JPH088779B2 - Pulse width modulation method for three-phase voltage source inverter - Google Patents

Pulse width modulation method for three-phase voltage source inverter

Info

Publication number
JPH088779B2
JPH088779B2 JP59130072A JP13007284A JPH088779B2 JP H088779 B2 JPH088779 B2 JP H088779B2 JP 59130072 A JP59130072 A JP 59130072A JP 13007284 A JP13007284 A JP 13007284A JP H088779 B2 JPH088779 B2 JP H088779B2
Authority
JP
Japan
Prior art keywords
phase
signal
voltage
sine wave
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59130072A
Other languages
Japanese (ja)
Other versions
JPS6110967A (en
Inventor
常生 久米
国夫 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP59130072A priority Critical patent/JPH088779B2/en
Publication of JPS6110967A publication Critical patent/JPS6110967A/en
Publication of JPH088779B2 publication Critical patent/JPH088779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、3相電圧形パルス幅変調インバータの出力
電圧波形を改良する方法に関する。
TECHNICAL FIELD The present invention relates to a method for improving the output voltage waveform of a three-phase voltage type pulse width modulation inverter.

〔従来の技術と問題点〕[Conventional technology and problems]

3相電圧形パルス幅変調インバータの回路構成を表わ
すブロック図を第6図に示す。
FIG. 6 is a block diagram showing the circuit configuration of a three-phase voltage type pulse width modulation inverter.

1〜6はスイッチング素子を形成する例えばバイポー
ラトランジスタ、7〜12は回生用のダイオード、13は電
力を供給する直流電源、14は平滑コンデンサ、15はイン
バータ出力により駆動される負荷、16はパルス幅変調
(PWM)制御回路である。
1 to 6 are, for example, bipolar transistors forming a switching element, 7 to 12 are diodes for regeneration, 13 is a DC power supply for supplying electric power, 14 is a smoothing capacitor, 15 is a load driven by an inverter output, 16 is a pulse width Modulation (PWM) control circuit.

PWMインバータでは、出力電圧を制御するため、出力
電圧の半周期内にスイッチング素子に複数個の駆動パル
スを与えて、その出力電圧のパルス幅を制御する。
In the PWM inverter, in order to control the output voltage, a plurality of drive pulses are applied to the switching element within a half cycle of the output voltage to control the pulse width of the output voltage.

出力電圧の高調波成分が負荷に与える悪影響を低減さ
せるため、不等パルス幅制御等種々の波形改善の工夫が
行なわれている。
In order to reduce the adverse effect of the harmonic components of the output voltage on the load, various waveform improvements such as unequal pulse width control have been made.

近年、スイッチング素子のスイッチング速度の高速化
によって、とくにフィルタでは除去しにくい5次,7次,1
1次,13次,・・・等の低次高調波低減について多くの提
案が見られる。
In recent years, due to the increased switching speed of switching elements, the 5th, 7th, 1
There are many proposals for reducing low-order harmonics such as 1st, 13th, and so on.

しかしながら、スイッチング周波数が有限である以
上、その周波数すなわちキャリア周波数に係る高周波の
問題が残る。
However, since the switching frequency is finite, the problem of high frequency related to that frequency, that is, the carrier frequency remains.

第7図は、正弦波PWM波形発生の一方法を表わす電圧
波形図である。
FIG. 7 is a voltage waveform diagram showing a method of generating a sinusoidal PWM waveform.

(a),(b),(c)は負荷15の各相u,v,wに対応
するPWMの説明図である。
(A), (b), (c) is explanatory drawing of PWM corresponding to each phase u, v, w of the load 15.

各相のeu電圧指令信号71,ev電圧指令信号72,ew電圧
指令信号73と三角波のキャリア信号70とを比較して、出
力電圧パルスのパルス幅を決めるもので、出力の各相u,
v,wにはこの電圧指令信号71,72,73の振幅に比例したパ
ルス幅を持った電圧eu,ev,ewが発生する。
The eu voltage command signal 71, ev voltage command signal 72, ew voltage command signal 73 of each phase is compared with the triangular wave carrier signal 70 to determine the pulse width of the output voltage pulse.
Voltages eu, ev, ew having a pulse width proportional to the amplitudes of the voltage command signals 71, 72, 73 are generated at v, w.

相電圧指令信号の半サイクルで中央の60゜は変調をか
けずに、スイッチング素子をONにしたままにし、両側の
60゜ずつのみを変調しているのは、出力電圧に直流入力
電圧を有効利用するためで、つまり出力電圧ピーク値は
直流電源電圧Edcまで可能で、全区間(両端の60゜およ
び中央の60゜)変調の場合の出力電圧ピーク値は である。
In the half cycle of the phase voltage command signal, the central 60 ° is not modulated and the switching element is kept ON.
The reason why only 60 ° is modulated is that the DC input voltage is effectively used for the output voltage, that is, the output voltage peak value can be up to the DC power supply voltage Edc, and the entire range (60 ° at both ends and 60 at the center).゜) Output voltage peak value in case of modulation Is.

相電圧指令信号のスイッチング素子への与え方は、出
力の線間電圧値すなわち相電圧指令信号の各相間の差が
正弦波になるよう、相電圧指令信号の半サイクルの両側
の60゜ずつを変調する。
The way to apply the phase voltage command signal to the switching element is to set 60 ° on both sides of the half cycle of the phase voltage command signal so that the line voltage value of the output, that is, the difference between the phases of the phase voltage command signal becomes a sine wave. Modulate.

すなわち、第11図に示すように、半波波形の中央部60
度の区間において無変調(平坦)で、その両側60度の区
間が変調されている、eu、ev及びewの3つの相電圧
指令信号を用いても、各相間の差である線間電圧に相当
する、eu-v、ev-w及びew-uは、夫々正弦波となる。
線間出力電圧eu-vをみると、θ=60度のとき、最大値
となるので、この値が振幅となる。これをaとする。こ
の値はeu電圧指令信号に示すaに相当するので、これ
を変化させることで、振幅0〜Edcまで制御することが
できる。従って、a=Edcのときを変調度100%とする
ことができる。
That is, as shown in FIG. 11, the central portion 60 of the half-wave waveform is
Even if the three phase voltage command signals of eu, ev, and ew that are not modulated (flat) in the interval of 60 degrees and are modulated in the intervals of 60 degrees on both sides, the line voltage that is the difference between the phases is Corresponding eu-v, ev-w and ew-u are sine waves, respectively.
Looking at the line output voltage eu-v, the maximum value is obtained when θ = 60 degrees, and this value becomes the amplitude. Let this be a. Since this value corresponds to a shown in the eu voltage command signal, the amplitude can be controlled from 0 to Edc by changing this. Therefore, the modulation factor can be 100% when a = Edc.

第12図(a)及び同図(b)は、eu電圧指令信号
の、θが0〜60度の区間について、キャリア信号との関
係を示している。同図において、Pは正弦波の仮想原点
を示している。
12 (a) and 12 (b) show the relationship with the carrier signal in the section of θ of 0 to 60 degrees in the eu voltage command signal. In the figure, P indicates the virtual origin of the sine wave.

この区間のeu電圧指令信号、ev電圧指令信号を数式
で表現すると、 eu=(Edc/2){2αsin(θ+30゜) −1} …(1) ev=−(Edc/2) …(2) 従って、eu-v=eu−ev =Edc・α・sin(θ+30゜) …(3) (3)式より、正弦波の線間電圧が得られることが判
る。制御の態様としては、(3)式のような正弦波でか
つ振幅の最大値がEdcである線間電圧を得るために、
(2)式の条件の下で(1)式を導き、これに基づいて
変調を行うものである。
Expressing the eu voltage command signal and the ev voltage command signal in this section by a mathematical expression, eu = (Edc / 2) {2αsin (θ + 30 °) -1} (1) ev =-(Edc / 2) (2) Therefore, eu-v = eu-ev = Edcαsin (θ + 30 °) (3) From equation (3), it can be seen that a sinusoidal line voltage can be obtained. As a mode of control, in order to obtain a line voltage having a sine wave as shown in equation (3) and a maximum amplitude value being Edc,
Equation (1) is derived under the condition of equation (2), and modulation is performed based on this.

従って、この様な方式の、インバータのパルス幅変調
方法にあっては、変調度αは、線間電圧の振幅a(片側
振幅)とキャリア信号の両側振幅bとの比、 変調度α=a/bとして定義される。
Therefore, in the pulse width modulation method of the inverter of such a system, the modulation degree α is the ratio of the amplitude a of the line voltage (amplitude on one side) to the amplitude b on both sides of the carrier signal, and the modulation degree α = a Defined as / b.

この変調方法を行った場合の出力電圧波形を第8図に
表わす。すなわち、(a)は出力電圧eu,(b)は出
力電圧ev,(c)は出力相(eu−ev)線間電圧のそ
れぞれの波形である。
The output voltage waveform when this modulation method is performed is shown in FIG. That is, (a) is the output voltage eu, (b) is the output voltage ev, and (c) is the output phase (eu-ev) line voltage, respectively.

また、このとき、 変調度α=0.5.P.U. つまり出力電圧のキャリア成分を理想的ローパスフィ
ルタで取除いた波形電圧振幅が直流電源電圧Edcの1/2
で、 相電圧指令信号の半サイクル内でキャリア周波数の個
数が15すなわち キャリア周波数fcarrier=出力電圧周波数fout×30 である。
At this time, the modulation factor α = 0.5.PU, that is, the waveform voltage amplitude obtained by removing the carrier component of the output voltage by the ideal low-pass filter is 1/2 of the DC power supply voltage Edc.
Then, the number of carrier frequencies in the half cycle of the phase voltage command signal is 15, that is, carrier frequency fcarrier = output voltage frequency fout × 30.

因みに、通常、fcarrierは2〜3K Hz、foutは1〜6
0〜300Hzである。
By the way, normally, fcarrier is 2-3 KHz and fout is 1-6.
It is 0 to 300 Hz.

第9図からも判るように、キャリア周波数fcarrier
(図の場合、出力電圧基本波の30倍)前後の高周波が大
きく、リップル電流,振動,騒音の原因となる。
As can be seen from FIG. 9, the carrier frequency fcarrier
The high frequency around 30 times the fundamental wave of the output voltage in the figure is large, which causes ripple current, vibration and noise.

とくに、そのリップル電流が大きいと、スイッチング
素子選定の重要な要素となるピーク電流値が大きくなり
不具合である。
In particular, if the ripple current is large, the peak current value, which is an important factor in selecting a switching element, becomes large, which is a problem.

この従来例におけるPWM方法の詳細図を第10図に表わ
す。
A detailed diagram of the PWM method in this conventional example is shown in FIG.

第7図の例えば701〜702の間を拡大し、第7図
(a),(c)を重ね合わせたのが第10図(a)であ
る。
FIG. 10 (a) is an enlarged view of, for example, the area between 701 and 702 in FIG. 7, and FIG. 7 (a) and (c) are overlapped.

キャリア信号70とeu指令信号あるいはev指令信号を
比較し、+領域ではどちらか高い方で信号が出力し−領
域ではどちらか低い方で信号が出力する。
The carrier signal 70 is compared with the eu command signal or the ev command signal. In the + area, the signal is output at the higher one, and in the-area, the signal is output at the lower one.

その結果、第10図(b)の出力電圧eu,第10図
(c)の出力信号ev,第10図(d)のu−v相線間電
圧(eu−ev)が得られる。
As a result, the output voltage eu in FIG. 10 (b), the output signal ev in FIG. 10 (c), and the uv phase line voltage (eu-ev) in FIG. 10 (d) are obtained.

〔発明の目的〕[Object of the Invention]

ここにおいて本発明は、従来方法の難点を克服し、出
力電圧波形からキャリア周波数前後の高調波を低減する
3相電圧形インバータのパルス幅変調方法を提供するこ
とを、その目的とする。
An object of the present invention is to provide a pulse width modulation method for a three-phase voltage source inverter that overcomes the drawbacks of the conventional method and reduces the harmonics around the carrier frequency from the output voltage waveform.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため、本発明の3相電圧型インバ
ータのパルス幅変調方法は、各相電圧半サイクルの中央
60゜の位相区間においては変調を行わず、他の区間では
出力の線間電圧が正弦波になるような相電圧指令信号を
与えることにより、正弦波出力電圧を得るとともに、直
流母線電圧を最大限に利用できるようにしたインバータ
において、キャリア信号による各相正弦波状指令信号の
変調を行う際に、各相正弦波状指令信号の基本周波の3
倍調波の方形波信号をその各相正弦波状指令信号に同期
して重畳させ、この3倍調波の方形波信号の振幅は、キ
ャリア信号による各相正弦波状指令信号の変調度をαと
し、この3倍調波の方形波信号の振幅とキャリア信号の
振幅の比をkとするときに、αとkとの関数関係が略直
線的逆比例であり、かつこの3倍調波の方形波信号と前
記各正弦波信号との極性は前記変調を行わない位相区間
において相反させて、重畳合成された各相正弦波状指令
信号をキャリア信号と比較して各アームのスイッチング
素子に与えるパルス信号を得る、ことを特徴とする。
In order to achieve the above object, a pulse width modulation method for a three-phase voltage type inverter according to the present invention is based on the center of each phase voltage half cycle.
Modulation is not performed in the 60 ° phase section, and a sine wave output voltage is obtained by applying a phase voltage command signal that causes the output line voltage to be a sine wave in other sections, and the DC bus voltage is maximized. In the inverter that can be used as long as possible, when modulating the sine wave command signal of each phase by the carrier signal, the fundamental frequency of the sine wave command signal of each phase
The harmonic wave square wave signal is superimposed in synchronization with each phase sine wave command signal, and the amplitude of the triple harmonic wave signal is the modulation degree of each phase sine wave command signal by the carrier signal being α. When the ratio of the amplitude of the square wave signal of this triple harmonic and the amplitude of the carrier signal is k, the functional relationship between α and k is substantially linear and inversely proportional, and the square of this triple harmonic is The polarity of the wave signal and the respective sine wave signals are opposite to each other in the phase section in which the modulation is not performed, and the pulse signals given to the switching elements of the respective arms by comparing the superimposed and synthesized sine wave command signals of the respective phases with the carrier signal. Is obtained.

この結果、従来の正弦波状の指令信号にその3倍調波
の方形信号を重畳して指令信号とし、この3倍調波方形
信号の振幅を変調度αに対して最適に制御する。また、
出力波形180度中両側60度のみ変調していたのを中央部6
0度にも変調を行うと共に、残りの120度区間の信号を補
正することにより、線間出力電圧の各パルスを2分割
し、これにより主成分高調波がキャリア周波数の2倍に
なり、リップル電流低減、負荷電動機の発熱低減が図ら
れる。
As a result, the command signal is obtained by superimposing the square signal of the triple harmonic on the conventional sinusoidal command signal, and the amplitude of the triple harmonic square signal is optimally controlled with respect to the modulation degree α. Also,
The output waveform was modulated only at 60 degrees on both sides out of 180 degrees.
Each pulse of the line output voltage is divided into two by performing modulation to 0 degree and correcting the signal in the remaining 120 degree section, which makes the main component harmonics twice the carrier frequency, causing ripples. The current can be reduced and the heat generation of the load motor can be reduced.

〔実施例〕〔Example〕

本発明の一実施例における各電圧波形図を第1図に示
す。
FIG. 1 shows each voltage waveform diagram in one embodiment of the present invention.

この第1図は、従来方式の第10図に対応して表わされ
ている。
This FIG. 1 is represented corresponding to FIG. 10 of the conventional system.

すなわち、この実施例は、u相において、eu指令信
号キャリア信号70と従来では変調させなかった非変調区
間にも変調をかけたものである。
That is, in this embodiment, in the u phase, the eu command signal carrier signal 70 and the non-modulated section which has not been conventionally modulated are also modulated.

これにより出力電圧が変る分は、他の相つまりこの場
合はv相のパルス幅を相当分補正するものである。
As a result, the output voltage is changed, and the pulse width of the other phase, that is, the v phase in this case, is corrected considerably.

第1図の詳細図において、(a)は本発明のPWM方法
の基本的概念図、(b)は変調をかけられたu相出力電
力eu、(c)はv相出力電圧ev(d)はu−v相線間
電圧(eu−ev)をおのおの示している。
In the detailed diagram of FIG. 1, (a) is a basic conceptual diagram of the PWM method of the present invention, (b) is the u-phase output power eu modulated, and (c) is the v-phase output voltage ev (d). Indicates the uv-phase line voltage (eu-ev), respectively.

第2図はそのPWMがわかるようにした連続出力波形図
で、(a)はu相出力電圧、eu、(b)はv相出力電
圧ev、(c)はu−v相線間電圧eu−evである。
FIG. 2 is a continuous output waveform diagram in which the PWM can be understood. (A) is the u-phase output voltage, eu, (b) is the v-phase output voltage ev, and (c) is the u-v phase line voltage eu. -Ev.

本発明の正弦波の指令信号について、第7図の指令信
号と対比すれば、次のとおりである。
The sine wave command signal of the present invention is as follows when compared with the command signal of FIG.

第3図において、(a)に従来のu相指令信号71があ
り、(b)にそれの3倍調波の方形波74を発生させ、
(c)に表わすような(a)と(b)を重畳させた本発
明のu相指令信号75を生成し、半サイクルの中央60゜に
おいてもキャリア信号による変調を行なわせるのであ
る。
In FIG. 3, there is a conventional u-phase command signal 71 in (a) and a square wave 74 of a triple harmonic thereof is generated in (b),
The u-phase command signal 75 of the present invention in which (a) and (b) are superposed as shown in (c) is generated, and modulation by the carrier signal is performed even at the center 60 ° of the half cycle.

ところで、前述した従来の式(1)、(2)及び
(3)に対応して本発明における電圧指令信号eu、e
v、eu-vを表すと、 eu=(Edc/2){2αsin(θ+30゜) −1+k} …(4) ev=(Edc/2)(−1+k) …(5) 従って、 eu-v=eu−ev =Edc・α・sin(θ+30゜) …(6) これにより、各相に重畳された3倍調波の方形波74の
成分は相殺されて線間電圧に現れず、変調度への影響は
ないことが判る。
By the way, the voltage command signals eu and e in the present invention corresponding to the above-mentioned conventional formulas (1), (2) and (3) are used.
Expressing v and eu-v, eu = (Edc / 2) {2αsin (θ + 30 °) -1 + k} (4) ev = (Edc / 2) (-1 + k) (5) Therefore, eu-v = eu−ev = Edc · α · sin (θ + 30 °) (6) As a result, the components of the square wave 74 of the third harmonic superimposed on each phase do not appear in the line voltage and do not appear in the line voltage. It turns out that there is no influence of.

なお、(a)に(b)を重畳されたのに相当する
(c)の指令信号を発生させればよいのであって、2つ
のステップを行なう必然性はない。
It is sufficient to generate the command signal of (c) corresponding to the superposition of (b) on (a), and it is not necessary to perform two steps.

上述したようにキャリア信号70による変調度をαとし
たとき、重畳させる3倍調波の振幅の従来の振幅に対す
る比をkで表わせば、変調度αにおいてキャリア周波数
周辺の高周波を最小にする3倍調波振幅の最適値曲線が
第4図に示される。
As described above, when the modulation degree by the carrier signal 70 is α, if the ratio of the amplitude of the triple harmonic to be superimposed to the conventional amplitude is represented by k, the high frequency around the carrier frequency is minimized at the modulation degree α. The optimum value curve of the harmonic amplitude is shown in FIG.

その結果、この実施例においてk=0.25としたときの
出力電圧に生起する高調波次数が第5図のように表わさ
れる。
As a result, the harmonic order occurring in the output voltage when k = 0.25 in this embodiment is represented as shown in FIG.

第1図、第2図からもわかるように出力電圧のパルス
数が2倍になり、指令信号半サイクルの中央60゜区間に
パルス幅を適当に選択すると、元のキャリア周波数成分
の高周波を最低にすることができる。
As can be seen from Figs. 1 and 2, if the pulse number of the output voltage is doubled and the pulse width is appropriately selected in the central 60 ° section of the command signal half cycle, the high frequency of the original carrier frequency component is minimized. Can be

〔発明の効果〕〔The invention's effect〕

かくして本発明によれば、指令信号の半サイクル中央
部60゜区間に新たに変調を実施し、その変調度に相当す
る3倍調波振幅kを適当に選定することにより、キャリ
ア周波数前後の高調波、たとえば29次、31次高調波を低
減し、高調波主成分の周波数をたとえば59次、61次と倍
に上げることができる。
Thus, according to the present invention, the modulation is newly performed in the central 60 ° section of the half cycle of the command signal, and the triple harmonic amplitude k corresponding to the modulation degree is appropriately selected. It is possible to reduce waves, for example, the 29th and 31st harmonics, and to double the frequencies of the harmonic main components to the 59th and 61st harmonics.

この3倍調波方形波振幅kの最適値は変調度αによっ
て自由に変えられる(第4図)。
The optimum value of this triple harmonic square wave amplitude k can be freely changed by the modulation degree α (FIG. 4).

したがって、本発明は変調度αの全領域において、キ
ャリア周波数周辺の高調波成分を最小化するという特段
の効果を奏することが可能である。
Therefore, the present invention can exert a special effect of minimizing the harmonic component around the carrier frequency in the entire range of the modulation degree α.

これらのことから、本発明は次の効果が得られ、当該
分野の工業的に資するところ大きい。
From these facts, the present invention has the following effects and is greatly useful in the industrial field.

(a) 出力の電流リップルが低減するため負荷電動機
の発熱、振動、騒音が減少する。
(A) Since the output current ripple is reduced, heat generation, vibration, and noise of the load motor are reduced.

(b) 出力のピーク電流が低減するので、同一装置で
とれる最大出力が増加する。
(B) Since the peak output current is reduced, the maximum output that can be obtained by the same device is increased.

(c) 直流電源の平滑コンデンサに流れるリップルが
減少するから、コンデンサの小形化が可能である。
(C) Since the ripple flowing in the smoothing capacitor of the DC power supply is reduced, the capacitor can be downsized.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c),(d)は本発明の一実
施例における指令信号、キャリア信号、出力電圧の波形
図(基本概念図)、第2図(a),(b),(c)はそ
のPWMがわかるようにした連続出力波形図、第3図
(a),(b),(c)はこの実施例における指令信号
の生成過程説明図、第4図は本発明の変調度と3倍調波
振幅との最適曲線図、第5図はこの実施例における高調
波次数の電圧分布図、第6図は3相電圧形インバータの
回路構成を表わすブロック図、第7図(a),(b),
(c)は従来のPWM方法を示す各相の波形図、第8図
(a),(b),(c)はその変調された出力電圧波形
図、第9図はその高調波次数の電圧分布図、第10図
(a),(b),(c),(d)は従来の変調方法を表
わす詳細説明波形図である。第11図は従来の変調方法に
おける電圧指令信号と線間電圧を説明する信号波形図で
ある。第12図(a)及び(b)は変調度αを説明するた
めの信号波形図である。 1〜6……スイッチング素子、7〜12……ダイオード、
13……直流電源、14……平滑ダイオード、15……負荷
(電動機)、16……PWM制御回路、70……キャリア信
号、71,72,73……u相、v相、w相指令信号、eu……
u相出力電圧、ev……v相出力電圧、eu−ev……u
相−v相線間電圧。
1 (a), (b), (c), and (d) are waveform diagrams (basic conceptual diagram) of a command signal, a carrier signal, and an output voltage in one embodiment of the present invention, FIG. 2 (a), (B) and (c) are continuous output waveform charts so that the PWM can be seen, and FIGS. 3 (a), (b) and (c) are explanatory diagrams of the command signal generation process in this embodiment, and FIG. Is an optimum curve diagram of the degree of modulation and triple harmonic amplitude of the present invention, FIG. 5 is a voltage distribution diagram of harmonic orders in this embodiment, and FIG. 6 is a block diagram showing a circuit configuration of a three-phase voltage source inverter. , FIG. 7 (a), (b),
(C) is a waveform diagram of each phase showing the conventional PWM method, FIGS. 8 (a), (b), and (c) are the modulated output voltage waveform diagrams, and FIG. 9 is a voltage of its harmonic order. Distribution charts and FIGS. 10 (a), (b), (c), and (d) are detailed explanation waveform diagrams showing a conventional modulation method. FIG. 11 is a signal waveform diagram for explaining a voltage command signal and a line voltage in the conventional modulation method. FIGS. 12A and 12B are signal waveform diagrams for explaining the modulation degree α. 1-6 ... switching element, 7-12 ... diode,
13 ... DC power supply, 14 ... smoothing diode, 15 ... load (motor), 16 ... PWM control circuit, 70 ... carrier signal, 71, 72, 73 ... u phase, v phase, w phase command signal , Eu ……
u-phase output voltage, ev ... v-phase output voltage, eu-ev ... u
Phase-v phase line voltage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】各相電圧半サイクルの中央60゜の位相区間
においては変調を行わず、他の区間では出力の線間電圧
が正弦波になるような相電圧指令信号を与えることによ
り、正弦波出力電圧を得るとともに、直流母線電圧を最
大限に利用できるようにしたインバータにおいて、 キャリア信号による各相正弦波状指令信号の変調を行う
際に、 各相正弦波状指令信号の基本周波の3倍調波の方形波信
号をその各相正弦波状指令信号に同期して重畳させ、 この3倍調波の方形波信号の振幅は、キャリア信号によ
る各相正弦波状指令信号の変調度をαとし、この3倍調
波の方形波信号の振幅とキャリア信号の振幅の比をkと
するときに、αとkとの関数関係が略直線的逆比例であ
り、かつこの3倍調波の方形波信号と前記各相正弦波信
号との極性は前記変調を行わない位相区間において相反
させて、 重畳合成された各相正弦波指令信号をキャリア信号と比
較して各アームのスイッチング素子に与えるパルス信号
を得る、 ことを特徴とする3相電圧形インバータのパルス幅変調
方法。
1. A sine wave is provided by applying no phase modulation signal in such a manner that the line voltage of the output becomes a sine wave in other phases without modulation in the phase interval of 60 ° in the center of each phase voltage half cycle. In the inverter that can obtain the wave output voltage and maximize the use of the DC bus voltage, when modulating each phase sine wave command signal by the carrier signal, triple the fundamental frequency of each phase sine wave command signal. The harmonic square wave signal is superimposed in synchronization with each phase sine wave command signal, and the amplitude of the triple harmonic square wave signal is α, which is the degree of modulation of each phase sine wave command signal by the carrier signal. When the ratio of the amplitude of the square wave signal of the third harmonic and the amplitude of the carrier signal is k, the functional relationship between α and k is substantially linear and inversely proportional, and the square wave of the third harmonic is The polarity of the signal and the sine wave signal of each phase is A three-phase voltage type inverter characterized by reciprocating in a phase section in which no adjustment is performed and comparing the superimposed and combined sinusoidal wave command signals with a carrier signal to obtain a pulse signal to be given to the switching element of each arm. Pulse width modulation method.
JP59130072A 1984-06-26 1984-06-26 Pulse width modulation method for three-phase voltage source inverter Expired - Lifetime JPH088779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130072A JPH088779B2 (en) 1984-06-26 1984-06-26 Pulse width modulation method for three-phase voltage source inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130072A JPH088779B2 (en) 1984-06-26 1984-06-26 Pulse width modulation method for three-phase voltage source inverter

Publications (2)

Publication Number Publication Date
JPS6110967A JPS6110967A (en) 1986-01-18
JPH088779B2 true JPH088779B2 (en) 1996-01-29

Family

ID=15025323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130072A Expired - Lifetime JPH088779B2 (en) 1984-06-26 1984-06-26 Pulse width modulation method for three-phase voltage source inverter

Country Status (1)

Country Link
JP (1) JPH088779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115589170B (en) * 2022-12-13 2023-03-10 麦田能源有限公司 Two-phase inverter system and two-phase inverter control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3007629A1 (en) * 1980-02-29 1981-09-10 Standard Elektrik Lorenz Ag METHOD AND ARRANGEMENT FOR GENERATING A THREE-PHASE THREE-PHASE BY INVERTERING
JPS5886874A (en) * 1981-11-18 1983-05-24 Hitachi Ltd Controller for pulse-width modulation inverter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和59年電気学会全国大会講演論文集[6(昭59−3−10)P.555

Also Published As

Publication number Publication date
JPS6110967A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
US6023417A (en) Generalized discontinuous pulse width modulator
Houldsworth et al. The use of harmonic distortion to increase the output voltage of a three-phase PWM inverter
JP3666432B2 (en) Power converter and multiphase load drive control method
US5736825A (en) Method and apparatus for linearizing pulse width modulation by modifying command voltges
JP2884880B2 (en) Control device for power converter
JPS60156270A (en) Drive controller of power converter
JP5512593B2 (en) Power converter and operation method thereof
GB2435355A (en) Brushless wound field synchronous machine rotor position tracking with exciter stator current harmonic tracking
JPH02307373A (en) Converter for inverter
Peddapelli Recent advances in pulse width modulation techniques and multilevel inverters
JPH0815394B2 (en) Connection / control method of multiple coupling inverter device
JP3455788B2 (en) Power converter
WO2016031030A1 (en) Electric power conversion device and vehicle drive system
Loh et al. Reduced common mode carrier-based modulation strategies for cascaded multilevel inverters
JP2004120853A (en) Power output equipment
Sirisha et al. Simplified space vector pulse width modulation based on switching schemes with reduced switching frequency and harmonics for five level cascaded H-bridge inverter
Park et al. A dead time compensation algorithm of independent multi-phase PMSM with three-dimensional space vector control
JP3236985B2 (en) Control device for PWM converter
JP3796881B2 (en) 3-level inverter control method and apparatus
JPH088779B2 (en) Pulse width modulation method for three-phase voltage source inverter
JP3980324B2 (en) Motor driving current control device and method thereof
JPH0783613B2 (en) Inverter control device
JPH0315273A (en) Inverter
JPH0246173A (en) Frequency converter
JPH06133558A (en) Pwm control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term