JPH0886700A - Load cell unit - Google Patents

Load cell unit

Info

Publication number
JPH0886700A
JPH0886700A JP6221198A JP22119894A JPH0886700A JP H0886700 A JPH0886700 A JP H0886700A JP 6221198 A JP6221198 A JP 6221198A JP 22119894 A JP22119894 A JP 22119894A JP H0886700 A JPH0886700 A JP H0886700A
Authority
JP
Japan
Prior art keywords
temperature
strain
temperature sensor
load cell
data processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6221198A
Other languages
Japanese (ja)
Inventor
Koichi Segawa
浩一 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6221198A priority Critical patent/JPH0886700A/en
Publication of JPH0886700A publication Critical patent/JPH0886700A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To realize an accurate temperature compensation by thermally coupling a temperature sensor with the surface of a strain generator, thereby detecting the temperature regardless of fluctuation in the ambient temperature or the air flow. CONSTITUTION: A printed wiring board 3 constituting a data processing section C is fixed, by means of a screw 5, to the strain generator 1 of a load cell B through a spacer 4. The lead 2a of a temperature sensor 2 is soldered to the circuit on the board 3 and the temperature sensor is fixed with the heat-sensitive part 2b thereof touching the surface of the strain generator 1. With such structure, the sensor 2 can detect the temperature of a strain gauge 7, having a significant relationship with the temperature characteristics of the sensor 2, through the strain generator 1. Since the temperature of the strain generator 1 is not susceptible to fluctuation in the ambient temperature, a stabilized output can be obtained regardless of fluctuation in the ambient temperature or the air flow. This structure realizes a accurate temperature compensation based on the stabilized output from the sensor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロードセルユニットの温
度補償に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to temperature compensation of load cell units.

【0002】[0002]

【従来の技術】ロードセルユニットAは図10に示すよ
うに、ロードセルBと、ロードセルBで電気信号に変換
された信号をデジタル変換するデータ処理部Cとで構成
されている。ロードセルBは起歪体1にストレインゲー
ジを貼着して構成されている。
2. Description of the Related Art As shown in FIG. 10, a load cell unit A comprises a load cell B and a data processing section C for digitally converting a signal converted into an electric signal by the load cell B. The load cell B is configured by attaching a strain gauge to the flexure element 1.

【0003】このロードセルユニットAは出力に温度特
性を有しているため、ロードセルBの近傍に温度センサ
2を配置して、この温度センサ2をロードセルBの電気
回路に組み込んでロードセルBの出力を温度センサ2の
検出した雰囲気温度に基づいて温度補償したり、ロード
セルBの出力と前記温度センサ2の出力を別々に前記デ
ータ処理部Cに取り込んでマイクロコンピュータでデジ
タル的に温度補償している。
Since the output of this load cell unit A has a temperature characteristic, the temperature sensor 2 is arranged in the vicinity of the load cell B and the temperature sensor 2 is incorporated into the electric circuit of the load cell B to output the output of the load cell B. Temperature compensation is performed based on the ambient temperature detected by the temperature sensor 2, or the output of the load cell B and the output of the temperature sensor 2 are separately captured in the data processing unit C and digitally temperature compensated by a microcomputer.

【0004】データ処理部Cを構成するプリアンプとA
/Dコンバータにも温度特性があるため、このデータ処
理部Cにも温度センサを設けて同様に温度補償している
ものも見られる。
A preamplifier and a A constituting the data processing unit C
Since the / D converter also has a temperature characteristic, it can be seen that the data processing unit C is also provided with a temperature sensor to similarly perform temperature compensation.

【0005】[0005]

【発明が解決しようとする課題】従来のロードセルユニ
ットAでは、温度センサ2はロードセルユニットAの雰
囲気温度を検出しているため、この雰囲気が熱的に安定
している場合には正しい温度補正が可能であるが、温度
むらがあったり、空気の流れ( 風 )があったりする
と正確に温度補償できないのが現状である。
In the conventional load cell unit A, since the temperature sensor 2 detects the atmospheric temperature of the load cell unit A, correct temperature correction can be performed when this atmosphere is thermally stable. It is possible, but the current situation is that temperature cannot be compensated accurately if there is uneven temperature or air flow (wind).

【0006】本発明は雰囲気に温度むらがあったり、空
気の流れがあっても安定した出力が得られるロードセル
ユニットを提供することを目的とする。
An object of the present invention is to provide a load cell unit capable of obtaining a stable output even if the atmosphere has temperature unevenness or the flow of air.

【0007】[0007]

【課題を解決するための手段】請求項1記載のロードセ
ルユニットは、測定荷重を起歪体で支持し、起歪体の変
形をストレインゲージで検出して電気信号に変換するロ
ードセルユニットにおいて、温度センサと、ストレイン
ゲージで検出して電気信号に変換された信号を前記温度
センサの検出信号に基づいて温度補正して出力するデー
タ処理部とを設け、前記温度センサを前記起歪体の表面
に熱結合したことを特徴とする。
According to a first aspect of the present invention, there is provided a load cell unit in which a load is supported by a strain-generating body, deformation of the strain-generating body is detected by a strain gauge and converted into an electric signal. A sensor and a data processing unit that outputs a signal that is detected by a strain gauge and converted into an electric signal by performing temperature correction based on the detection signal of the temperature sensor are provided, and the temperature sensor is provided on the surface of the strain body. It is characterized by being thermally bonded.

【0008】請求項2記載のロードセルユニットは、測
定荷重を起歪体で支持し、起歪体の変形をストレインゲ
ージで検出して電気信号に変換するロードセルユニット
において、温度センサと、ストレインゲージで検出して
電気信号に変換された信号を前記温度センサの検出信号
に基づいて温度補正して出力するデータ処理部とを設
け、前記起歪体に形成した凹部に前記温度センサを挿入
して起歪体と温度センサとを熱結合したことを特徴とす
る。
A load cell unit according to a second aspect of the present invention is a load cell unit in which a measured load is supported by a strain-generating body, and deformation of the strain-generating body is detected by a strain gauge and converted into an electric signal by a temperature sensor and a strain gauge. A data processing unit for temperature-correcting and outputting the signal detected and converted into an electric signal based on the detection signal of the temperature sensor is provided, and the temperature sensor is inserted into the concave portion formed in the strain-flexing body. It is characterized in that the strain body and the temperature sensor are thermally coupled.

【0009】請求項3記載のロードセルユニットは、請
求項1または請求項2記載のロードセルユニットにおい
て、温度センサの露出部分を断熱材でモールドしたこと
を特徴とする。
According to a third aspect of the load cell unit of the first or second aspect, the exposed portion of the temperature sensor is molded with a heat insulating material.

【0010】請求項4記載のロードセルユニットは、測
定荷重を起歪体で支持し、起歪体の変形をストレインゲ
ージで検出して電気信号に変換するロードセルユニット
において、温度センサと、ストレインゲージで検出して
電気信号に変換された信号を前記温度センサの検出信号
に基づいて温度補正して出力するデータ処理部とを設
け、前記温度センサを前記起歪体に熱結合すると共に、
前記データ処理部の回路素子を前記起歪体に熱結合した
ことを特徴とする。
A load cell unit according to a fourth aspect of the present invention is a load cell unit in which a measured load is supported by a strain-generating body, deformation of the strain-generating body is detected by a strain gauge and converted into an electric signal, by a temperature sensor and a strain gauge. A data processing unit for detecting and converting a signal converted into an electric signal to output the temperature based on the detection signal of the temperature sensor is provided, and the temperature sensor is thermally coupled to the strain-generating body,
The circuit element of the data processing unit is thermally coupled to the strain generating element.

【0011】請求項5記載のロードセルユニットは、請
求項4記載のロードセルユニットにおいて、データ処理
部の回路素子のうちの発熱素子を前記起歪体に熱結合し
たことを特徴とする。
A load cell unit according to a fifth aspect of the present invention is the load cell unit according to the fourth aspect, wherein a heating element of the circuit elements of the data processing section is thermally coupled to the strain generating element.

【0012】請求項6記載のロードセルユニットは、請
求項4または請求項5記載のロードセルユニットにおい
て、温度センサの露出部分とデータ処理部の回路素子の
露出部分を断熱材でモールドしたことを特徴とする。
According to a sixth aspect of the present invention, in the load cell unit according to the fourth or fifth aspect, the exposed portion of the temperature sensor and the exposed portion of the circuit element of the data processing unit are molded with a heat insulating material. To do.

【0013】[0013]

【作用】請求項1の構成によると、温度センサを起歪体
の表面に熱結合したため、雰囲気の温度むらに左右され
ずに温度を検出することができ、正確な温度補償を実現
できる。
According to the structure of the first aspect, since the temperature sensor is thermally coupled to the surface of the strain-generating body, the temperature can be detected without being influenced by the temperature unevenness of the atmosphere, and accurate temperature compensation can be realized.

【0014】請求項2の構成によると、起歪体に形成し
た凹部に温度センサを挿入して起歪体と温度センサとを
熱結合したため、雰囲気の温度むらに左右されずに温度
を検出することができ、正確な温度補償を実現できる。
According to the structure of the second aspect, since the temperature sensor is inserted into the concave portion formed in the strain-generating body and the strain-generating body and the temperature sensor are thermally coupled, the temperature is detected without being affected by the temperature unevenness of the atmosphere. Therefore, accurate temperature compensation can be realized.

【0015】請求項3の構成によると、請求項1または
請求項2において温度センサの露出部分を断熱材でモー
ルドしたため、温度センサの露出部分から雰囲気への熱
の流れもなく、正確な温度補償を実現できる。
According to the structure of claim 3, since the exposed portion of the temperature sensor is molded with a heat insulating material in claim 1 or 2, there is no heat flow from the exposed portion of the temperature sensor to the atmosphere, and accurate temperature compensation is performed. Can be realized.

【0016】請求項4の構成によると、温度センサを起
歪体に熱結合すると共に、前記データ処理部の回路素子
を起歪体に熱結合したため、温度センサと起歪体とデー
タ処理部の回路素子の間の熱平衡状態が得られ、単一の
温度センサで正確な温度補償を実現できる。
According to the structure of claim 4, since the temperature sensor is thermally coupled to the strain-generating body and the circuit element of the data processing unit is thermally coupled to the strain-generating body, the temperature sensor, the strain-generating body, and the data processing unit are connected. A thermal equilibrium state between circuit elements is obtained, and accurate temperature compensation can be realized with a single temperature sensor.

【0017】請求項5の構成によると、請求項4記載の
ロードセルユニットにおいて、データ処理部の回路素子
のうちの発熱素子を起歪体に熱結合したため、データ処
理部の前記発熱素子の熱が起歪体を介して放熱され、温
度むらを低減して正確な温度補償を実現できる。
According to the structure of claim 5, in the load cell unit according to claim 4, since the heating element of the circuit elements of the data processing section is thermally coupled to the strain body, the heat of the heating element of the data processing section is generated. The heat is dissipated through the strain generating element, and the temperature unevenness can be reduced to realize accurate temperature compensation.

【0018】請求項6の構成によると、請求項4または
請求項5記載のロードセルユニットにおいて、温度セン
サの露出部分とデータ処理部の回路素子の露出部分を断
熱材でモールドしたため、温度センサの露出部分から雰
囲気への熱の流れもなく、正確な温度補償を実現でき
る。
According to the structure of claim 6, in the load cell unit according to claim 4 or 5, the exposed portion of the temperature sensor and the exposed portion of the circuit element of the data processing portion are molded with a heat insulating material, so that the temperature sensor is exposed. Accurate temperature compensation can be realized without heat flow from the part to the atmosphere.

【0019】[0019]

【実施例】以下、本発明の各実施例を図1〜図9に基づ
いて説明する。なお、従来例を示す図10と同様の作用
をなすものには同一の符号を付けて説明する。
Embodiments of the present invention will be described below with reference to FIGS. It should be noted that components having the same functions as those of the conventional example shown in FIG.

【0020】図1と図3は第1の実施例を示す。データ
処理部Cが構成されたプリント配線基板3はスペーサ4
を介してロードセルBの起歪体1にビス5で取り付けら
れている。温度センサ2のリード2aはプリント配線基
板3の回路にはんだ付けされており、感熱部2bは起歪
体1の表面に接触するように取り付けられている。
1 and 3 show a first embodiment. The printed wiring board 3 on which the data processing unit C is configured is a spacer 4
It is attached to the flexure element 1 of the load cell B by means of screws 5. The lead 2a of the temperature sensor 2 is soldered to the circuit of the printed wiring board 3, and the heat sensitive portion 2b is attached so as to come into contact with the surface of the flexure element 1.

【0021】ロードセルユニットの外装ケースには図3
に示すような電気回路が内蔵されている。ブリッジ回路
6は起歪体1に貼着されたストレインゲージ7で構成さ
れている。ブリッジ回路6の出力はプリアンプ8とロー
パスフィルタ9を介してA/Dコンバータ10でデジタ
ル変換される。マイクロコンピュータ11では温度セン
サ2の検出温度に基づいて出力が温度補償される。マイ
クロコンピュータ11では特性記憶メモリ12の記憶特
性に基づいて出力補正し、さらに通信トランシーバ13
を介して外部に出力される。
The exterior case of the load cell unit is shown in FIG.
An electric circuit as shown in is built in. The bridge circuit 6 is composed of a strain gauge 7 attached to the flexure element 1. The output of the bridge circuit 6 is digitally converted by the A / D converter 10 via the preamplifier 8 and the low-pass filter 9. In the microcomputer 11, the output is temperature-compensated based on the temperature detected by the temperature sensor 2. The microcomputer 11 corrects the output based on the storage characteristic of the characteristic storage memory 12, and further, the communication transceiver 13
Is output to the outside via.

【0022】なお、ブリッジ回路6の励磁電圧に基づい
て基準電圧発生回路14が基準電圧Vrを発生し、A/
Dコンバータ10では基準電圧Vrを変換基準として入
力信号をデジタル変換している。ロードセルユニットA
の電力は、ロードセルユニットAの外部から給電された
電圧Vpをプリント配線基板3に実装された電源回路1
5で電圧変換して各部に給電されている。
The reference voltage generation circuit 14 generates a reference voltage Vr based on the excitation voltage of the bridge circuit 6, and A /
The D converter 10 digitally converts the input signal using the reference voltage Vr as a conversion reference. Load cell unit A
The power of the power circuit 1 is a voltage Vp supplied from the outside of the load cell unit A mounted on the printed wiring board 3.
5, the voltage is converted and power is supplied to each part.

【0023】このように構成した場合には、温度センサ
2は温度特性に大きく関係するストレインゲージ7の温
度を起歪体1を介して検出することができる。また、起
歪体1の温度は雰囲気の温度むらに左右されにくいた
め、雰囲気に温度むらがあったり、空気の流れがあって
も安定した出力が得られ、温度センサ2の出力に基づく
正確な温度補償を期待できる。
In the case of such a configuration, the temperature sensor 2 can detect the temperature of the strain gauge 7 which is greatly related to the temperature characteristic via the strain-generating body 1. Further, since the temperature of the flexure element 1 is not easily influenced by the temperature unevenness of the atmosphere, a stable output can be obtained even if the atmosphere has temperature unevenness or the air flow, and an accurate output based on the output of the temperature sensor 2 is obtained. Expect temperature compensation.

【0024】図2は第2の実施例を示す。データ処理部
Cが構成されたプリント配線基板3はスペーサ4を介し
てロードセルBの起歪体1にビス5で取り付けられてい
る。温度センサ2のリード2aはプリント配線基板3の
回路にはんだ付けされており、感熱部2bは起歪体1に
形成された凹部1aに挿入して取り付けられ、凹部1a
の内周面と感熱部2bの間には熱伝導を良好にするため
にシリコングリスが充填されている。
FIG. 2 shows a second embodiment. The printed wiring board 3 on which the data processing section C is configured is attached to the flexure element 1 of the load cell B via a spacer 4 with screws 5. The lead 2a of the temperature sensor 2 is soldered to the circuit of the printed wiring board 3, and the heat sensitive portion 2b is inserted into the recessed portion 1a formed in the flexure element 1 and attached to the recessed portion 1a.
Silicon grease is filled between the inner peripheral surface and the heat sensitive portion 2b in order to improve heat conduction.

【0025】データ処理部Cは図3に示したものと同じ
である。このように構成した場合には、温度センサ2は
温度特性に大きく関係するストレインゲージ7の温度を
起歪体1を介して検出することができる。
The data processing section C is the same as that shown in FIG. In the case of such a configuration, the temperature sensor 2 can detect the temperature of the strain gauge 7 which is greatly related to the temperature characteristic via the strain body 1.

【0026】また、起歪体1の温度は雰囲気の温度むら
に左右されにくいため、雰囲気に温度むらがあったり、
空気の流れがあっても安定した出力が得られ、温度セン
サ2の出力に基づく正確な温度補償を期待できる。
Further, since the temperature of the flexure element 1 is not easily influenced by the temperature unevenness of the atmosphere, the temperature unevenness may occur in the atmosphere.
A stable output can be obtained even in the presence of air flow, and accurate temperature compensation based on the output of the temperature sensor 2 can be expected.

【0027】図4と図5は第3,第4の実施例を示す。
図4は第1の実施例の変形例、図5は第2の実施例の変
形例で、図4では温度センサ2の感熱部2bとリード2
aが断熱材としてのシリコンゴム16で覆われている。
図5では温度センサ2のリード2aが断熱材としてのシ
リコンゴム16で覆われている。
4 and 5 show the third and fourth embodiments.
FIG. 4 is a modification of the first embodiment, and FIG. 5 is a modification of the second embodiment. In FIG. 4, the heat sensitive portion 2b and the lead 2 of the temperature sensor 2 are shown.
a is covered with silicon rubber 16 as a heat insulating material.
In FIG. 5, the lead 2a of the temperature sensor 2 is covered with a silicon rubber 16 as a heat insulating material.

【0028】断熱材としては、シリコンゴムの他にウレ
タンゴム,ケイ酸カルシウム材,ロックウール材などを
使用できる。このように構成した場合には、温度センサ
2をシリコンゴム16によって雰囲気から遮断すること
ができ、雰囲気の空気の流れの影響を受けることなく温
度センサ2がストレインゲージ7の温度をより正確に検
出でき、より正確な温度補償を期待できる。
As the heat insulating material, urethane rubber, calcium silicate material, rock wool material or the like can be used in addition to silicon rubber. With such a configuration, the temperature sensor 2 can be shielded from the atmosphere by the silicon rubber 16, and the temperature sensor 2 can detect the temperature of the strain gauge 7 more accurately without being affected by the air flow of the atmosphere. Yes, more accurate temperature compensation can be expected.

【0029】図6は第5の実施例を示す。図6は第1の
実施例の変形例で、データ処理部Cのプリアンプ8とA
/Dコンバータ10と基準電圧発生回路14の回路素子
14aが、起歪体1の表面と熱結合するようにプリント
配線基板3に実装されている。
FIG. 6 shows a fifth embodiment. FIG. 6 shows a modification of the first embodiment, in which the preamplifier 8 and the A of the data processing unit C are provided.
The / D converter 10 and the circuit element 14a of the reference voltage generation circuit 14 are mounted on the printed wiring board 3 so as to be thermally coupled to the surface of the strain body 1.

【0030】なお、データ処理部Cの構成部品で実装高
さにバラツキがある場合には、起歪体1の表面とデータ
処理部Cの構成部品の間に熱伝導を良好にするためにシ
リコングリスが充填される。
When the mounting heights of the components of the data processing unit C vary, silicon is used to improve heat conduction between the surface of the strain generating element 1 and the components of the data processing unit C. The grease is filled.

【0031】このように構成したため、起歪体1と温度
センサ2、および前記データ処理部Cのうちの温度特性
にかかわる部品との間の熱平衡状態を作り出すことがで
き、単一の温度センサ2によってロードセルBとデータ
処理部Cの温度補償を実施することができる。
With this configuration, it is possible to create a thermal equilibrium state between the flexure element 1, the temperature sensor 2, and the parts of the data processing section C that are involved in the temperature characteristics, and the single temperature sensor 2 is used. Thus, temperature compensation of the load cell B and the data processing unit C can be performed.

【0032】図7は第6の実施例を示す。図7は第5の
実施例の変形例で、温度センサ2および前記データ処理
部Cのうちの温度特性にかかわる部品と起歪体1の一部
とが、断熱材としてのシリコンゴム16で覆われてい
る。
FIG. 7 shows a sixth embodiment. FIG. 7 shows a modification of the fifth embodiment, in which parts of the temperature sensor 2 and the data processing section C relating to temperature characteristics and a part of the strain body 1 are covered with a silicon rubber 16 as a heat insulating material. It is being appreciated.

【0033】断熱材としては、シリコンゴムの他にウレ
タンゴム,ケイ酸カルシウム材,ロックウール材などを
使用できる。このように構成した場合には、温度センサ
2をシリコンゴム16によって雰囲気から遮断すること
ができ、雰囲気の空気の流れの影響を受けることなく温
度センサ2がストレインゲージ7の温度をより正確に検
出でき、より正確な温度補償を期待できる。
As the heat insulating material, urethane rubber, calcium silicate material, rock wool material or the like can be used in addition to silicon rubber. With such a configuration, the temperature sensor 2 can be shielded from the atmosphere by the silicon rubber 16, and the temperature sensor 2 can detect the temperature of the strain gauge 7 more accurately without being affected by the air flow of the atmosphere. Yes, more accurate temperature compensation can be expected.

【0034】図8は第7の実施例を示す。図8では電源
回路15の電圧レギュレータ15aが起歪体1の表面に
接触して熱結合されている。この場合には、電圧レギュ
レータ15aの発熱は起歪体1を介して放熱され、電圧
レギュレータ15aの発熱による雰囲気の温度むらを小
さくできる。
FIG. 8 shows a seventh embodiment. In FIG. 8, the voltage regulator 15a of the power supply circuit 15 is in contact with the surface of the flexure element 1 and is thermally coupled thereto. In this case, the heat generated by the voltage regulator 15a is radiated through the flexure element 1, and the temperature unevenness of the atmosphere due to the heat generated by the voltage regulator 15a can be reduced.

【0035】なお、電圧レギュレータ15aから受ける
熱で起歪体1の温度と雰囲気温度とに温度差が生じるこ
とが考えられるが、ロードセルユニットAの温度特性に
かかわる部分を起歪体1に熱結合して、起歪体1を介し
て熱平衡状態を作り出しているため、系の温度は起歪体
1の温度で代表することができ、温度センサ2の出力に
基づいて正確な温度補償を実現できる。
It is possible that the heat received from the voltage regulator 15a causes a temperature difference between the temperature of the flexure element 1 and the ambient temperature. However, a portion related to the temperature characteristics of the load cell unit A is thermally coupled to the flexure element 1. Since a thermal equilibrium state is created through the strain generating element 1, the temperature of the system can be represented by the temperature of the strain generating element 1, and accurate temperature compensation can be realized based on the output of the temperature sensor 2. .

【0036】また、この実施例では発熱を伴う素子とし
て電圧レギュレータ15aの場合を例に挙げて説明して
いるが、プリアンプ10を構成するオペアンプ,マイク
ロコンピュータ11などを起歪体1に結合させることに
よっても同様の効果を期待できる。
In this embodiment, the case where the voltage regulator 15a is used as an element that generates heat is explained as an example. Can also be expected to have the same effect.

【0037】図9は第8の実施例を示す。図9は第7の
実施例の変形例で、起歪体1と熱結合させた各素子と起
歪体1の一部の表面とが、断熱材としてのシリコンゴム
16で覆われている。
FIG. 9 shows an eighth embodiment. FIG. 9 is a modification of the seventh embodiment, in which each element thermally coupled to the strain generating element 1 and a part of the surface of the strain generating element 1 are covered with a silicon rubber 16 as a heat insulating material.

【0038】断熱材としては、シリコンゴムの他にウレ
タンゴム,ケイ酸カルシウム材,ロックウール材などを
使用できる。このように構成した場合には、温度センサ
2をシリコンゴム16によって雰囲気から遮断すること
ができ、雰囲気の空気の流れの影響を受けることなく温
度センサ2がストレインゲージ7の温度をより正確に検
出でき、より正確な温度補償を期待できる。
As the heat insulating material, urethane rubber, calcium silicate material, rock wool material or the like can be used in addition to silicon rubber. With such a configuration, the temperature sensor 2 can be shielded from the atmosphere by the silicon rubber 16, and the temperature sensor 2 can detect the temperature of the strain gauge 7 more accurately without being affected by the air flow of the atmosphere. Yes, more accurate temperature compensation can be expected.

【0039】[0039]

【発明の効果】請求項1の構成によると、温度センサを
起歪体の表面に熱結合したため、雰囲気の温度むらに左
右されずに温度を検出することができ、正確な温度補償
を実現でき、ロードセルユニットの性能の向上を実現で
きる。
According to the first aspect of the invention, since the temperature sensor is thermally coupled to the surface of the flexure element, the temperature can be detected without being affected by the temperature unevenness of the atmosphere, and accurate temperature compensation can be realized. It is possible to improve the performance of the load cell unit.

【0040】請求項2の構成によると、起歪体に形成し
た凹部に温度センサを挿入して起歪体と温度センサとを
熱結合したため、雰囲気の温度むらに左右されずに温度
を検出することができ、正確な温度補償を実現でき、ロ
ードセルユニットの性能の向上を実現できる。
According to the structure of the second aspect, since the temperature sensor is inserted into the concave portion formed in the strain-generating body and the strain-generating body and the temperature sensor are thermally coupled, the temperature is detected without being affected by the temperature unevenness of the atmosphere. Therefore, accurate temperature compensation can be realized, and the performance of the load cell unit can be improved.

【0041】請求項3の構成によると、請求項1または
請求項2において温度センサの露出部分を断熱材でモー
ルドしたため、温度センサの露出部分から雰囲気への熱
の流れもなく、正確な温度補償を実現できる。
According to the third aspect of the present invention, since the exposed portion of the temperature sensor is molded with a heat insulating material in the first or second aspect, there is no heat flow from the exposed portion of the temperature sensor to the atmosphere, and accurate temperature compensation is performed. Can be realized.

【0042】請求項4の構成によると、温度センサを起
歪体に熱結合すると共に、前記データ処理部の回路素子
を起歪体に熱結合したため、温度センサと起歪体とデー
タ処理部の回路素子の間の熱平衡状態が得られ、単一の
温度センサで正確な温度補償を実現できる。
According to the structure of claim 4, since the temperature sensor is thermally coupled to the strain-generating body and the circuit element of the data processing unit is thermally coupled to the strain-generating body, the temperature sensor, the strain-generating body and the data processing unit are connected. A thermal equilibrium state between circuit elements is obtained, and accurate temperature compensation can be realized with a single temperature sensor.

【0043】請求項5の構成によると、請求項4記載の
ロードセルユニットにおいて、データ処理部の回路素子
のうちの発熱素子を起歪体に熱結合したため、データ処
理部の前記発熱素子の熱が起歪体を介して放熱され、温
度むらを低減して正確な温度補償を実現できる。
According to the fifth aspect of the present invention, in the load cell unit according to the fourth aspect, since the heating element of the circuit elements of the data processing section is thermally coupled to the strain body, the heat of the heating element of the data processing section is generated. The heat is dissipated through the strain generating element, and the temperature unevenness can be reduced to realize accurate temperature compensation.

【0044】請求項6の構成によると、請求項4または
請求項5記載のロードセルユニットにおいて、温度セン
サの露出部分とデータ処理部の回路素子の露出部分を断
熱材でモールドしたため、温度センサの露出部分から雰
囲気への熱の流れもなく、正確な温度補償を実現でき
る。
According to the structure of claim 6, in the load cell unit according to claim 4 or 5, the exposed portion of the temperature sensor and the exposed portion of the circuit element of the data processing portion are molded with a heat insulating material, so that the temperature sensor is exposed. Accurate temperature compensation can be realized without heat flow from the part to the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のロードセルユニットの第1の実施例の
要部の正面図
FIG. 1 is a front view of an essential part of a first embodiment of a load cell unit of the present invention.

【図2】第2の実施例の一部切り欠き正面図FIG. 2 is a partially cutaway front view of the second embodiment.

【図3】ロードセルユニットの電気構成図FIG. 3 is an electrical configuration diagram of a load cell unit.

【図4】第3の実施例の要部の正面図FIG. 4 is a front view of the main part of the third embodiment.

【図5】第4の実施例の一部切り欠き正面図FIG. 5 is a partially cutaway front view of the fourth embodiment.

【図6】第5の実施例の要部正面図FIG. 6 is a front view of the essential portions of the fifth embodiment.

【図7】第6の実施例の要部正面図FIG. 7 is a front view of a main portion of a sixth embodiment.

【図8】第7の実施例の要部の正面図FIG. 8 is a front view of the essential parts of the seventh embodiment.

【図9】第8の実施例の要部正面図FIG. 9 is a front view of the essential portions of the eighth embodiment.

【図10】従来のロードセルユニットの説明図FIG. 10 is an explanatory diagram of a conventional load cell unit.

【符号の説明】[Explanation of symbols]

A ロードセルユニット B ロードセル C データ処理部 1 起歪体 2 温度センサ 3 プリント配線基板 10 A/Dコンバータ 11 マイクロコンピュータ 15a 電圧レギュレータ 16 シリコンゴム A load cell unit B load cell C data processing unit 1 strain element 2 temperature sensor 3 printed wiring board 10 A / D converter 11 microcomputer 15a voltage regulator 16 silicon rubber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定荷重を起歪体で支持し、起歪体の変
形をストレインゲージで検出して電気信号に変換するロ
ードセルユニットにおいて、温度センサと、ストレイン
ゲージで検出して電気信号に変換された信号を前記温度
センサの検出信号に基づいて温度補正して出力するデー
タ処理部とを設け、前記温度センサを前記起歪体の表面
に熱結合したロードセルユニット。
1. A load cell unit in which a load is supported by a strain-generating body, deformation of the strain-generating body is detected by a strain gauge and converted into an electric signal, and detected by a temperature sensor and a strain gauge and converted into an electric signal. And a data processing unit for temperature-correcting and outputting the generated signal based on the detection signal of the temperature sensor, and the temperature sensor is thermally coupled to the surface of the strain body.
【請求項2】 測定荷重を起歪体で支持し、起歪体の変
形をストレインゲージで検出して電気信号に変換するロ
ードセルユニットにおいて、温度センサと、ストレイン
ゲージで検出して電気信号に変換された信号を前記温度
センサの検出信号に基づいて温度補正して出力するデー
タ処理部とを設け、前記起歪体に形成した凹部に前記温
度センサを挿入して起歪体と温度センサとを熱結合した
ロードセルユニット。
2. A load cell unit for supporting a measured load with a strain-generating body, detecting deformation of the strain-generating body with a strain gauge and converting it into an electric signal, and detecting it with a temperature sensor and a strain gauge and converting it into an electric signal. And a data processing unit for temperature-correcting and outputting the generated signal based on the detection signal of the temperature sensor, and inserting the temperature sensor into a recess formed in the strain-generating body to form the strain-generating body and the temperature sensor. Thermally coupled load cell unit.
【請求項3】 温度センサの露出部分を断熱材でモール
ドした請求項1または請求項2記載のロードセルユニッ
ト。
3. The load cell unit according to claim 1, wherein the exposed portion of the temperature sensor is molded with a heat insulating material.
【請求項4】 測定荷重を起歪体で支持し、起歪体の変
形をストレインゲージで検出して電気信号に変換するロ
ードセルユニットにおいて、温度センサと、ストレイン
ゲージで検出して電気信号に変換された信号を前記温度
センサの検出信号に基づいて温度補正して出力するデー
タ処理部とを設け、前記温度センサを前記起歪体に熱結
合すると共に、前記データ処理部の回路素子を前記起歪
体に熱結合したロードセルユニット。
4. A load cell unit for supporting a measurement load with a strain-generating body, detecting deformation of the strain-generating body with a strain gauge and converting it into an electric signal, and detecting it with a temperature sensor and a strain gauge and converting it into an electric signal. And a data processing unit for correcting the temperature of the generated signal based on the detection signal of the temperature sensor and outputting the temperature signal, the temperature sensor being thermally coupled to the strain-generating body, and the circuit element of the data processing unit being activated. A load cell unit that is thermally coupled to a strain body.
【請求項5】 データ処理部の回路素子のうちの発熱素
子を前記起歪体に熱結合した請求項4記載のロードセル
ユニット。
5. The load cell unit according to claim 4, wherein a heating element of the circuit elements of the data processing section is thermally coupled to the strain generating element.
【請求項6】 温度センサの露出部分とデータ処理部の
回路素子の露出部分を断熱材でモールドした請求項4ま
たは請求項5記載のロードセルユニット。
6. The load cell unit according to claim 4, wherein the exposed portion of the temperature sensor and the exposed portion of the circuit element of the data processing unit are molded with a heat insulating material.
JP6221198A 1994-09-16 1994-09-16 Load cell unit Pending JPH0886700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221198A JPH0886700A (en) 1994-09-16 1994-09-16 Load cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221198A JPH0886700A (en) 1994-09-16 1994-09-16 Load cell unit

Publications (1)

Publication Number Publication Date
JPH0886700A true JPH0886700A (en) 1996-04-02

Family

ID=16763013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221198A Pending JPH0886700A (en) 1994-09-16 1994-09-16 Load cell unit

Country Status (1)

Country Link
JP (1) JPH0886700A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292273A (en) * 1999-04-09 2000-10-20 Teraoka Seiko Co Ltd Load cell
JP2002195896A (en) * 2000-12-26 2002-07-10 Yamato Scale Co Ltd Load cell
FR2864614A1 (en) * 2003-12-25 2005-07-01 Denso Corp Physical quantity e.g. force, acquiring sensor, has heat conduction path formed across one unit so that it has thermal resistance on conduction path lesser than that of another unit in direction of application of physical quantity
JP2008256421A (en) * 2007-04-03 2008-10-23 Kubota Corp Load cell and its unit
JP2010091325A (en) * 2008-10-06 2010-04-22 Ishida Co Ltd Load cell unit and weight inspecting apparatus
JP2010243341A (en) * 2009-04-07 2010-10-28 Yamato Scale Co Ltd Vehicle weight measuring system
JP2016038247A (en) * 2014-08-06 2016-03-22 株式会社安藤・間 Dry masonry stone wall deformation measuring device and method
DE102017117649A1 (en) * 2017-08-03 2019-02-07 Cartesy Gmbh strain sensor
WO2020158189A1 (en) * 2019-01-31 2020-08-06 ミネベアミツミ株式会社 Force sensor device
KR20200134483A (en) * 2019-05-22 2020-12-02 현대모비스 주식회사 Device of pedal stroke sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292273A (en) * 1999-04-09 2000-10-20 Teraoka Seiko Co Ltd Load cell
JP2002195896A (en) * 2000-12-26 2002-07-10 Yamato Scale Co Ltd Load cell
FR2864614A1 (en) * 2003-12-25 2005-07-01 Denso Corp Physical quantity e.g. force, acquiring sensor, has heat conduction path formed across one unit so that it has thermal resistance on conduction path lesser than that of another unit in direction of application of physical quantity
US7216554B2 (en) 2003-12-25 2007-05-15 Denso Corporation Physical quantity sensor having enhanced temperature compensation capability
JP2008256421A (en) * 2007-04-03 2008-10-23 Kubota Corp Load cell and its unit
JP2010091325A (en) * 2008-10-06 2010-04-22 Ishida Co Ltd Load cell unit and weight inspecting apparatus
JP2010243341A (en) * 2009-04-07 2010-10-28 Yamato Scale Co Ltd Vehicle weight measuring system
JP2016038247A (en) * 2014-08-06 2016-03-22 株式会社安藤・間 Dry masonry stone wall deformation measuring device and method
DE102017117649A1 (en) * 2017-08-03 2019-02-07 Cartesy Gmbh strain sensor
WO2020158189A1 (en) * 2019-01-31 2020-08-06 ミネベアミツミ株式会社 Force sensor device
JP2020122768A (en) * 2019-01-31 2020-08-13 ミネベアミツミ株式会社 Force sensor device
KR20200134483A (en) * 2019-05-22 2020-12-02 현대모비스 주식회사 Device of pedal stroke sensor

Similar Documents

Publication Publication Date Title
US7410290B2 (en) Ear-type clinical thermometer
JPH0886700A (en) Load cell unit
KR970060999A (en) Low Power Standby Mode for Remote Sensing Devices
JP6344101B2 (en) Gas detector
JP3796245B2 (en) Modular load measuring cell and measuring instrument used for measuring instrument
US20050216102A1 (en) Power supply circuit for physical quantity sensor
JP3418407B2 (en) Temperature measurement type external connection mechanism for printed wiring boards
JP4766771B2 (en) Load cell
JP3607420B2 (en) Dry type pressure detector
JP2002195895A (en) Load cell
JPS61259174A (en) Dynamic quantity sensor
JP3361020B2 (en) Thermocouple temperature measurement device
JP2903005B2 (en) Heat dissipation mechanism of semiconductor device mounted on printed circuit board
JPH0783733A (en) Device for detecting presence or absence of powder
JPH06102115A (en) Vibration type pressure gauge
KR100347008B1 (en) Vibration indicator with a hybrid sensor for sensing vibration and temperature
WO2023017599A1 (en) Temperature measuring device
JPH10332519A (en) Characteristic measuring instrument for pressure sensor
JPH0124602Y2 (en)
JP5034405B2 (en) Optical communication device
JP3474456B2 (en) Sensor input circuit and measuring instrument
JP3210222B2 (en) Temperature measuring device
JP4743959B2 (en) Load cell
JP2668390B2 (en) Rotational angular velocity detector
JP2937167B2 (en) Environmental condition measuring apparatus and method for artificial satellite onboard equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8