JPH088480A - Laser device - Google Patents

Laser device

Info

Publication number
JPH088480A
JPH088480A JP13409194A JP13409194A JPH088480A JP H088480 A JPH088480 A JP H088480A JP 13409194 A JP13409194 A JP 13409194A JP 13409194 A JP13409194 A JP 13409194A JP H088480 A JPH088480 A JP H088480A
Authority
JP
Japan
Prior art keywords
laser
resonator
laser device
shg
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13409194A
Other languages
Japanese (ja)
Inventor
Tetsuo Ando
哲生 安藤
Masatoshi Otake
正利 大竹
Kimio Tateno
公男 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13409194A priority Critical patent/JPH088480A/en
Publication of JPH088480A publication Critical patent/JPH088480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To enable a laser device to be lessened in SHG noise and kept stable in output by a method wherein an etalon is provided inside a resonator, and an injection current is controlled by feedback of the spectrums of fundamental waves obtained through double refraction of a nonlinear optical crystal. CONSTITUTION:An inner resonator type SHG laser resonator is composed of an Nd:YV 0412 fixed to a holder 13 of a Peltier device 19, a KTP 15 fixed to a holder 14, an etalon 16, and an output mirror 17 fixed to a holder 18. The exciting light of a semiconductor laser 10 is made to impinge on the end face of the holder 13 to excite the Nd:YV 0412 to excite the fundamental wave, and SHG is oscillated by the KTP 15. Then, the fundamental wave is split by a beam splitter 20 and further by a polarized beam splitter 24 and is made to impinge on photodetector element 25 and 26 respectively. The second harmonic is split by a beam splitter 21 and is made to impinge on a photodetector element 27. Intensity data of the lights impinging on the photodetector elements 25 to 27 are inputted to a control circuit 37 so as to make the fundamental wave linearly polarized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形光学結晶を用いた
内部共振器型の波長変換レーザに係り、特に、レーザ出
力の安定化あるいは低ノイズ化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal cavity type wavelength conversion laser using a nonlinear optical crystal, and more particularly to stabilization of laser output or reduction of noise.

【0002】[0002]

【従来の技術】光ディスクの高密度化,レーザプリンタ
の高精細化等に小型短波長レーザの要求が高まってい
る。短波長レーザとして、非線形光学結晶を用いたSH
G(第2高調波発生)レーザがある。特に、図2のよう
なレーザ共振器内部に非線形光学結晶4を置いた内部共
振器型SHGレーザを固体レーザ結晶3の端面から半導
体レーザ1で励起する方法は小型高効率発振により様々
な応用が期待されている。ところで、図2のレーザは定
在波型の固体レーザで特別な手段を設けなければ、一般
的に縦マルチモード発振する。内部共振器型SHGレー
ザにおいて、基本波が縦マルチモードで発振すると共振
器内のモード競合が、非線形光学結晶における波長変換
の際にSHGノイズを引き起こし、SHG出力が不安定
になる。
2. Description of the Related Art There is an increasing demand for compact short wavelength lasers for high density optical discs and high definition laser printers. SH using a nonlinear optical crystal as a short wavelength laser
There is a G (second harmonic generation) laser. In particular, the method of pumping the internal cavity SHG laser having the nonlinear optical crystal 4 inside the laser cavity as shown in FIG. 2 with the semiconductor laser 1 from the end face of the solid-state laser crystal 3 has various applications due to the small size and high efficiency oscillation. Is expected. By the way, the laser of FIG. 2 is a standing wave type solid-state laser and generally oscillates in a longitudinal multimode unless special means is provided. In the internal cavity SHG laser, when the fundamental wave oscillates in the longitudinal multimode, mode competition in the cavity causes SHG noise during wavelength conversion in the nonlinear optical crystal, and the SHG output becomes unstable.

【0003】SHGノイズを低減し、出力を安定化する
には、基本波を縦シングルモード発振させるのが有効で
ある。そこで、共振器内部にエタロン(透明な平行平板
の両面に反射コーティングを施し、その多重反射を利用
し波長選択する素子)を挿入し、他の波長(縦モード)
のレーザ発振を抑える方法が考えられた。これは、エタ
ロンを傾けるなどしてエタロン内の実質的光路長を変化
させ、エタロンの選択波長と多数の共振器モード(共振
条件を満たすとびとびの波長)のなかの一つを一致させ
てシングルモード発振させる方法である。この方法で基
本波を縦シングルモード発振させ、安定な出力のSHG
が得られる。この例としてアイイーイーイー ジャーナ
ル オブ クアンタム エレクトロニクス(IEEE Journ
al of Quantum Electronics), vol. QE−10, No.2, p2
53(1974))、1993年春季第40回応用物理学関係連
合講演会講演予稿集No3,p996,31p−Z−4な
どが挙げられる(図3)。
In order to reduce SHG noise and stabilize the output, it is effective to oscillate the fundamental wave in the single longitudinal mode. Therefore, insert an etalon (an element that applies reflective coating on both sides of a transparent parallel plate and uses that multiple reflection to select a wavelength) inside the resonator, and then use another wavelength (longitudinal mode).
The method of suppressing the laser oscillation of was considered. This is because the effective optical path length in the etalon is changed by tilting the etalon, and the selected wavelength of the etalon is matched with one of the many resonator modes (the discrete wavelengths that satisfy the resonance condition) to create a single mode. This is a method of oscillating. By this method, the fundamental wave is oscillated in the longitudinal single mode, and the stable output SHG
Is obtained. An example of this is the IEEE Journal of Quantum Electronics (IEEE Journ
al of Quantum Electronics), vol. QE-10, No.2, p2
53 (1974)), Spring 1993 40th Joint Lecture on Applied Physics Lecture Proceedings No 3, p996, 31p-Z-4 and the like (Fig. 3).

【0004】[0004]

【発明が解決しようとする課題】KTP(KTiOPO4)など
のようにSHG発生時にTYPE2の位相整合をする非線形
光学結晶は複屈折性を有するため、温度変化により結晶
を通過する光の偏光が変化する。一方、レーザ結晶は一
般に偏光方向に依存した利得を持っているため、共振器
内部の基本波の偏光が変化するとレーザ出力は変動す
る。この変動はエタロンの波長選択性では制御できない
ため、これを使用した従来のSHGレーザ装置ではSH
Gノイズが発生し、出力が不安定となる。
A nonlinear optical crystal such as KTP (KTiOPO4) that performs phase matching of TYPE2 when SHG occurs has birefringence, so that the polarization of light passing through the crystal changes due to temperature change. . On the other hand, since the laser crystal generally has a gain depending on the polarization direction, the laser output changes when the polarization of the fundamental wave inside the resonator changes. Since this variation cannot be controlled by the wavelength selectivity of the etalon, the conventional SHG laser device using this has an SH
G noise occurs and the output becomes unstable.

【0005】その他に、励起半導体レーザの経時変化に
よる出力の減少と波長の変化がレーザ結晶に吸収される
励起エネルギの減少となり、その結果SHG出力が低下
することも問題となる。
Another problem is that the decrease of the output and the change of the wavelength due to the change with time of the excitation semiconductor laser result in the decrease of the excitation energy absorbed by the laser crystal, resulting in the decrease of the SHG output.

【0006】本発明はこの点を考慮したもので、内部共
振器型SHGレーザに代表される波長変換レーザ装置に
おいて、共振器内部でエタロンを使用し、このエタロン
が選択した基本波の偏光を一定にさせ、安定に基本波シ
ングルモード発振をさせることで、モード競合によるS
HGノイズを低減し、出力を安定させる。また励起光の
出力と波長をコントロールし経時変化にも対応し、SH
G出力が低下しないレーザ装置を提供することにある。
The present invention takes this point into consideration. In a wavelength conversion laser device represented by an internal cavity type SHG laser, an etalon is used inside the cavity and the polarization of the fundamental wave selected by the etalon is kept constant. To stabilize the fundamental wave single mode oscillation, S
HG noise is reduced and output is stabilized. In addition, the output and wavelength of the pumping light are controlled to handle changes over time, and SH
It is to provide a laser device in which the G output does not decrease.

【0007】このほかに本発明はレーザ装置部品のばら
つきによる性能の違いを、組立後に調整して一定にでき
るよう考慮し、さらに他の装置にこのレーザ装置を組み
込んで応用する場合に、小型で使い勝手の良い形態を取
れるようなレーザ装置を提供することにある。
In addition to the above, the present invention considers that a difference in performance due to variations in laser device parts can be adjusted and made constant after assembly, and when the laser device is incorporated into another device and applied, it is compact. An object is to provide a laser device that can take a convenient form.

【0008】[0008]

【課題を解決するための手段】共振器の光路長を変化さ
せ、共振器モードをエタロンが選択する波長範囲内に移
動させる。また複屈折の制御により非線形光学結晶を全
波長板あるいは1/2波長板にする。これによりレーザ
結晶における基本波の偏光方向が一定で安定な縦シング
ルモード発振が得られる。また励起用半導体レーザの経
時変化による出力低下と波長変化に対しては、半導体レ
ーザへの注入電流と温度の制御を行う。これら一連の制
御は出力されるSHG,基本波をモニタすることで制御
の方向を決定する。このときプログラム可能なLSIで
制御すれば、部品ばらつきによる制御パラメータの違い
を、装置組立後にそれぞれのレーザ装置に最適化したプ
ログラミングをすることができる。またLSI使用によ
りレーザ装置を小型にすることができる。
An optical path length of a resonator is changed to move a resonator mode within a wavelength range selected by an etalon. Further, the nonlinear optical crystal is made into a full-wave plate or a half-wave plate by controlling birefringence. This makes it possible to obtain stable longitudinal single mode oscillation in which the polarization direction of the fundamental wave in the laser crystal is constant. Further, the injection current and the temperature of the semiconductor laser are controlled with respect to the decrease in the output and the change in the wavelength due to the change with time of the excitation semiconductor laser. These series of controls determine the control direction by monitoring the output SHG and fundamental wave. At this time, if control is performed by a programmable LSI, it is possible to perform programming that optimizes the difference in control parameters due to component variations for each laser device after device assembly. Further, the laser device can be downsized by using the LSI.

【0009】[0009]

【作用】基本波のモード競合を抑えるため、エタロン表
面の反射率を上げ波長選択幅を狭くする必要がある。こ
の波長選択幅に対し共振器長変化による共振器モードの
移動は大きく、わずかの共振器長の変化でも共振器モー
ドがエタロン波長選択幅から外れてしまう。そのため共
振器温度をコントロールするなどして共振器の光路長を
制御し、エタロン波長選択幅内に共振器モードを収め
る。当然、この場合の許容温度幅は小さいものになる。
一方、KTPなどの複屈折性の非線形光学結晶を全波長
板あるいは1/2波長板に制御する温度許容幅は比較的
大きい。
In order to suppress the mode competition of the fundamental wave, it is necessary to increase the reflectance of the etalon surface and narrow the wavelength selection width. The movement of the resonator mode due to the change in the resonator length is large with respect to this wavelength selection width, and even a slight change in the resonator length causes the resonator mode to deviate from the etalon wavelength selection width. Therefore, the optical path length of the resonator is controlled by controlling the resonator temperature and the resonator mode is kept within the etalon wavelength selection width. Of course, the allowable temperature range in this case is small.
On the other hand, the temperature tolerance for controlling a birefringent nonlinear optical crystal such as KTP into a full-wave plate or a half-wave plate is relatively large.

【0010】そこで、この二つの条件を満たすには、ま
ず非線形光学結晶を全波長板あるいは1/2波長板にす
る温度に設定し、その付近で温度の微調整を行いエタロ
ン波長選択幅内に共振器モードを移動させる。この一連
の操作は基本波のP,S偏光出力とSHG出力を参照し
ながら行う。つまり、非線形光学結晶が全波長板あるい
は1/2波長板になる温度に設定するためには、基本波
のP,S偏光出力をモニタし、一方が最大、もう一方が
最小となる(直線偏光になる)ようにする。また共振器
モードをエタロンの波長選択幅内に移動させるときには
SHG出力が最大になるように共振器を温度変化させ
る。
Therefore, in order to satisfy these two conditions, first, the temperature of the nonlinear optical crystal is set to a full-wave plate or a half-wave plate, and the temperature is finely adjusted in the vicinity of the temperature to make it within the etalon wavelength selection range. Move the resonator mode. This series of operations is performed while referring to the P and S polarized outputs of the fundamental wave and the SHG output. That is, in order to set the temperature at which the nonlinear optical crystal becomes a full-wave plate or a half-wave plate, the P and S polarization outputs of the fundamental wave are monitored, and one is maximum and the other is minimum (linear polarization). To become). Further, when the resonator mode is moved within the wavelength selection width of the etalon, the temperature of the resonator is changed so that the SHG output becomes maximum.

【0011】以上の操作によりノイズのない安定なSH
G出力が得られる。しかし、これで規定のSHG出力が
得られないときは、励起パワーが低下しているか、励起
レーザ波長がずれているので、SHG出力をモニタしな
がら励起用半導体レーザの注入電流と温度を少しずつ交
互に調整する。上の操作により出力低下のない、安定な
SHG出力を得ることができる。
By the above operation, stable SH without noise
G output is obtained. However, when the specified SHG output cannot be obtained by this, the pumping power is lowered or the pumping laser wavelength is deviated, so the injection current and temperature of the pumping semiconductor laser are gradually increased while monitoring the SHG output. Adjust alternately. By the above operation, stable SHG output without output reduction can be obtained.

【0012】[0012]

【実施例】【Example】

(実施例1)図4のように、ペルチエ素子19上にホル
ダ13に固定されたNd:YVO4 12,ホルダ14に固定さ
れたKTP(KTiOPO4)15,エタロン16,ホルダ18
に固定された出力ミラー17で内部共振器型SHGレー
ザ共振器を構成する。このとき12のc軸は15のc軸
と45°となるようにする。12の左面と17の左面は
波長1064nmに対する高反射コーティング,ミラー
17の左面はさらに532nmに対して無反射コーティ
ングをしてある。波長約810の半導体レーザ13の励
起光を集光レンズ11でホルダ13の端面から入射させ
Nd:YVO4 12を励起する。これにより共振器内部には1
064nmの基本波がレーザ発振し、KTP15により
532nmのSHGが発振する。ミラー17からは基本
波とSHGの二つの異なった波長のレーザが射出する。
射出されたレーザのうち基本波をビームスプリッタ20
で分離し、さらに偏光ビームスプリッタ24でP,S偏
光に分離しそれぞれを受光素子25,26に入射させ
る。
(Example 1) As shown in FIG. 4, Nd: YVO4 12 fixed to a holder 13 on a Peltier element 19, KTP (KTiOPO4) 15 fixed to a holder 14, etalon 16, holder 18
The internal mirror type SHG laser resonator is constituted by the output mirror 17 fixed to. At this time, the c-axis of 12 and the c-axis of 15 are set to be 45 °. The left surface of 12 and the left surface of 17 are highly reflective coatings for the wavelength of 1064 nm, and the left surface of the mirror 17 is further anti-reflection coating for 532 nm. The excitation light of the semiconductor laser 13 having a wavelength of about 810 is made to enter from the end surface of the holder 13 by the condenser lens 11.
Excite Nd: YVO4 12. As a result, 1
The fundamental wave of 064 nm oscillates, and the KTP 15 oscillates SHG of 532 nm. Two different wavelength lasers, a fundamental wave and SHG, are emitted from the mirror 17.
The fundamental wave of the emitted laser is beam splitter 20.
And the polarized beam splitter 24 separates the polarized light into P and S polarized lights, which are incident on the light receiving elements 25 and 26, respectively.

【0013】またビームスプリッタ20を透過したSH
Gの一部をビームスプリッタ21で分け、受光素子27
に入射させる。25,26,27に入った光強度の情報
は電気信号に変換され、制御回路37に入力される。光
強度が変化すると37が温度コントローラ38に指示を
出し、SHGの光強度が増加し基本波が直線偏光になる
ように共振器温度を増加あるいは減少させるように制御
する。共振器温度の制御だけではSHG出力が元に戻ら
ないときは半導体レーザ用温度コントローラ29に指示
を出し、半導体レーザ温度を変化させ、SHG出力が一
番大きくなる温度にする。それでもSHG出力が元に戻
らないときはレーザドライバ28に指示を出し、半導体
レーザ注入電流を増加させてSHG出力を元に戻す。
The SH transmitted through the beam splitter 20
A part of G is separated by the beam splitter 21, and the light receiving element 27
Incident on. The information of the light intensity entering 25, 26 and 27 is converted into an electric signal and input to the control circuit 37. When the light intensity changes, 37 issues an instruction to the temperature controller 38 to control the resonator temperature to increase or decrease so that the SHG light intensity increases and the fundamental wave becomes linearly polarized. If the SHG output cannot be restored only by controlling the resonator temperature, an instruction is issued to the semiconductor laser temperature controller 29 to change the semiconductor laser temperature so that the SHG output becomes the maximum temperature. If the SHG output still does not return to the original value, the laser driver 28 is instructed to increase the semiconductor laser injection current and return the SHG output to the original value.

【0014】(実施例2)図1のような装置で、実施例
1と同様で共振器はペルチエ素子上に構成されている。
この共振器からの出力レーザを左から基本波S偏光,基
本波P偏光,SHGの一部を蹴りだすビームスプリッタ
40,41,42を使って受光素子43に入射させる。
これらペルチエ素子に乗った共振器とビームスプリッ
タ,受光素子,励起用半導体レーザ,集光レンズを筺体
45に納めSHG出力用50を残して密閉する。45と
42は接着されており空気の移動はない。43からの電
気信号はLSI(大規模集積回路)46に入力される。
46にはあらかじめこの共振器に合わせた初期共振器温
度,半導体レーザ温度,注入電流等の制御パラメータと
制御アルゴリズムがプログラムされている。46の指示
により共振器温度,半導体レーザ温度,半導体レーザ注
入電流を制御し、安定なSHG出力を得る。
(Embodiment 2) In a device as shown in FIG. 1, the resonator is constructed on a Peltier element as in Embodiment 1.
The output laser from this resonator is made incident on the light receiving element 43 from the left using the beam splitters 40, 41 and 42 for kicking out the fundamental wave S-polarized light, the fundamental wave P-polarized light and a part of the SHG.
A resonator mounted on these Peltier elements, a beam splitter, a light receiving element, a semiconductor laser for excitation, and a condenser lens are housed in a housing 45 and sealed for the SHG output 50. 45 and 42 are bonded and there is no movement of air. The electric signal from 43 is input to an LSI (Large Scale Integrated Circuit) 46.
In 46, control parameters such as an initial cavity temperature, a semiconductor laser temperature, an injection current, etc., which are matched with the cavity, and a control algorithm are programmed in advance. According to the instruction of 46, the resonator temperature, the semiconductor laser temperature, and the semiconductor laser injection current are controlled to obtain a stable SHG output.

【0015】[0015]

【発明の効果】本発明によれば、エタロン使用の小型の
内部共振器型SHGレーザをノイズのない安定な出力で
動作させることができる。出力が安定かつサイズが小型
なため、光ディスクシステム,レーザビームプリンタ,
その他の分野において有効に利用できる。
According to the present invention, a small internal resonator type SHG laser using an etalon can be operated with stable output without noise. Because the output is stable and the size is small, optical disk system, laser beam printer,
It can be effectively used in other fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示した説明図。FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.

【図2】従来の半導体レーザ励起内部共振器型SHGレ
ーザの構造の説明図。
FIG. 2 is an explanatory view of a structure of a conventional semiconductor laser pumped internal cavity type SHG laser.

【図3】エタロンを使用した従来の半導体レーザ励起内
部共振器型SHGレーザの構造の説明図。
FIG. 3 is an explanatory view of a structure of a conventional semiconductor laser pumped internal cavity type SHG laser using an etalon.

【図4】本発明の実施例2を示した説明図。FIG. 4 is an explanatory diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…半導体レーザ、11…集光レンズ、12…Nd:YV
O4、13…Nd:YVO4ホルダ、14…KTP(KTiOPO4)
ホルダ、15…KTP(KTiOPO4)、16…エタロン、
17…出力ミラー、18…出力ミラーホルダ、27…受
光素子、28…半導体レーザドライバ、29…温度コン
トローラ、31…サーミスタへの配線、32…半導体レ
ーザ注入電流用配線、33…半導体レーザモニタ用配
線、35…ペルチエ電流用配線、36…ペルチエ電流用
配線、40…ビームスプリッタ、41…ビームスプリッ
タ、42…ビームスプリッタ、43…受光素子、45…
筺体、46…LSI、50…SHG出力窓。
10 ... Semiconductor laser, 11 ... Focusing lens, 12 ... Nd: YV
O4, 13 ... Nd: YVO4 holder, 14 ... KTP (KTiOPO4)
Holder, 15 ... KTP (KTiOPO4), 16 ... Etalon,
17 ... Output mirror, 18 ... Output mirror holder, 27 ... Light receiving element, 28 ... Semiconductor laser driver, 29 ... Temperature controller, 31 ... Wiring to thermistor, 32 ... Wiring for semiconductor laser injection current, 33 ... Wiring for semiconductor laser monitor , 35 ... Peltier current wiring, 36 ... Peltier current wiring, 40 ... Beam splitter, 41 ... Beam splitter, 42 ... Beam splitter, 43 ... Light receiving element, 45 ...
Enclosure, 46 ... LSI, 50 ... SHG output window.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/131 3/16 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area H01S 3/131 3/16

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】エタロン使用のレーザ共振器の内部に非線
形光学結晶を用いる波長変換レーザにおいて、前記非線
形光学結晶の複屈折と共振器光路長を制御する手段を有
する半導体レーザで励起することを特徴とするレーザ装
置。
1. A wavelength conversion laser using a non-linear optical crystal inside a laser resonator using an etalon, which is excited by a semiconductor laser having means for controlling birefringence of the non-linear optical crystal and a resonator optical path length. And laser equipment.
【請求項2】請求項1において、出力される基本波レー
ザと波長変換されたレーザのパワーを参照して前記非線
形光学結晶の複屈折と共振器光路長を制御する手段を有
するレーザ装置。
2. A laser device according to claim 1, further comprising means for controlling the birefringence of the nonlinear optical crystal and the optical path length of the resonator by referring to the powers of the fundamental wave laser and the wavelength-converted laser to be output.
【請求項3】請求項2において、出力される基本波レー
ザと波長変換されたレーザのパワーを参照して温度と注
入電流の一方または両方を制御する半導体レーザで励起
するレーザ装置。
3. A laser device as set forth in claim 2, wherein a semiconductor laser is used to control one or both of temperature and injection current with reference to the powers of the fundamental wave laser and the wavelength-converted laser to be output.
【請求項4】請求項2において、大規模集積回路を制御
に使用するレーザ装置。
4. The laser device according to claim 2, wherein a large-scale integrated circuit is used for control.
【請求項5】請求項3において、大規模集積回路を制御
に使用するレーザ装置。
5. The laser device according to claim 3, wherein the large scale integrated circuit is used for control.
【請求項6】請求項2において、非線形光学結晶の複屈
折と共振器光路長を温度制御素子で制御するレーザ装
置。
6. The laser device according to claim 2, wherein the temperature control element controls the birefringence of the nonlinear optical crystal and the optical path length of the resonator.
【請求項7】請求項6において、一つの温度制御素子で
非線形光学結晶の複屈折と共振器光路長を制御するレー
ザ装置。
7. The laser device according to claim 6, wherein one temperature control element controls the birefringence of the nonlinear optical crystal and the cavity optical path length.
【請求項8】請求項3において、非線形光学結晶の複屈
折と共振器光路長を温度制御素子で制御するレーザ装
置。
8. A laser device according to claim 3, wherein the temperature control element controls the birefringence of the nonlinear optical crystal and the cavity optical path length.
【請求項9】請求項8において、一つの温度制御素子で
非線形光学結晶の複屈折と共振器光路長を制御するレー
ザ装置。
9. The laser device according to claim 8, wherein the temperature control element controls the birefringence of the nonlinear optical crystal and the cavity optical path length.
【請求項10】請求項4において、非線形光学結晶の複
屈折と共振器光路長を温度制御素子で制御するレーザ装
置。
10. The laser device according to claim 4, wherein the birefringence of the nonlinear optical crystal and the optical path length of the resonator are controlled by a temperature control element.
【請求項11】請求項10において、一つの温度制御素
子で非線形光学結晶の複屈折と共振器光路長を制御する
レーザ装置。
11. The laser device according to claim 10, wherein one temperature control element controls the birefringence of the nonlinear optical crystal and the cavity optical path length.
【請求項12】請求項5において、非線形光学結晶の複
屈折と共振器光路長を温度制御素子で制御するレーザ装
置。
12. The laser device according to claim 5, wherein the temperature control element controls the birefringence of the nonlinear optical crystal and the cavity optical path length.
【請求項13】請求項12において、非線形光学結晶の
複屈折と共振器光路長を温度制御素子で制御するレーザ
装置。
13. The laser device according to claim 12, wherein the birefringence of the nonlinear optical crystal and the optical path length of the resonator are controlled by a temperature control element.
JP13409194A 1994-06-16 1994-06-16 Laser device Pending JPH088480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13409194A JPH088480A (en) 1994-06-16 1994-06-16 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13409194A JPH088480A (en) 1994-06-16 1994-06-16 Laser device

Publications (1)

Publication Number Publication Date
JPH088480A true JPH088480A (en) 1996-01-12

Family

ID=15120223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13409194A Pending JPH088480A (en) 1994-06-16 1994-06-16 Laser device

Country Status (1)

Country Link
JP (1) JPH088480A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035370A1 (en) * 1996-03-18 1997-09-25 Kabushiki Kaisha Topcon Laser and method of controlling laser
DE19962327A1 (en) * 1999-12-23 2001-07-12 Daimler Chrysler Ag Stabilizing output power of solid state laser with resonator-internal frequency doubling involves continuously optimizing feedback parameters in sense of maintaining stable system state
DE10108436A1 (en) * 2001-02-22 2002-09-12 Carl V Ossietzky Uni Oldenburg Method for stabilizing the output power of a solid-state laser and solid-state laser system
JP2006319080A (en) * 2005-05-12 2006-11-24 Shimadzu Corp Solid state laser and method for measuring proper temperature
WO2009016709A1 (en) * 2007-07-30 2009-02-05 Mitsubishi Electric Corporation Wavelength conversion laser device
US7817690B2 (en) 2006-02-02 2010-10-19 Mitsubishi Electric Corporation Laser generator and method of controlling the same
JP2010263247A (en) * 2010-08-18 2010-11-18 Shimadzu Corp Solid-state laser device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105408C (en) * 1996-03-18 2003-04-09 株式会社拓普康 Laser and method of controlling laser
WO1997035370A1 (en) * 1996-03-18 1997-09-25 Kabushiki Kaisha Topcon Laser and method of controlling laser
DE19962327A1 (en) * 1999-12-23 2001-07-12 Daimler Chrysler Ag Stabilizing output power of solid state laser with resonator-internal frequency doubling involves continuously optimizing feedback parameters in sense of maintaining stable system state
DE10108436B4 (en) * 2001-02-22 2008-08-07 Carl v. Ossietzky Universität Oldenburg, vertreten durch den Kanzler Method for stabilizing the output power of a solid-state laser and solid-state laser system
WO2002066379A3 (en) * 2001-02-22 2003-10-16 Carl Von Ossietzky Uni Oldenbu Method for stabilising the output power of a solid-state laser, and a solid-state laser system
DE10108436A1 (en) * 2001-02-22 2002-09-12 Carl V Ossietzky Uni Oldenburg Method for stabilizing the output power of a solid-state laser and solid-state laser system
JP2006319080A (en) * 2005-05-12 2006-11-24 Shimadzu Corp Solid state laser and method for measuring proper temperature
JP4650090B2 (en) * 2005-05-12 2011-03-16 株式会社島津製作所 Solid-state laser device and appropriate temperature measurement method
US7817690B2 (en) 2006-02-02 2010-10-19 Mitsubishi Electric Corporation Laser generator and method of controlling the same
WO2009016709A1 (en) * 2007-07-30 2009-02-05 Mitsubishi Electric Corporation Wavelength conversion laser device
US8073024B2 (en) 2007-07-30 2011-12-06 Mitsubishi Electronics Corporation Wavelength conversion laser device
JP5127830B2 (en) * 2007-07-30 2013-01-23 三菱電機株式会社 Wavelength conversion laser device
JP2010263247A (en) * 2010-08-18 2010-11-18 Shimadzu Corp Solid-state laser device

Similar Documents

Publication Publication Date Title
US4809291A (en) Diode pumped laser and doubling to obtain blue light
US4879722A (en) Generation of coherent optical radiation by optical mixing
US5341388A (en) Laser light beam generating apparatus
GB2254483A (en) Frequency doubled laser.
JPH0799360A (en) Laser system
JPH088480A (en) Laser device
JP3683360B2 (en) Polarization control element and solid-state laser
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
JP3398967B2 (en) Laser light generator
JPH06130328A (en) Polarization control element and solid laser device
JPH08116121A (en) Wavelength conversion laser
JPH08213686A (en) Stabilized wavelength light source
JP3480946B2 (en) Laser light generator
JPH06152014A (en) Laser beam generating device
JP2000208849A (en) Semiconductor laser exciting solid-state laser device
JPH09232665A (en) Output stabilizing second harmonics light source
JP2670647B2 (en) Laser diode pumped solid state laser
JPH07131101A (en) Laser beam generating device
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JP3420804B2 (en) Solid state laser
JP2000114633A (en) Wavelength conversion solid laser device
JPH05299751A (en) Laser-diode pumping solid-state laser
JP2670637B2 (en) Laser diode pumped solid state laser
JPH07183605A (en) Solid laser device
JP2000353842A (en) Semiconductor laser excitation solid laser