JP3480946B2 - Laser light generator - Google Patents

Laser light generator

Info

Publication number
JP3480946B2
JP3480946B2 JP03375492A JP3375492A JP3480946B2 JP 3480946 B2 JP3480946 B2 JP 3480946B2 JP 03375492 A JP03375492 A JP 03375492A JP 3375492 A JP3375492 A JP 3375492A JP 3480946 B2 JP3480946 B2 JP 3480946B2
Authority
JP
Japan
Prior art keywords
laser
laser light
housing
light source
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03375492A
Other languages
Japanese (ja)
Other versions
JPH05235455A (en
Inventor
久 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03375492A priority Critical patent/JP3480946B2/en
Priority to AU32875/93A priority patent/AU659270B2/en
Priority to US08/015,361 priority patent/US5341388A/en
Priority to KR1019930002051A priority patent/KR100274416B1/en
Priority to CA002089615A priority patent/CA2089615C/en
Priority to EP93400384A priority patent/EP0557182A1/en
Publication of JPH05235455A publication Critical patent/JPH05235455A/en
Application granted granted Critical
Publication of JP3480946B2 publication Critical patent/JP3480946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1317Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光発生装置に関
し、特に、非線形光学結晶素子により波長変換されたレ
ーザ光を発生させるようなレーザ光発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light generator, and more particularly to a laser light generator for generating a laser light whose wavelength is converted by a nonlinear optical crystal element.

【0002】[0002]

【従来の技術】レーザ共振器内に発生するパワー密度の
高い基本波レーザ光を利用して、非線形光学結晶素子の
非線形光学効果によるSHG(第2高調波発生)等の波
長変換を効率良く行うことにより、短波長レーザ光を得
るようにしたレーザ光発生装置が、例えば実開昭48−
937845号公報等において提案されている。
2. Description of the Related Art A fundamental wave laser beam having a high power density generated in a laser resonator is used to efficiently perform wavelength conversion such as SHG (second harmonic generation) by a nonlinear optical effect of a nonlinear optical crystal element. As a result, a laser light generator for obtaining a short wavelength laser light is disclosed in, for example,
It is proposed in Japanese Patent No. 937845.

【0003】このようなSHGレーザ光発生装置を例え
ば光ディスク再生装置等の各種機器に組み込んで使用す
るためには、SHGレーザ光発生に必要な光学素子等を
小型の筐体(パッケージ)内に収納して、部品として取
扱い易いようにすることが望まれる。
In order to use such an SHG laser light generator by incorporating it into various devices such as an optical disk reproducing device, the optical elements and the like required for generating the SHG laser light are housed in a small casing (package). Therefore, it is desired to make it easy to handle as a part.

【0004】[0004]

【発明が解決しようとする課題】ところで、SHGレー
ザ光発生光学系等が小型筐体内に収納されて成るSHG
レーザ光発生装置を、光ディスク再生装置等の各種機器
に組み込む際には、いわゆる光軸合わせが必要とされ、
この光軸合わせの作業を容易化することが望まれる。こ
の光軸合わせは、光軸に対して直交する面上で2つの直
交する方向に微動させることで行われる。
By the way, the SHG in which the SHG laser light generating optical system and the like are housed in a small housing is provided.
When incorporating the laser light generator into various devices such as an optical disk reproducing device, so-called optical axis alignment is required,
It is desired to facilitate this optical axis alignment work. This optical axis alignment is performed by finely moving in two orthogonal directions on a plane orthogonal to the optical axis.

【0005】しかしながら、SHGレーザ光発生光学系
の各素子は、通常の場合、筐体の底面(水平面)に対し
て平行な方向に配列され、光軸の方向は筐体底面(水平
面)に平行とされる。この筐体の底面(水平面)は、レ
ーザ光発生装置の取り付け面とされることが一般的であ
ることから、上記光軸合わせのための互いに直交する2
つの方向の一方が、上記取り付け面に対して垂直の方向
となってしまう。このような取り付け面に対する垂直方
向の移動は、筐体底面を浮き沈みさせる動きであるた
め、光軸合わせの微動調整のための構造が複雑化し、調
整作業が面倒であり、また精度を高めることが困難であ
るという欠点がある。
However, the elements of the SHG laser light generating optical system are normally arranged in a direction parallel to the bottom surface (horizontal plane) of the housing, and the direction of the optical axis is parallel to the bottom surface (horizontal surface) of the housing. It is said that Since the bottom surface (horizontal surface) of the housing is generally used as a mounting surface of the laser light generator, the bottom surfaces (horizontal surfaces) are orthogonal to each other for the optical axis alignment.
One of the two directions is perpendicular to the mounting surface. Since such a movement in the vertical direction relative to the mounting surface is a movement that raises and lowers the bottom surface of the housing, the structure for fine adjustment of the optical axis alignment becomes complicated, the adjustment work is troublesome, and the accuracy can be improved. It has the drawback of being difficult.

【0006】本発明は、このような実情に鑑みてなされ
たものであり、レーザ光発生のための各素子が筐体(パ
ッケージ)内に収納されて構成されるレーザ光発生装置
において、光軸合わせのための微動調整が容易に行え、
精度も高め得るようなレーザ光発生装置の提供を目的と
するものである。
The present invention has been made in view of the above circumstances, and in a laser light generating device constructed by housing each element for generating laser light in a housing (package), Easy fine adjustment for alignment,
It is an object of the present invention to provide a laser light generator that can improve accuracy.

【0007】[0007]

【課題を解決するための手段】本発明に係るレーザ光発
生装置は、励起光源素子と、この励起光源素子からの光
ビームによって励起されるレーザ媒質と、上記励起光源
素子からの光ビームの出射光路中に配される非線形光学
結晶素子と、上記レーザ媒質及び上記非線形光学結晶素
子と共にレーザ共振器を構成する反射手段と、上記励起
光源素子及び上記非線形光学結晶素子の温度を制御する
温度制御手段と、上記レーザ共振器から出射される光ビ
ームの光路を偏向する偏向手段と、上記励起光源素子、
上記レーザ共振器、上記偏向手段、及び上記温度制御手
段を収納する筐体とを有して成り、上記偏向手段は、上
記筐体の取り付け面上に上記温度制御手段を介して上記
励起光源素子、上記レーザ共振器、及び上記偏向手段が
配されると共に、該偏向手段は、上記光ビームの光路を
上記筐体の取り付け面に対して略々垂直方向に偏向する
ことにより、上述の課題を解決する。
A laser light generator according to the present invention comprises an excitation light source element, a laser medium excited by a light beam from the excitation light source element, and an emission of the light beam from the excitation light source element. A non-linear optical crystal element arranged in an optical path, a reflection means constituting a laser resonator together with the laser medium and the non-linear optical crystal element, a temperature control for controlling the temperature of the pumping light source element and the non-linear optical crystal element Means, a deflection means for deflecting an optical path of a light beam emitted from the laser resonator, the excitation light source element,
The excitation light source element comprises the laser resonator, the deflection means, and a housing that houses the temperature control means, and the deflection means is provided on the mounting surface of the housing via the temperature control means. The laser resonator and the deflecting means are arranged, and the deflecting means deflects the optical path of the light beam in a direction substantially perpendicular to the mounting surface of the housing, thereby solving the above-mentioned problems. Solve.

【0008】ここで、上記励起光源素子としては、レー
ザダイオード等の半導体レーザ素子が多く用いられる。
上記レーザ媒質としては、Nd:YAG、Nd:YVO
4 、Nd:BEL、LNP等が用いられ、上記非線形光
学結晶素子としては、例えばKTP、BBO、LN、L
BO等が用いられる。上記励起光源素子や上記レーザ共
振器は、光軸が例えば上記筐体の取り付け面(底面)に
平行となるように配設され、上記偏向手段としては、こ
の共振器等の光軸を上記筐体の取り付け面に対して垂直
方向に偏向するようないわゆる立ち上げミラーを用いる
ことができる。上記共振器から出射されるSHG(第2
高調波発生)レーザ光等の高次高調波の偏光方向は上記
非線形光学結晶素子の配置方向によって決定され、この
偏光方向が立ち上げミラー等の偏向手段のS偏光軸方向
となるように非線形光学結晶素子を配置することによっ
て、偏向手段の反射率を高くすることができる。
A semiconductor laser element such as a laser diode is often used as the excitation light source element.
As the laser medium, Nd: YAG, Nd: YVO
4 , Nd: BEL, LNP, etc. are used, and examples of the nonlinear optical crystal element include KTP, BBO, LN, L
BO or the like is used. The pumping light source element and the laser resonator are arranged such that their optical axes are parallel to, for example, the mounting surface (bottom surface) of the housing, and the deflecting means uses the optical axis of the resonator or the like as the housing. It is possible to use so-called rising mirrors which deflect in a direction perpendicular to the mounting surface of the body. The SHG emitted from the resonator (second
Generation of higher harmonics) The polarization direction of higher harmonics such as laser light is determined by the arrangement direction of the non-linear optical crystal element, and the non-linear optical system is adjusted so that the polarization direction is the S-polarization axis direction of the deflecting means such as a rising mirror. By disposing the crystal element, the reflectance of the deflecting means can be increased.

【0009】[0009]

【作用】筐体内部に配置される励起光源素子と共振器の
光軸を偏向手段によって偏向して筐体外部にレーザ光を
取り出すようにしているため、例えば筐体の取り付け面
と垂直方向にレーザ光を出射することができ、取り付け
面内での取り付け位置の微調整が容易に行え、光軸合わ
せ等が容易化できる。
Since the pumping light source element and the optical axis of the resonator arranged inside the housing are deflected by the deflecting means to extract the laser light to the outside of the housing, for example, in the direction perpendicular to the mounting surface of the housing. Laser light can be emitted, and the fine adjustment of the attachment position within the attachment surface can be easily performed, and the optical axis alignment and the like can be facilitated.

【0010】[0010]

【実施例】図1は、本発明に係るレーザ光発生装置の一
実施例の概略構成を示す概略断面図、図2は該実施例の
(蓋を取った状態の)概略平面図である。これらの図
1、図2に示すレーザ光発生装置において、励起光源素
子としてのレーザダイオード等の半導体レーザ素子11
が載置台12上に取り付けられ、この半導体レーザ素子
11から出射された光を集光するためのレンズ12がレ
ンズ固定ブロック14に取り付けられている。レンズ1
2で集光された励起用レーザ光は、例えば1/4波長板
15の入射面を介してNd:YAGを用いたレーザ媒質
(レーザロッド)17に入射される。1/4波長板15
の入射面には、上記励起用レーザ光(例えば波長810
nm)を透過し、レーザ媒質17にて発生した波長10
64nmの基本波レーザ光を反射するような波長選択性
を持った反射面(ダイクロイックミラー)16が形成さ
れ(例えばコーティングされ)ており、この実施例で
は、この反射面16はレーザ媒質17側から見て凹面鏡
となっている。レーザ媒質17で発生した基本波レーザ
光は、KTP(KTiOPO4 )より成る非線形光学結
晶素子18に入射されることにより、第2高調波発生
(SHG)が行われる。この非線形光学結晶素子18の
出射面には、上記基本波レーザ光を反射し、非線形光学
結晶素子18にて発生された第2高調波レーザ光(波長
532nm)を透過するような波長選択性を持った反射
面(ダイクロイックミラー)19が形成されている。従
って、上記1/4波長板15の反射面16と非線形光学
結晶素子18の反射面19との間に、レーザ共振器20
が構成される。
1 is a schematic cross-sectional view showing a schematic structure of an embodiment of a laser light generator according to the present invention, and FIG. 2 is a schematic plan view (with a lid removed) of the embodiment. In these laser light generators shown in FIGS. 1 and 2, a semiconductor laser element 11 such as a laser diode serving as an excitation light source element.
Is mounted on the mounting table 12, and the lens 12 for condensing the light emitted from the semiconductor laser element 11 is mounted on the lens fixing block 14. Lens 1
The excitation laser light collected in 2 is incident on the laser medium (laser rod) 17 using Nd: YAG via the incident surface of the quarter-wave plate 15, for example. Quarter wave plate 15
The incident laser light (for example, the wavelength 810
wavelength of 10 nm generated by the laser medium 17
A reflecting surface (dichroic mirror) 16 having a wavelength selectivity for reflecting the fundamental wave laser light of 64 nm is formed (coated, for example). In this embodiment, the reflecting surface 16 is from the laser medium 17 side. It looks like a concave mirror. The second harmonic generation (SHG) is performed by the fundamental wave laser light generated in the laser medium 17 being incident on the nonlinear optical crystal element 18 made of KTP (KTiOPO 4 ). The emission surface of the nonlinear optical crystal element 18 has wavelength selectivity such that the fundamental wave laser light is reflected and the second harmonic laser light (wavelength 532 nm) generated by the nonlinear optical crystal element 18 is transmitted. A reflection surface (dichroic mirror) 19 is formed. Therefore, the laser resonator 20 is provided between the reflection surface 16 of the quarter-wave plate 15 and the reflection surface 19 of the nonlinear optical crystal element 18.
Is configured.

【0011】ここで、上記1/4波長板15は、本件出
願人が先に特開平1−220870号公報において提案
したレーザ光源に用いられている複屈折性素子であり、
出力レーザ光として射出する第2高調波レーザ光を安定
化させるためのものである。すなわち、レーザ媒質15
にて発生した基本波レーザ光を共振器20内に設けた非
線形光学結晶素子18を通過するように共振動作させる
ことにより、タイプIIの第2高調波レーザ光を発生させ
る際に、共振器20内に1/4波長板15等の複屈折性
素子を挿入して基本波レーザ光の偏光面を回転させなが
ら共振器20内を往復させることで、互いに直交する2
つの固有偏光を基本波モードとなし、さらに1/4波長
板15の方位角θ及び位相量Δを基本波レーザ光の2つ
の固有偏光間に第2高調波発生を通じてエネルギの授受
を生じさせないような値に選定することにより、基本波
レーザ光を安定化させ、従って第2高調波レーザ光を安
定化させることができる。また、1/4波長板15、レ
ーザ媒質17、及びタイプII位相整合型非線形光学結晶
素子18を密接させるように一体に構成することによ
り、レーザ光発生装置を全体として小型化し得ると共
に、変換効率を高めることができるわけである。
The quarter-wave plate 15 is a birefringent element used in the laser light source proposed by the applicant of the present invention in Japanese Patent Laid-Open No. 1-220870.
This is for stabilizing the second harmonic laser light emitted as the output laser light. That is, the laser medium 15
When the second-harmonic laser light of type II is generated by causing the fundamental-wave laser light generated in 1 to resonate so as to pass through the nonlinear optical crystal element 18 provided in the resonator 20, By inserting a birefringent element such as a quarter-wave plate 15 into the inside and reciprocating the inside of the resonator 20 while rotating the polarization plane of the fundamental laser light, the two are orthogonal to each other.
The two eigenpolarizations are set as the fundamental wave mode, and the azimuth angle θ and the phase amount Δ of the quarter-wave plate 15 are set so that energy is not transferred between the two eigenpolarizations of the fundamental wave laser light through generation of the second harmonic. By selecting a proper value, the fundamental wave laser light can be stabilized, and thus the second harmonic laser light can be stabilized. Further, by integrally forming the quarter-wave plate 15, the laser medium 17, and the type II phase-matching nonlinear optical crystal element 18 in close contact with each other, the laser light generator can be downsized as a whole and the conversion efficiency can be improved. Can be increased.

【0012】共振器20を構成する1/4波長板15、
レーザ媒質17、及び非線形光学結晶素子18の各素子
の対向面は、例えば無反射コーティングが施されると共
に密接して接着固定され、共振器固定ブロック21上に
取り付けられている。この共振器固定ブロック21は、
例えば図3に示すように、表面に断面V字状の案内溝2
1Vが形成されており、このV字状案内溝21Vにレー
ザ媒質17や非線形光学結晶素子18が案内されて取り
付けられている。このとき、図中の矢印Z方向が光軸方
向であり、出射される第2高調波の偏光方向が図中の矢
印S方向(矢印X方向)となるように非線形光学結晶素
子18が配設されている。これは、非線形光学結晶素子
18として上記KTPを用いる場合に、XZ平面が結晶
のa軸、b軸を含む面となり、これに垂直なY軸が結晶
のc軸となるように切り出したものを用いればよい。こ
の偏光方向は、偏向手段である立ち上げミラー22のS
偏光方向となっている。
A quarter-wave plate 15 constituting the resonator 20,
The opposing surfaces of the laser medium 17 and the respective elements of the nonlinear optical crystal element 18 are provided with, for example, a non-reflective coating, closely adhered and fixed, and mounted on the resonator fixing block 21. This resonator fixing block 21 is
For example, as shown in FIG. 3, a guide groove 2 having a V-shaped cross section is formed on the surface.
1 V is formed, and the laser medium 17 and the nonlinear optical crystal element 18 are guided and attached to the V-shaped guide groove 21 V. At this time, the nonlinear optical crystal element 18 is arranged so that the arrow Z direction in the figure is the optical axis direction and the polarization direction of the emitted second harmonic wave is the arrow S direction (arrow X direction) in the figure. Has been done. This is because when the above KTP is used as the nonlinear optical crystal element 18, the XZ plane is a plane including the a-axis and the b-axis of the crystal, and the Y-axis perpendicular to this is cut out so as to be the c-axis of the crystal. You can use it. This polarization direction is the S of the rising mirror 22 which is a deflection means.
It has a polarization direction.

【0013】すなわち、共振器20から出射された第2
高調波レーザ光は、偏向手段である45°の立ち上げミ
ラー22にて垂直上方向に偏向される。この立ち上げミ
ラー22、共振器20が取り付けられた共振器固定ブロ
ック21、レンズ13が取り付けられたレンズ固定ブロ
ック14、及び半導体レーザ素子11が取り付けられた
載置台12を、同一の基台(ベース)23上にマウント
し、これらを単一の温度制御手段であるいわゆるTE
(サーモ・エレクトリック)クーラ等の温度制御素子2
4で温度制御している。また、基台(ベース)23上の
温度を検出するための温度検出手段としてのサーミスタ
25が例えば載置台12に取り付けられている。
That is, the second light emitted from the resonator 20
The harmonic laser light is vertically deflected by the 45 ° rising mirror 22 that is a deflecting means. The raising mirror 22, the resonator fixing block 21 to which the resonator 20 is attached, the lens fixing block 14 to which the lens 13 is attached, and the mounting table 12 to which the semiconductor laser element 11 is attached are the same base (base). ) 23 and mount them on a single temperature control means, the so-called TE
(Thermoelectric) Temperature control element 2 such as cooler
The temperature is controlled by 4. Further, a thermistor 25 as a temperature detecting means for detecting the temperature on the base 23 is attached to the mounting table 12, for example.

【0014】以上のようなレーザ光発生のための各素子
は、パッケージあるいは筐体31内に収納されている。
この筐体31の底面32が取り付け面となっており、図
2に示すように取り付け用のフランジ片36のネジ挿入
孔37に取り付けネジ等を挿入してネジ止め固定できる
ようになっている。上記光学系の各素子11、13、1
5、17、18等は、この取り付け面である底面32
(水平面)に平行な方向に配列されて、光軸が該底面3
2に平行となっている。この筐体底面32に平行な状態
のまま筐体外部にレーザ光を取り出す場合には、光軸合
わせのため水平、垂直の方向に移動させる必要が生じ、
特に取り付け面に対して垂直方向の移動のための構成が
複雑化する。そこで、45°立ち上げミラー22を用い
て、共振器20からの出射レーザ光を底面32に対して
垂直な方向に偏向し、筐体31の蓋体33に穿設された
出射孔34を介して取り出すようにしている。この出射
孔34は、透明板35で閉塞されている。
Each element for generating laser light as described above is housed in a package or a casing 31.
The bottom surface 32 of the housing 31 serves as a mounting surface, and as shown in FIG. 2, a mounting screw or the like can be inserted into a screw insertion hole 37 of a mounting flange piece 36 so as to be fixed by screwing. Each element 11, 13, 1 of the above optical system
5, 17, 18 and the like are bottom surfaces 32 which are the mounting surfaces.
The optical axis is arranged in the direction parallel to the
It is parallel to 2. When the laser light is taken out of the housing while being parallel to the bottom surface 32 of the housing, it is necessary to move the laser light in the horizontal and vertical directions in order to align the optical axis.
In particular, the structure for moving in the direction perpendicular to the mounting surface becomes complicated. Therefore, the laser light emitted from the resonator 20 is deflected in a direction perpendicular to the bottom surface 32 by using the 45 ° raising mirror 22, and the laser light is emitted through the emission hole 34 formed in the lid 33 of the housing 31. I take it out. The exit hole 34 is closed by a transparent plate 35.

【0015】ここで、傾斜角度が45°の立ち上げミラ
ー22の反射率は、S偏光に対しては容易に高くできる
がP偏光に対しては高くすることが難しく、特に入射光
がS偏光成分とP偏光成分とを含む混合状態になった場
合、これらの偏光成分の反射率の差等から、反射光が楕
円偏光になり、取扱いが面倒となる。そこで、本実施例
においては、KTP等の非線形光学結晶素子18から出
射されるSHGレーザ光の偏光方向が立ち上げミラー2
2のS偏光方向になるように、非線形光学結晶素子18
の方位を外形に対して決めておく(結晶の切り出し形状
を設定する)ことにより、立ち上げミラー22にコート
を施すこと等により、S偏光の反射率を例えば99.9
%程度にまで高めることができ、パワー損失を極力抑え
て、筐体31の上部蓋体33の出射孔34を介して垂直
上方向にSHGレーザ光を取り出すことができる。
Here, the reflectance of the rising mirror 22 having an inclination angle of 45 ° can be easily increased for S-polarized light, but it is difficult to increase it for P-polarized light. In the mixed state containing the component and the P-polarized component, the reflected light becomes elliptically polarized light due to the difference in reflectance between these polarized components, and the handling becomes troublesome. Therefore, in the present embodiment, the polarization direction of the SHG laser light emitted from the nonlinear optical crystal element 18 such as KTP is raised and the mirror 2 is raised.
The non-linear optical crystal element 18 so that the S polarization direction is 2
Is determined with respect to the outer shape (by setting the cut-out shape of the crystal) to coat the rising mirror 22 and the like, whereby the reflectance of S-polarized light is, for example, 99.9.
%, The power loss can be suppressed as much as possible, and the SHG laser light can be extracted vertically upward through the emission hole 34 of the upper lid 33 of the housing 31.

【0016】すなわち、この図1、図2に示すような小
型コンパクトなSHGレーザ光発生装置は、筐体(パッ
ケージ)31の底面の縦横(上記フランジ片36を含
む)の寸法が約38mm×28mm、高さが約16mmとなっ
ており、このパッケージ内に、特に相互間の調整機構を
設けることなく、励起光源用のレーザダイオード11、
SHGレーザ共振器20(レーザ媒質17、非線形光学
結晶素子18等)、レンズ13、温度制御素子24等を
所定位置に配設固定して成るものであり、外部からの電
力の供給を行うだけでSHGレーザ光を出射できるよう
になっている。このSHGレーザ光発生装置は、現在存
在する半導体レーザの室温発振波長より短いため、半導
体レーザと同様に電流供給することで、安定な短波長レ
ーザが得られるため、利用価値は高い。
That is, in the small and compact SHG laser light generator as shown in FIGS. 1 and 2, the vertical and horizontal dimensions of the bottom surface of the housing (package) 31 (including the flange piece 36) are about 38 mm × 28 mm. The height is about 16 mm, and the laser diode 11 for the pumping light source is provided in this package without particularly providing a mutual adjusting mechanism.
The SHG laser resonator 20 (laser medium 17, non-linear optical crystal element 18, etc.), lens 13, temperature control element 24, etc. are arranged and fixed at a predetermined position, and only by supplying electric power from the outside. The SHG laser light can be emitted. Since this SHG laser light generator is shorter than the room temperature oscillation wavelength of the existing semiconductor laser, a stable short-wavelength laser can be obtained by supplying current in the same manner as the semiconductor laser, so that the utility value is high.

【0017】この実施例のSHGレーザ光発生装置によ
れば、非線形光学結晶素子18の偏光方向が偏向手段で
ある立ち上げミラー22のS偏光方向となっているた
め、立ち上げミラー22のS偏光に対する反射率を高め
ることができ、また反射されて出射孔34から取り出さ
れるSHGレーザ光が楕円偏光にならず、偏光方向が一
定に決められている。このようにパッケージに対して出
射光の偏光方向が決まっていると、部品としても取扱い
や光ディスク再生装置等への組み込みが容易化される。
また、出射光が垂直上方向(図中のY方向)に取り出さ
れるため、いわゆる光軸合わせ等の調整作業は、パッケ
ージの取り付け面上で2方向(図中のX方向、Z方向)
に微動調整するだけの簡単な作業で済み、精度も上げ易
い。
According to the SHG laser light generator of this embodiment, since the polarization direction of the nonlinear optical crystal element 18 is the S polarization direction of the rising mirror 22 which is the deflecting means, the S polarization of the rising mirror 22 is S polarization. The reflectance of the SHG laser light can be increased, and the SHG laser light reflected and taken out from the emission hole 34 is not elliptically polarized, and the polarization direction is fixed. When the polarization direction of the emitted light is determined with respect to the package in this way, it can be easily handled as a component and incorporated into an optical disk reproducing device or the like.
Further, since the emitted light is taken out vertically upward (Y direction in the drawing), adjustment work such as so-called optical axis alignment is performed in two directions (X direction, Z direction in the drawing) on the mounting surface of the package.
It is a simple operation that requires only fine adjustments, and it is easy to improve accuracy.

【0018】次に、TEクーラ等の温度制御素子24に
ついて説明する。この実施例においては、励起光源素子
であるレーザダイオード等の半導体レーザ素子11の波
長制御と、SHGレーザ共振器20の安定化の両方の温
度制御を、唯一の温度制御素子(TEクーラ)24を用
いて行っている。これは、共振器20の安定温度範囲
と、励起用レーザ光がレーザ媒質17に効率良く吸収さ
れる温度範囲が別個に存在しかつ狭い場合には、共振器
20の安定領域の温度範囲内でNd:YAG等のレーザ
媒質17の実行吸収係数が一定値以上となるような波長
が得られる半導体レーザ素子11を選別しておくことが
必要とされる。逆に共振器を選別することも可能であ
る。また、共振器の安定温度範囲を拡げるために、例え
ば位相遅延量が温度依存性を持つ複屈折性結晶の長さを
短くしたり、温度依存性の小さい結晶を用いること等が
有効である。
Next, the temperature control element 24 such as a TE cooler will be described. In this embodiment, only one temperature control element (TE cooler) 24 is used for temperature control of both the wavelength control of the semiconductor laser element 11 such as a laser diode which is an excitation light source element and the stabilization of the SHG laser resonator 20. I am using. This is within the stable temperature range of the resonator 20 when the stable temperature range of the resonator 20 and the temperature range in which the pumping laser light is efficiently absorbed by the laser medium 17 exist separately and are narrow. It is necessary to select the semiconductor laser element 11 that can obtain a wavelength such that the effective absorption coefficient of the laser medium 17 such as Nd: YAG becomes a certain value or more. Conversely, it is also possible to select the resonator. Further, in order to expand the stable temperature range of the resonator, it is effective to shorten the length of the birefringent crystal whose phase delay amount has temperature dependence or to use a crystal having small temperature dependence.

【0019】具体例を説明すると、KTP等の非線形光
学結晶素子18の位相遅延量の温度依存性により、安定
動作温度範囲が30°Cから35°CのSHGレーザ共
振器20を用いる場合、この温度範囲でレーザ媒質(N
d:YAG)の吸収効率の高い波長(吸収線)約809
nmとなるような半導体レーザ素子11を選択すればよ
い。中心波長が温度変化に伴って例えば約0.3nm/
Kで変化するようなマルチモード発振のレーザダイオー
ドを用いる場合には、上記30°C〜35°Cで約80
9nmの中心波長となるためには、25°Cでの中心波
長が上記809nmより約2.3±0.7nm短い値を
持つものを選別すればよい。一方、上記吸収線付近での
Nd:YAGロッドの実行吸収係数に対するレーザダイ
オードの温度許容量を±1.3°C程度とすると、レー
ザダイオードの中心波長は25°Cで約806.7±
1.1nmとすればよい。
A specific example will be described. When the SHG laser resonator 20 having a stable operating temperature range of 30 ° C. to 35 ° C. is used due to the temperature dependence of the phase delay amount of the nonlinear optical crystal element 18 such as KTP, this Laser medium (N
d: YAG) wavelength with high absorption efficiency (absorption line) about 809
It suffices to select the semiconductor laser device 11 having a wavelength of nm. The center wavelength is, for example, about 0.3 nm /
When a laser diode of multimode oscillation that changes with K is used, it is about 80 at 30 ° C to 35 ° C.
In order to obtain the center wavelength of 9 nm, it is sufficient to select the one having a center wavelength at 25 ° C. shorter than the above 809 nm by about 2.3 ± 0.7 nm. On the other hand, when the temperature tolerance of the laser diode with respect to the effective absorption coefficient of the Nd: YAG rod near the absorption line is about ± 1.3 ° C, the center wavelength of the laser diode is about 806.7 ± 25 ° C.
It may be 1.1 nm.

【0020】非線形光学結晶の位相遅延量変化の温度依
存性は結晶長に比例するから、結晶長を短くしたほうが
位相変化量の温度変化率は小さくなり、これにより安定
温度領域が広くなり、レーザダイオードの波長マージン
は広くなる。
Since the temperature dependence of the change in the amount of phase delay of the nonlinear optical crystal is proportional to the crystal length, the shorter the crystal length, the smaller the temperature change rate of the phase change amount. The wavelength margin of the diode is wide.

【0021】このように単一の温度制御素子(TEクー
ラ)24で半導体レーザ素子11の波長を吸収波長に合
わせ、レーザ共振器20を安定化する温度制御を行わせ
ているため、温度制御素子を各部に個別に設ける必要が
なくなり、2つ以上の温度制御素子を設けることによる
構造の複雑化や位置合わせの困難性等の不具合点が全て
解消できる。従って、部品点数やコストの低減、回路等
を含む制御部の簡略化、小型化が図れ、消費電力も低減
される。
As described above, since the single temperature control element (TE cooler) 24 adjusts the wavelength of the semiconductor laser element 11 to the absorption wavelength to perform the temperature control for stabilizing the laser resonator 20, the temperature control element is used. Since it is not necessary to separately provide each part, it is possible to solve all the problems such as the complicated structure and the difficulty of alignment due to the provision of two or more temperature control elements. Therefore, the number of parts and the cost can be reduced, the control unit including the circuit can be simplified and downsized, and the power consumption can be reduced.

【0022】なお、本発明は上記実施例のみに限定され
るものではなく、例えば、図4に示すような構成のレー
ザ共振器を用いることもできる。この図4の例におい
て、励起光源素子であるレーザダイオード41から出射
されたレーザ光は、レンズ42で集光されて、Nd:Y
AGロッド等のレーザ媒質43に入射される。このレー
ザ媒質43の入射面は、上述した1/4波長板15の反
射面16と同様に、上記励起用レーザ光(例えば波長8
10nm)を透過し、レーザ媒質43にて発生した波長
1064nmの基本波レーザ光を反射するような波長選
択性を持った反射面(ダイクロイックミラー)44がコ
ーティング形成されている。レーザ媒質43にて発生し
た基本波レーザ光は、KTP(KTiOPO4 )より成
る非線形光学結晶素子45に入射されて、第2高調波発
生(SHG)が行われる。凹面鏡46は、上記基本波レ
ーザ光を反射し、非線形光学結晶素子45にて発生され
た第2高調波レーザ光(波長532nm)を透過するよ
うな波長選択性を持った反射面(ダイクロイックミラ
ー)46Rが形成されている。この場合の非線形光学結
晶素子45も、出射SHGレーザ光の偏光方向が立ち上
げミラー(図示せず)のS偏光となるように配置されて
いる。また、単一の温度制御素子47によりレーザダイ
オード41及びレーザ共振器(レーザ媒質43、非線形
光学結晶素子45等)の温度制御が行われ、この温度制
御素子47は放熱板48上に設けられている。作用及び
効果は上述した実施例と同様であるため、説明を省略す
る。
The present invention is not limited to the above embodiment, and a laser resonator having the structure shown in FIG. 4 can be used, for example. In the example of FIG. 4, the laser light emitted from the laser diode 41, which is the excitation light source element, is condensed by the lens 42, and Nd: Y
It is incident on the laser medium 43 such as an AG rod. The incident surface of the laser medium 43 is similar to the reflecting surface 16 of the quarter-wave plate 15 described above, and the excitation laser light (for example, wavelength 8).
A reflection surface (dichroic mirror) 44 having a wavelength selectivity that allows a fundamental wave laser beam having a wavelength of 1064 nm generated in the laser medium 43 to pass therethrough is transmitted. The fundamental wave laser light generated in the laser medium 43 is incident on the nonlinear optical crystal element 45 made of KTP (KTiOPO 4 ) and second harmonic generation (SHG) is performed. The concave mirror 46 has a wavelength-selective reflection surface (dichroic mirror) that reflects the fundamental laser light and transmits the second harmonic laser light (wavelength 532 nm) generated by the nonlinear optical crystal element 45. 46R is formed. The nonlinear optical crystal element 45 in this case is also arranged so that the polarization direction of the emitted SHG laser light is the S-polarized light of the rising mirror (not shown). Further, the temperature control of the laser diode 41 and the laser resonator (laser medium 43, nonlinear optical crystal element 45, etc.) is performed by the single temperature control element 47, and the temperature control element 47 is provided on the heat dissipation plate 48. There is. The operation and effect are similar to those of the above-described embodiment, and thus the description thereof will be omitted.

【0023】この他、入射面側に凹面鏡を設けたもの等
の種々の構成の共振器を用いることができる。また、偏
向手段は、45°立ち上げミラーに限定されず、偏光ビ
ームスプリッタやプリズム等を使用してもよく、レーザ
媒質や非線形光学結晶素子は、Nd:YAGやKTPに
限定されないことは勿論である。
In addition, resonators having various structures such as a concave mirror provided on the incident surface side can be used. Further, the deflecting means is not limited to the 45 ° rising mirror, and a polarization beam splitter, a prism or the like may be used, and the laser medium or the nonlinear optical crystal element is not limited to Nd: YAG or KTP. is there.

【0024】[0024]

【発明の効果】以上の説明からも明らかなように、本発
明に係るレーザ光発生装置によれば、筐体(パッケー
ジ)内部に配置される励起光源素子とレーザ共振器の光
軸を、ミラー等の偏向手段によって偏向して筐体外部に
レーザ光を取り出すようにしているため、例えば筐体の
取り付け面と垂直方向にレーザ光を出射することがで
き、取り付け面内での取り付け位置の微調整が容易に行
え、光軸合わせ等が容易化できる。
As is apparent from the above description, according to the laser light generator of the present invention, the optical axis of the pumping light source element and the laser resonator arranged inside the housing (package) is mirrored. Since the laser light is extracted by deflecting means such as a deflection device such as the outside of the housing, it is possible to emit the laser light in a direction perpendicular to the mounting surface of the housing, for example. Adjustment can be easily performed, and optical axis alignment and the like can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るレーザ光発生装置の一実施例の概
略構成を示す側面断面図である。
FIG. 1 is a side sectional view showing a schematic configuration of an embodiment of a laser beam generator according to the present invention.

【図2】該実施例の蓋を取った状態の概略平面図であ
る。
FIG. 2 is a schematic plan view of the embodiment with the lid removed.

【図3】該実施例に用いられる共振器固定ブロックの具
体例を示す斜視図である。
FIG. 3 is a perspective view showing a specific example of a resonator fixing block used in the embodiment.

【図4】本発明に係るレーザ光発生装置の他の実施例の
概略構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of another embodiment of the laser light generator according to the present invention.

【符号の説明】[Explanation of symbols]

11・・・・・半導体レーザ素子 13・・・・・レンズ 15・・・・・1/4波長板 16、19・・・・・反射面 17・・・・・レーザ媒質 18・・・・・非線形光学結晶素子 20・・・・・レーザ共振器 21・・・・・共振器固定ブロック 22・・・・・立ち上げミラー 23・・・・・基台(ベース) 24・・・・・温度制御素子(TEクーラ) 25・・・・・サーミスタ(温度検出手段) 31・・・・・筐体(パッケージ) 32・・・・・筐体の取り付け面 34・・・・・出射孔 11 ... Semiconductor laser device 13 ... Lens 15 ... 1/4 wave plate 16, 19 ... Reflective surface 17 ... Laser medium 18: Non-linear optical crystal element 20: Laser resonator 21: Resonator fixing block 22 ... Launch mirror 23 ... Base 24: Temperature control element (TE cooler) 25: Thermistor (temperature detection means) 31 ... Housing (package) 32 ... Mounting surface of housing 34 ... Exit hole

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励起光源素子と、 この励起光源素子からの光ビームによって励起されるレ
ーザ媒質と、 上記励起光源素子からの光ビームの出射光路中に配され
る非線形光学結晶素子と、 上記レーザ媒質及び上記非線形光学結晶素子と共にレー
ザ共振器を構成する反射手段と、上記励起光源素子及び上記非線形光学結晶素子の温度を
制御する温度制御手段と、 上記レーザ共振器から出射される光ビームの光路を偏向
する偏向手段と、 上記励起光源素子、上記レーザ共振器上記偏向手段
及び上記温度制御手段を収納する筐体とを有して成り、 上記偏向手段は、上記筐体の取り付け面上に上記温度制
御手段を介して上記励起光源素子、上記レーザ共振器、
及び上記偏向手段が配されると共に、該偏向手段は、
記光ビームの光路を上記筐体の取り付け面に対して略々
垂直方向に偏向することを特徴とするレーザ光発生装
置。
1. A pumping light source element, a laser medium pumped by a light beam from the pumping light source element, a nonlinear optical crystal element arranged in an emission optical path of the light beam from the pumping light source element, The temperature of the laser medium and the reflection means constituting the laser resonator together with the nonlinear optical crystal element, the temperature of the pumping light source element and the nonlinear optical crystal element,
Temperature control means for controlling, deflection means for deflecting the optical path of the light beam emitted from the laser resonator, the excitation light source element, the laser resonator, the deflection means ,
And a housing for accommodating the temperature control means , wherein the deflection means includes the temperature control means on a mounting surface of the housing.
The excitation light source element, the laser resonator,
And a deflection means, wherein the deflection means deflects the optical path of the light beam in a direction substantially perpendicular to the mounting surface of the housing.
【請求項2】 上記光ビームの偏向手段に入射する光ビ
ームの偏光方向は、入射面に対してS偏光であることを
特徴とする請求項1記載のレーザ光発生装置。
2. The laser light generator according to claim 1, wherein the polarization direction of the light beam incident on the light beam deflecting means is S-polarized with respect to the incident surface.
【請求項3】 上記筐体の上記取り付け面の内側に温度
制御素子を設け、この温度制御素子上に、上記励起光源
素子及び上記レーザ共振器を、光軸が上記筐体の取り付
け面に平行となるように配設して成ることを特徴とする
請求項1記載のレーザ光発生装置。
3. A temperature control element is provided inside the mounting surface of the housing, and the excitation light source element and the laser resonator are provided on the temperature control element with an optical axis parallel to the mounting surface of the housing. The laser light generator according to claim 1, wherein the laser light generator is arranged so that
JP03375492A 1992-02-20 1992-02-20 Laser light generator Expired - Lifetime JP3480946B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP03375492A JP3480946B2 (en) 1992-02-20 1992-02-20 Laser light generator
AU32875/93A AU659270B2 (en) 1992-02-20 1993-02-08 Laser light beam generating apparatus
US08/015,361 US5341388A (en) 1992-02-20 1993-02-09 Laser light beam generating apparatus
KR1019930002051A KR100274416B1 (en) 1992-02-20 1993-02-15 Laser light beam generator
CA002089615A CA2089615C (en) 1992-02-20 1993-02-16 Laser light beam generating apparatus
EP93400384A EP0557182A1 (en) 1992-02-20 1993-02-16 Laser light beam generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03375492A JP3480946B2 (en) 1992-02-20 1992-02-20 Laser light generator

Publications (2)

Publication Number Publication Date
JPH05235455A JPH05235455A (en) 1993-09-10
JP3480946B2 true JP3480946B2 (en) 2003-12-22

Family

ID=12395218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03375492A Expired - Lifetime JP3480946B2 (en) 1992-02-20 1992-02-20 Laser light generator

Country Status (2)

Country Link
JP (1) JP3480946B2 (en)
KR (1) KR100274416B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209680A (en) * 1994-01-20 1995-08-11 Sharp Corp Optical wavelength conversion element and its production as well as laser unit
US5832015A (en) * 1994-09-20 1998-11-03 Fuji Photo Film Co., Ltd. Laser-diode-pumped solid-state laser
AT405776B (en) * 1997-11-24 1999-11-25 Femtolasers Produktions Gmbh COOLING DEVICE FOR A LASER CRYSTAL
KR100898129B1 (en) * 2007-06-22 2009-05-19 삼성전기주식회사 Green laser module package
US8305680B2 (en) * 2010-08-11 2012-11-06 Disco Corporation Stable mounting of non-linear optical crystal
US11881676B2 (en) * 2019-01-31 2024-01-23 L3Harris Technologies, Inc. End-pumped Q-switched laser
CN111570416A (en) * 2020-05-29 2020-08-25 济南大学 Sucker rod belt cleaning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749842A (en) * 1987-05-06 1988-06-07 Lightwave Electronics Co. Ring laser and method of making same
US4847851A (en) * 1988-05-19 1989-07-11 University Of South Florida Butt-coupled single transverse mode diode pumped laser

Also Published As

Publication number Publication date
KR930018787A (en) 1993-09-22
KR100274416B1 (en) 2001-01-15
JPH05235455A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US5341388A (en) Laser light beam generating apparatus
US5265115A (en) Solid-state laser device having a feedback loop
US5267252A (en) Solid-state laser device comprising a temperature-controlled thermal conductive support
JPH04345078A (en) Laser light generating equipment
JP3398967B2 (en) Laser light generator
JP3480946B2 (en) Laser light generator
JPH07244306A (en) Optical wavelength conversion device
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
JPH06152014A (en) Laser beam generating device
JPH10107356A (en) Polarization control element and solid-state laser
JPH088480A (en) Laser device
US4466102A (en) Modular dye laser
JP2501694B2 (en) Second harmonic generator in solid-state laser equipment
JPH11330601A (en) Light intensity modulated laser device
JPH0621554A (en) Laser light generating equipment
JP2963220B2 (en) Second harmonic generator and optical recording medium pickup
JP3039794B2 (en) Second harmonic generator
JPH0714666U (en) Solid-state laser device
JP2900576B2 (en) Harmonic generator
JP3282221B2 (en) Laser light generator
Zanger et al. Diode-pumped cw all solid-state laser at 266 nm
JPH06152016A (en) Laser light generating device
JP2518179B2 (en) Laser light source
JP2005019428A (en) Laser
JPH06152022A (en) Solid-state laser device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9