して得られた生成物を分析したところ、ピバロイ
ル酢酸メチルが10.6g生成していた(転化率17.
2%、收率10.4%、空時収量353g/l・h
r)。
Comparative Example 8 The catalyst used in Example 5 was 1 mmφ × 10 mm zeolite [HSD-640NAD (aluminum content converted to aluminum oxide: 7.7% by weight), manufactured by Tosoh Corporation] 30
The reaction was carried out in the same manner as in Example 5, except that the flow rate of nitrogen gas was changed to 100 ml / min. The product obtained by cooling the gas that passed through the catalyst layer between 1 hour and 1 hour after starting the reaction was analyzed and found to have produced 10.6 g of methyl pivaloyl acetate (conversion rate 17.
2%, yield 10.4%, space-time yield 353g / l ・ h
r).

【0034】比較例9 実施例5において、触媒を1.25×2.5×2.5m
mのステンレス製充填物(ヘリパック:相互理化学硝子
製作所製)30mlに変え、ピバロイルピルビン酸メチ
ルの流量を1g/minに変えたほかは、実施例5と同
様に反応を行った。反応を開始して1時間後から30分
間に触媒層を通過したガスを冷却して得られた生成物を
分析したところ、ピバロイル酢酸メチルが0.33g生
成していた(転化率1.9%、收率1.3%、空時収量
22g/l・hr)。実施例5〜9及び比較例5〜9の
結果をまとめて表2に示す。
Comparative Example 9 In Example 5, the catalyst was 1.25 × 2.5 × 2.5 m.
The reaction was performed in the same manner as in Example 5, except that the amount of the stainless steel filler of m (Helipack: Mutual Rikagaku Glass Mfg. Co., Ltd.) was changed to 30 ml and the flow rate of methyl pivaloylpyruvate was changed to 1 g / min. The product obtained by cooling the gas which passed through the catalyst layer 1 hour to 30 minutes after starting the reaction was analyzed, and as a result, 0.33 g of methyl pivaloyl acetate was produced (conversion rate 1.9%). , Yield 1.3%, space-time yield 22g / l · hr). The results of Examples 5-9 and Comparative Examples 5-9 are summarized in Table 2.

【0035】[0035]

【表2】 [Table 2]

【0036】実施例10 実施例9において、触媒を粒径1mmのγ−アルミナ
〔ネオビードRP−4B(酸化アルミニウムに換算した
アルミニウム含量:94.5重量%)、水沢化学製〕9
0mlに変え、ピバロイルピルビン酸メチルの流量を2
g/minに変えたほかは、実施例9と同様に反応を行
った。反応を開始して2時間後から30分間に触媒層を
通過したガスを冷却して得られた生成物を分析したとこ
ろ、ピバロイル酢酸メチルが44.1g生成していた
(転化率99.2%、收率86.8%、空時収量980
g/l・hr)。また、反応を開始して10時間後から
30分間では、ピバロイル酢酸メチルが48.8g生成
しており(転化率98.7%、收率95.8%、空時収
量1084g/l・hr)、20時間後から30分間で
は、ピバロイル酢酸メチルが45.5g生成していた
(転化率93.1%、收率89.3%、空時収量101
1g/l・hr)。更に、反応を開始して28時間後か
ら30分間では、ピバロイル酢酸メチルが44.9g生
成していた(転化率91.4%、收率88.1%、空時
収量998g/l・hr)。
Example 10 In Example 9, the catalyst was γ-alumina having a particle size of 1 mm [Neobead RP-4B (aluminum content converted to aluminum oxide: 94.5% by weight), manufactured by Mizusawa Chemical Co., Ltd.] 9.
Change to 0 ml and change the flow rate of methyl pivaloylpyruvate to 2
The reaction was performed in the same manner as in Example 9 except that the rate was changed to g / min. The product obtained by cooling the gas that passed through the catalyst layer from 2 hours to 30 minutes after starting the reaction was analyzed and found to have produced 44.1 g of methyl pivaloyl acetate (conversion rate 99.2%). , Yield 86.8%, space-time yield 980
g / l · hr). In addition, after 10 hours from the start of the reaction, 48.8 g of methyl pivaloyl acetate was produced (conversion rate 98.7%, yield rate 95.8%, space-time yield 1084 g / l · hr). After 20 hours and 30 minutes, 45.5 g of methyl pivaloyl acetate was formed (conversion rate 93.1%, yield rate 89.3%, space-time yield 101
1 g / l · hr). Further, after 28 hours and 30 minutes from the start of the reaction, 44.9 g of methyl pivaloyl acetate was produced (conversion rate 91.4%, yield rate 88.1%, space-time yield 998 g / l · hr). .

【0037】実施例11 実施例9において、触媒を粒径1mmのγ−アルミナ
〔ネオビードRP−4B(酸化アルミニウムに換算した
アルミニウム含量:94.5重量%)、水沢化学製〕5
0mlに変え、ピバロイルピルビン酸メチルの流量を2
g/minに変えたほかは、実施例9と同様に反応を行
った。反応を開始して2時間後から30分間に触媒層を
通過したガスを冷却して得られた生成物を分析したとこ
ろ、ピバロイル酢酸メチルが48.1g生成していた
(転化率97.1%、收率94.4%、空時収量192
4g/l・hr)。更に、反応を開始して10時間後か
ら30分間では、ピバロイル酢酸メチルが48.1g生
成しており(転化率95.2%、收率94.4%、空時
収量1924g/l・hr)、反応を開始して20時間
後から30分間では、ピバロイル酢酸メチルが38.6
g生成していた(転化率79.4%、收率75.8%、
空時収量1545g/l・hr)。
Example 11 In Example 9, the catalyst was γ-alumina having a particle diameter of 1 mm [Neobead RP-4B (aluminum content converted to aluminum oxide: 94.5% by weight), manufactured by Mizusawa Chemical Co., Ltd.] 5.
Change to 0 ml and change the flow rate of methyl pivaloylpyruvate to 2
The reaction was performed in the same manner as in Example 9 except that the rate was changed to g / min. The product obtained by cooling the gas that passed through the catalyst layer from 2 hours to 30 minutes after starting the reaction was analyzed and found to have produced 48.1 g of methyl pivaloyl acetate (conversion rate 97.1%). , Yield 94.4%, space-time yield 192
4 g / l · hr). Further, after 10 hours from the start of the reaction, 48.1 g of methyl pivaloyl acetate was produced (conversion rate 95.2%, yield 94.4%, space-time yield 1924 g / l · hr). , 20 hours and 30 minutes after the reaction was started, methyl pivaloyl acetate was 38.6.
g was produced (conversion rate 79.4%, yield rate 75.8%,
Space time yield 1545 g / l · hr).

【0038】触媒の活性が低下したため、24時間後よ
り30℃で窒素ガス100ml/minと共にアセトン
3g/minを4時間流した。その後、230℃に加熱
して反応を再開したところ(1回目の反応再開)、反応
を再開して4時間後から30分間ではピバロイル酢酸メ
チルが49.4g生成していた(転化率97.0%、收
率96.9%、空時収量1976g/l・hr)。更
に、反応を再開して12時間後から30分間ではピバロ
イル酢酸メチルが49.5g生成しており(転化率9
7.3%、收率97.1%、空時収量1980g/l・
hr)、反応を再開して16時間後から30分間ではピ
バロイル酢酸メチルが47.5g生成していた(転化率
93.5%、收率93.2%、空時収量1900g/l
・hr)。
Since the activity of the catalyst decreased, after 24 hours, 30 g of nitrogen gas and 100 ml / min of nitrogen gas and 3 g / min of acetone were flowed for 4 hours. After that, when the reaction was restarted by heating to 230 ° C. (restart of the first reaction), 49.4 g of methyl pivaloyl acetate was produced in 30 minutes from 4 hours after restarting the reaction (conversion rate 97.0). %, Yield 96.9%, space-time yield 1976 g / l · hr). Furthermore, after 12 hours from the restart of the reaction, 49.5 g of methyl pivaloyl acetate was produced (conversion rate 9
7.3%, yield 97.1%, space-time yield 1980g / l.
hr), 167.5 hours after restarting the reaction, 47.5 g of methyl pivaloyl acetate was produced (conversion rate 93.5%, yield 93.2%, space-time yield 1900 g / l).
-Hr).

【0039】触媒の活性が少し低下したため、1回目に
反応を再開して18時間後から前記と同様にアセトンを
2時間流した。その後、反応を同様に再開したところ
(2回目の反応再開)、2回目に反応を再開して4時間
後から30分間ではピバロイル酢酸メチルが49.2g
生成しており(転化率96.6%、收率96.4%、空
時収量1968g/l・hr)、2回目に反応を再開し
て6時間後から30分間ではピバロイル酢酸メチルが4
8.7g生成していた(転化率95.8%、收率95.
6%、空時収量1948g/l・hr)。
Since the activity of the catalyst decreased a little, the reaction was restarted for the first time, and 18 hours later, acetone was flowed for 2 hours in the same manner as above. Then, when the reaction was restarted in the same manner (restart of the second reaction), 49.2 g of methyl pivaloylacetate was obtained within 4 hours and 30 minutes after restarting the reaction for the second time.
(Conversion rate 96.6%, yield rate 96.4%, space-time yield 1968 g / l · hr), the reaction was restarted for the second time, and 6 hours after 30 hours, methyl pivaloyl acetate was 4%.
8.7 g was produced (conversion rate 95.8%, yield 95.
6%, space time yield 1948 g / l · hr).

【0040】[0040]

【発明の効果】本発明により、ピバロイルピルビン酸エ
ステルを脱カルボニル反応せしめてピバロイル酢酸エス
テルを製造する方法において、高活性でかつ安定な触媒
を使用して高收率で容易にピバロイル酢酸エステルを製
造することができる。また、重金属触媒を使用しないた
めに煩雑な触媒の回収及び後処理や危険性のある金属カ
ルボニルの生成という問題も発生しなくなり、更に気相
でしかも触媒を交換することなく前記反応を行うことが
できるために連続プロセスも容易になって、工業的に好
適なピバロイル酢酸エステルの製造方法を提供すること
ができる。
INDUSTRIAL APPLICABILITY According to the present invention, in a method for producing a pivaloyl acetic acid ester by decarbonylating a pivaloyl pyruvic acid ester, a highly active and stable catalyst is used, and a high yield of pivaloyl acetic acid ester is easily achieved. Can be manufactured. Further, since no heavy metal catalyst is used, the problems of complicated catalyst recovery and post-treatment and formation of dangerous metal carbonyls do not occur, and the reaction can be performed in the gas phase without exchanging the catalyst. Therefore, the continuous process can be facilitated, and an industrially suitable method for producing pivaloyl acetate can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを酸化アルミニウムに換算
して10重量%以上含有し、かつ重金属を含有しない無
機酸化物の存在下で、ピバロイルピルビン酸エステルを
脱カルボニル反応せしめることを特徴とするピバロイル
酢酸エステルの製造法。
1. A pivaloyl compound, characterized in that a pivaloyl pyruvate ester is subjected to a decarbonylation reaction in the presence of an inorganic oxide containing aluminum in an amount of 10% by weight or more calculated as aluminum oxide and containing no heavy metal. Method for producing acetic acid ester.
【請求項2】 無機酸化物が、アルミニウムを酸化アル
ミニウムに換算して90重量%以上含有し、かつ重金属
を含有しないアルミナであることを特徴とする請求項1
記載のピバロイル酢酸エステルの製造法。
2. The inorganic oxide is alumina containing 90% by weight or more of aluminum in terms of aluminum oxide and containing no heavy metal.
A method for producing the pivaloyl acetate described.
【請求項3】 脱カルボニル反応を気相で行うことを特
徴とする請求項2記載のピバロイル酢酸エステルの製造
法。
3. The method for producing pivaloyl acetic acid ester according to claim 2, wherein the decarbonylation reaction is carried out in a gas phase.
JP18179195A 1994-07-19 1995-07-18 Method for producing pivaloyl acetate Expired - Fee Related JP3206379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18179195A JP3206379B2 (en) 1994-07-19 1995-07-18 Method for producing pivaloyl acetate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-166910 1994-07-19
JP16691094 1994-07-19
JP18179195A JP3206379B2 (en) 1994-07-19 1995-07-18 Method for producing pivaloyl acetate

Publications (2)

Publication Number Publication Date
JPH0892164A true JPH0892164A (en) 1996-04-09
JP3206379B2 JP3206379B2 (en) 2001-09-10

Family

ID=26491118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18179195A Expired - Fee Related JP3206379B2 (en) 1994-07-19 1995-07-18 Method for producing pivaloyl acetate

Country Status (1)

Country Link
JP (1) JP3206379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200120193A (en) * 2019-04-11 2020-10-21 (주)평화엔지니어링 Narrow-mouth frog escape device for open drainage channel

Also Published As

Publication number Publication date
JP3206379B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
EP0429800B2 (en) Process for preparing unsaturated carboxylic acid ester
UA72617C2 (en) A method for the preparation of vinyl acetate
JPS588073A (en) Manufacture of 5-alkylbutyrolactone
JP4084044B2 (en) Integrated process for producing vinyl acetate
JPH0892164A (en) Production of pivaloylacetic acid ester
EP0701986B1 (en) Process for production of unsaturated ether and catalyst used for production of unsaturated ether
JPH05995A (en) Production of acetic acid
JPH1053544A (en) Process for producing difluoromethane
JP2660169B2 (en) Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides
US5679830A (en) Method of producing pivaloylacetic acid ester
JP2870738B2 (en) Method for producing carbonic acid diester
JP2740479B2 (en) Process for producing unsaturated ethers and catalyst for producing unsaturated ethers
WO2022210162A1 (en) Catalyst, and method for producing cyclopentene
JPH03167156A (en) Production of unsaturated carboxylic ester
JPH03167155A (en) Production of unsaturated carboxylic ester
JPH04297445A (en) Production of carbonic acid diester
JP2528866B2 (en) Acetic acid and methyl acetate production method
JPH1180096A (en) Production of dimethyl carbonate
JP3058512B2 (en) Acetic acid production method
JPH07258164A (en) Production of alpha-ketonic acid ester
JPH0834762A (en) Production of alpha-ketonic acid ester
JPH0717550B2 (en) Fluorobenzene production method
JPH04139152A (en) Production of carbonate diester
JPS58146520A (en) Preparation of vinylidene chloride
JPH04297443A (en) Production of carbonic acid diester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees