JPH088400A - Tantalum oxide thin film capacitor - Google Patents

Tantalum oxide thin film capacitor

Info

Publication number
JPH088400A
JPH088400A JP6135364A JP13536494A JPH088400A JP H088400 A JPH088400 A JP H088400A JP 6135364 A JP6135364 A JP 6135364A JP 13536494 A JP13536494 A JP 13536494A JP H088400 A JPH088400 A JP H088400A
Authority
JP
Japan
Prior art keywords
tantalum oxide
thin film
film capacitor
oxide thin
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6135364A
Other languages
Japanese (ja)
Inventor
Toshiyuki Arai
利行 荒井
Hiromi Inagawa
浩巳 稲川
Masao Yamane
正雄 山根
Kazuhiko Horikoshi
和彦 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6135364A priority Critical patent/JPH088400A/en
Publication of JPH088400A publication Critical patent/JPH088400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent deterioration of breakdown voltage by employing a material having high free energy for producing oxide in the electrode. CONSTITUTION:Pt is deposited by 200nm, as a lower electrode 3, on an Si substrate 4 and tantalum oxide is deposited, by 20-300nm, thereon followed by deposition of gold by 300nm as an upper electrode 1. A static opposing magnetron high frequency sputtering system is employed in the formation of the lower electrode 3 using Pt of 99.9% purity having diameter of 100 mm as a target, and in the deposition of tantalum oxide 2 using tantalum of 9.99% purity having diameter of 100m as a target. A resistor heating vacuum deposition system is employed in the deposition of gold for the upper electrode 1 with the deposition rate being controlled to a constant rate of 1nm/sec. This structure eliminates the abrupt deterioration of breakdown voltage in the vicinity of 450 deg.C of a conventional tantalum oxide thin film capacitor with regard to the relationship between the heat treatment temperature and the breakdown voltage of a tantalum oxide thin film capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路、混成集
積回路のモジュール基板、あるいはマルチ・チップ・モ
ジュール基板に用いる酸化タンタル薄膜コンデンサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tantalum oxide thin film capacitor used for a semiconductor integrated circuit, a hybrid integrated circuit module substrate, or a multi-chip module substrate.

【0002】[0002]

【従来の技術】現在、集積回路の高集積化が各半導体メ
ーカーにより精力的に進められている。集積回路にはコ
ンデンサ、抵抗およびコイル等の受動素子が能動素子と
共に組み込まれている。これらの受動素子の占有面積を
縮小することによりチップサイズを小型化し、チップ当
たりの製造コストを低減することができる。
2. Description of the Related Art Currently, semiconductor manufacturers are energetically promoting high integration of integrated circuits. Passive elements such as capacitors, resistors and coils are incorporated in the integrated circuit together with active elements. By reducing the area occupied by these passive elements, the chip size can be reduced and the manufacturing cost per chip can be reduced.

【0003】受動素子の内、コンデンサの占有面積縮小
のために比誘電率が25の酸化タンタルを誘電体材料に
用いる試みが各メーカーにより進められ、特にDRAM
への適用検討が盛んに進められている。Si基板ICで
はプロセスを簡便にするために薄膜コンデンサの下部電
極材料としてSiを用いる。この場合、酸化タンタル薄
膜コンデンサ形成後の熱処理ではSi電極表面に耐圧性
の優れる極薄いSiO2が形成されるため、酸化タンタ
ル薄膜コンデンサの耐圧が劣化することはない。しか
し、比誘電率が4と小さいSiO2が酸化タンタルと電
極との間に存在するために全体の容量は減少する。たと
えば、SiO2の膜厚が酸化タンタルの膜厚の1/4の
場合、容量は約1/2に減少する。そこで、電極材料に
Siの代わりに金属を用いたMIM構造の薄膜コンデン
サが現在注目を集めている。
Among passive elements, each manufacturer is trying to use tantalum oxide having a relative dielectric constant of 25 as a dielectric material in order to reduce the occupied area of a capacitor, and especially DRAMs.
The application study is being actively promoted. In the Si substrate IC, Si is used as the lower electrode material of the thin film capacitor in order to simplify the process. In this case, in the heat treatment after forming the tantalum oxide thin film capacitor, extremely thin SiO 2 having excellent pressure resistance is formed on the surface of the Si electrode, so that the withstand voltage of the tantalum oxide thin film capacitor does not deteriorate. However, since SiO 2 having a small relative permittivity of 4 is present between the tantalum oxide and the electrode, the total capacitance is reduced. For example, when the film thickness of SiO 2 is 1/4 of the film thickness of tantalum oxide, the capacitance is reduced to about 1/2. Therefore, a thin film capacitor having an MIM structure in which a metal is used instead of Si as an electrode material is currently receiving attention.

【0004】DRAMへの適用を目的としたMIM構造
の酸化タンタル薄膜コンデンサの例として、アイ・イー
・イー・イー トランスアクション オン エレクトロ
ンデバイシーズ、イー・ディー37(1990年)第1
939頁から1947頁(IEEE Transact
ion on Electron Devices,V
ol.ED−37(1990),PP1939−194
7)に記載されているように上部電極および下部電極に
Wを用いた従来例があった。
As an example of a tantalum oxide thin film capacitor having an MIM structure for application to DRAM, iEeTransaction on Electron Devices, Edee 37 (1990) No. 1
939 to 1947 (IEEE Transact
ion on Electron Devices, V
ol. ED-37 (1990), PP1939-194
There is a conventional example in which W is used for the upper electrode and the lower electrode as described in 7).

【0005】[0005]

【発明が解決しようとする課題】上記従来技術に示され
たMIM構造の酸化タンタル薄膜コンデンサは図2に示
すように半導体製造プロセス中の450℃以上の熱処理
により耐圧が約10Vまで急激に劣化する問題があっ
た。DRAMの場合はメモリ容量が4Mb、16Mb、
64Mbと大きくなるのに伴い、動作電圧が5V、3.
3V、1.6Vと低下する傾向にあるため、64Mb以
降は5Vの耐圧があれば充分適用可能である。これに対
し、たとえば携帯無線電話のフロントエンド部に用いる
MMICの動作電圧は5Vであり、耐圧15V以上とい
う要求仕様を満足しないという問題があった。本発明の
目的はMMIC等の半導体製造プロセスにおいてプロセ
ス中の温度プロファイルにより耐圧が劣化しない酸化タ
ンタル薄膜コンデンサを供給することにある。ただし、
ここでいう耐圧とは薄膜コンデンサに流れる電流密度が
1μA/cmを越えるときの電圧である。
As shown in FIG. 2, the tantalum oxide thin film capacitor having the MIM structure shown in the above-mentioned prior art has its breakdown voltage rapidly deteriorated to about 10 V by heat treatment at 450 ° C. or higher during the semiconductor manufacturing process. There was a problem. In case of DRAM, the memory capacity is 4Mb, 16Mb,
The operating voltage is 5 V, 3.
Since it tends to decrease to 3 V and 1.6 V, a withstand voltage of 5 V is sufficiently applicable after 64 Mb. On the other hand, for example, the operating voltage of the MMIC used in the front end portion of the portable radio telephone is 5V, and there is a problem that the required specifications of withstand voltage of 15V or higher are not satisfied. It is an object of the present invention to supply a tantalum oxide thin film capacitor whose breakdown voltage does not deteriorate due to the temperature profile during the process of manufacturing a semiconductor such as MMIC. However,
The breakdown voltage here is the voltage when the current density flowing through the thin film capacitor exceeds 1 μA / cm 2 .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、酸化タンタル誘電材料に接する上部および下部の電
極材料としてタンタルに比較して酸化物生成自由エネル
ギーの高い材料、具体的には金、白金、パラジウム、銀
等の貴金属を用いた。
In order to achieve the above object, a material having a higher free energy of oxide formation than tantalum as an upper and lower electrode material in contact with a tantalum oxide dielectric material, specifically, gold, Noble metals such as platinum, palladium and silver were used.

【0007】[0007]

【作用】耐圧劣化は酸化タンタル中の酸素が電極材料の
金属と結合することにより酸化タンタル中の酸素が欠損
し、絶縁体であった酸化タンタルが導電性を帯びること
により生じる。したがって、タンタルに比較して酸化物
生成自由エネルギーの高い材料、つまり酸化しにくい貴
金属材料を電極に用いることにより、酸化タンタル中の
酸素と電極材料との結合を防ぎ、耐圧劣化を防止するこ
とが可能となる。
[Function] The breakdown voltage is caused by the fact that oxygen in tantalum oxide is bound to the metal of the electrode material to lose oxygen in tantalum oxide and the tantalum oxide, which is an insulator, becomes conductive. Therefore, by using a material having a higher free energy of oxide formation as compared with tantalum, that is, a noble metal material that is difficult to oxidize for the electrode, it is possible to prevent the oxygen in tantalum oxide from binding with the electrode material and prevent the breakdown voltage from deteriorating. It will be possible.

【0008】[0008]

【実施例】以下、本発明の第1の実施例を図1により説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG.

【0009】直径3インチのSi基板4の上に下部電極
3として白金を200nmの厚さに成膜し、その上に膜
厚20nm〜300nmの酸化タンタル2を成膜し、さ
らに上部電極1として膜厚300nmの金を抵抗加熱蒸
着法により成膜した。このようにして作製した酸化タン
タル薄膜コンデンサの耐圧の熱処理温度依存性を調べる
ために窒素ガス雰囲気中、300℃〜600℃、1時間
の条件で熱処理を行った。
A platinum film having a thickness of 200 nm is formed as a lower electrode 3 on a Si substrate 4 having a diameter of 3 inches, a tantalum oxide film 2 having a film thickness of 20 nm to 300 nm is formed thereon, and an upper electrode 1 is formed. Gold having a film thickness of 300 nm was formed by a resistance heating vapor deposition method. In order to examine the heat treatment temperature dependence of the withstand voltage of the tantalum oxide thin film capacitor thus manufactured, heat treatment was performed in a nitrogen gas atmosphere at 300 ° C. to 600 ° C. for 1 hour.

【0010】下部電極3の白金の成膜には静止対向型マ
グネトロン高周波スパッタ装置を用い、ターゲットとし
て直径100mm、純度99.9%の白金を用いた。放
電ガスにはアルゴンを用い、成膜時の圧力は0.2P
a、放電電力は4W/cm2、ターゲットと基板間の距
離は55mm、さらに基板温度は室温あるいは300℃
以下の温度に加熱した条件で成膜を行った。酸化タンタ
ル2の成膜には静止対向型マグネトロン高周波スパッタ
装置を用い、ターゲットとして直径100mm、純度9
9.99%のタンタルを用いた。放電ガスにはアルゴン
と酸素との混合ガスを用い、酸素流量は全流量の60%
に固定した。成膜時の圧力は0.2Pa、放電電力は4
W/cm2、ターゲットと基板間の距離は55mm、さ
らに基板温度は室温あるいは300℃以下の温度に加熱
した条件で成膜を行った。上部電極1の金の成膜には抵
抗加熱方式の真空蒸着装置を用い、1nm/secの一
定の成膜速度に制御して成膜を行った。このとき、直径
0.3mmの穴を2mm間隔で明けたマスクを蒸着面に
設けることにより上部電極を形成した。
A static opposed magnetron high-frequency sputtering apparatus was used to deposit platinum on the lower electrode 3, and platinum having a diameter of 100 mm and a purity of 99.9% was used as a target. Argon was used as the discharge gas, and the pressure during film formation was 0.2P.
a, the discharge power is 4 W / cm 2 , the distance between the target and the substrate is 55 mm, and the substrate temperature is room temperature or 300 ° C.
The film formation was performed under the conditions of heating to the following temperatures. The tantalum oxide film 2 was formed by using a stationary opposed magnetron high-frequency sputtering device, with a target having a diameter of 100 mm and a purity of 9
Tantalum of 9.99% was used. The discharge gas is a mixed gas of argon and oxygen, and the oxygen flow rate is 60% of the total flow rate.
Fixed to. The pressure during film formation was 0.2 Pa, and the discharge power was 4
The film formation was performed under the conditions of W / cm 2 , the distance between the target and the substrate was 55 mm, and the substrate temperature was room temperature or a temperature of 300 ° C. or lower. For the gold film formation of the upper electrode 1, a resistance heating type vacuum vapor deposition apparatus was used and the film formation was performed at a constant film formation rate of 1 nm / sec. At this time, an upper electrode was formed by providing a mask on which holes having a diameter of 0.3 mm were opened at intervals of 2 mm on the vapor deposition surface.

【0011】酸化タンタル膜厚が100nmの酸化タン
タル薄膜コンデンサの耐圧と熱処理温度との関係を図3
に示す。室温から600℃にかけて次第に耐圧が減少し
ているが、図2に示すような従来の酸化タンタル薄膜コ
ンデンサの450℃付近での急激な耐圧劣化は無くなっ
ていることがわかる。また、上記方法で形成した酸化タ
ンタル薄膜コンデンサの容量と酸化タンタル層の膜厚と
の関係を図3に示す。図中に示した比誘電率が25の計
算値と良く一致していることがわかる。
FIG. 3 shows the relationship between the withstand voltage and the heat treatment temperature of a tantalum oxide thin film capacitor having a tantalum oxide film thickness of 100 nm.
Shown in It can be seen that the breakdown voltage gradually decreases from room temperature to 600 ° C., but the conventional tantalum oxide thin film capacitor as shown in FIG. FIG. 3 shows the relationship between the capacitance of the tantalum oxide thin film capacitor formed by the above method and the film thickness of the tantalum oxide layer. It can be seen that the relative permittivity shown in the figure is in good agreement with the calculated value of 25.

【0012】本発明の第2の実施例を図5により説明す
る。
A second embodiment of the present invention will be described with reference to FIG.

【0013】GaAs等の半導体基板4上に厚さ400
nmのPSGを用いた層間絶縁膜5を熱CVD法により
成膜する。その上に厚さ250nmのモリブデンを、引
き続き厚さ500nmの金あるいは白金を蒸着法により
成膜する。ここで、モリブデンは層間絶縁膜であるPS
Gと金あるいは白金との充分な密着強度を得るために挿
入した。この金属膜の不要な領域をホトレジストをマス
クとしてアルゴンイオンミリングにより除去し、下部電
極3を形成する。その上に厚さ700nmのPSG層間
絶縁膜5を熱CVD法により成膜し、コンデンサ形成領
域のPSG層間絶縁膜をレジストをマスクとしてCF4
ガスを用いたドライエッチングにより除去する。その上
に第1の実施例で述べた方法および条件で厚さ200n
mの酸化タンタル2を成膜し、コンデンサ領域以外の不
要な酸化タンタルをホトレジストをマスクとしてCF4
と酸素との混合ガスを用いたドライエッチングにより除
去し、さらに下部電極3との電気的導通を取るためにP
SG層間絶縁膜5にCF4を用いたドライエッチングに
よりコンタクト穴を空ける。最後に厚さ500nmの金
を蒸着法にて成膜し、不要な領域をホトレジストをマス
クとしてアルゴンイオンミリングにより除去し、上部電
極1を形成した。
A semiconductor substrate 4 made of GaAs or the like has a thickness of 400
The interlayer insulating film 5 using PSG of nm is formed by the thermal CVD method. A molybdenum film having a thickness of 250 nm and a gold film or a platinum film having a thickness of 500 nm are formed thereon by vapor deposition. Here, molybdenum is PS which is an interlayer insulating film.
It was inserted to obtain sufficient adhesion strength between G and gold or platinum. Unnecessary regions of this metal film are removed by argon ion milling using the photoresist as a mask to form the lower electrode 3. A 700 nm-thick PSG interlayer insulating film 5 is formed thereon by a thermal CVD method, and the PSG interlayer insulating film in the capacitor forming region is used as a mask for CF4.
It is removed by dry etching using gas. Further, a thickness of 200 n was obtained by the method and conditions described in the first embodiment.
m of tantalum oxide 2 is formed into a film, and unnecessary tantalum oxide other than the capacitor region is CF 4 by using a photoresist as a mask.
By dry etching using a mixed gas of oxygen and oxygen, and in order to establish electrical continuity with the lower electrode 3, P
A contact hole is formed in the SG interlayer insulating film 5 by dry etching using CF 4 . Finally, a 500 nm-thick gold film was formed by an evaporation method, and an unnecessary region was removed by argon ion milling using a photoresist as a mask to form the upper electrode 1.

【0014】このようにして形成した酸化タンタル薄膜
コンデンサを窒素雰囲気中、450℃、1時間の条件で
熱処理を行い、耐圧の変化を測定した。その結果を図6
に示す。450℃の一点だけではあるが、熱処理により
耐圧が劣化しないことがわかる。
The tantalum oxide thin film capacitor thus formed was heat-treated in a nitrogen atmosphere at 450 ° C. for 1 hour to measure the change in withstand voltage. The result is shown in Figure 6.
Shown in Although there is only one point at 450 ° C., it can be seen that the breakdown voltage does not deteriorate due to the heat treatment.

【0015】また、本実施例において下部電極の白金の
厚さを変えて成膜を行い、耐圧劣化を防止するための白
金の厚さの下限値を確認した。その結果を図7に示す。
図より白金の厚さが50nm以上あれば耐圧劣化を防止
できることがわかる。
Further, in this embodiment, the lower electrode was formed while changing the thickness of platinum to confirm the lower limit of the thickness of platinum for preventing the deterioration of breakdown voltage. FIG. 7 shows the result.
It can be seen from the figure that if the thickness of platinum is 50 nm or more, deterioration in withstand voltage can be prevented.

【0016】上記実施例では上部電極1あるいは下部電
極3として金あるいは白金、およびモリブデンと金ある
いは白金との積層構造を用いたが、金あるいは白金の代
わりにパラジウム、銀あるいはこれ以外の貴金属を用い
ても同様の効果が得られ、モリブデンの代わりにタング
ステン等の高融点金属を用いても同様の効果が得られ
る。
In the above embodiment, the upper electrode 1 or the lower electrode 3 has a laminated structure of gold or platinum, and molybdenum and gold or platinum, but palladium, silver or other noble metal is used instead of gold or platinum. However, the same effect can be obtained, and the same effect can be obtained by using a refractory metal such as tungsten instead of molybdenum.

【0017】上記実施例では酸化タンタル薄膜の成膜に
高周波スパッタ法を用いたが、代わりにイオンビームス
パッタ法等の他の物理的気相薄膜形成法、あるいはCV
D法、ゾルゲル法等の化学的薄膜形成法を用いても同様
の効果が得られる。
In the above embodiment, the high frequency sputtering method was used to form the tantalum oxide thin film, but instead, another physical vapor phase thin film forming method such as an ion beam sputtering method or CV is used.
Similar effects can be obtained by using a chemical thin film forming method such as D method or sol-gel method.

【0018】本実施例によれば、電極材料の酸化タンタ
ルに接する部分に金、白金、パラジウム、銀等の貴金属
を用いることにより450℃付近の耐圧劣化を防ぐこと
ができ、450℃での熱処理による耐圧の低下を熱処理
前の耐圧の20%以下に抑えることができ、かつ酸化タ
ンタルの誘電率として25を得ることができた。第2の
実施例の特有の効果として450℃の熱処理により耐圧
が20%以上増加させることができた。
According to the present embodiment, by using a noble metal such as gold, platinum, palladium, or silver in the portion of the electrode material that is in contact with tantalum oxide, it is possible to prevent the breakdown voltage at around 450 ° C. and to perform the heat treatment at 450 ° C. It was possible to suppress the decrease in breakdown voltage due to the above to 20% or less of the breakdown voltage before the heat treatment, and it was possible to obtain 25 as the dielectric constant of tantalum oxide. As a peculiar effect of the second embodiment, the breakdown voltage could be increased by 20% or more by the heat treatment at 450 ° C.

【0019】[0019]

【発明の効果】本発明によれば電極材料の酸化タンタル
に接する部分に金、白金、パラジウム、銀等の貴金属を
用いることにより酸化タンタルの酸素欠損を防止できる
ので、熱処理による耐圧劣化を防止する効果がある。
According to the present invention, the oxygen deficiency of tantalum oxide can be prevented by using a noble metal such as gold, platinum, palladium, or silver in the portion of the electrode material that is in contact with tantalum oxide, so that the deterioration of withstand voltage due to heat treatment can be prevented. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】従来技術の耐圧の熱処理温度依存性の図であ
る。
FIG. 2 is a diagram showing the heat treatment temperature dependency of the breakdown voltage of the prior art.

【図3】本発明の実施例の耐圧の熱処理温度依存性の図
である。
FIG. 3 is a diagram showing the heat treatment temperature dependency of the breakdown voltage of the example of the present invention.

【図4】本発明の実施例の容量の酸化タンタル膜厚依存
性の図である。
FIG. 4 is a diagram showing the dependence of the capacitance of the embodiment of the present invention on the tantalum oxide film thickness.

【図5】本発明の実施例の断面図である。FIG. 5 is a sectional view of an embodiment of the present invention.

【図6】本発明の実施例の耐圧の熱処理温度依存性の図
である。
FIG. 6 is a diagram showing the heat treatment temperature dependency of the breakdown voltage of the example of the present invention.

【図7】本発明の実施例の耐圧の白金膜厚依存性の図で
ある。
FIG. 7 is a diagram showing the platinum film thickness dependency of the breakdown voltage in the example of the present invention.

【符号の説明】[Explanation of symbols]

1…上部電極、 2…誘電体、 3…下部電極、 4…基板、 5…層間絶縁膜。 DESCRIPTION OF SYMBOLS 1 ... Upper electrode, 2 ... Dielectric material, 3 ... Lower electrode, 4 ... Substrate, 5 ... Interlayer insulating film.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 3/12 312 H01G 4/33 H01L 21/8242 27/108 H01L 27/10 325 J (72)発明者 堀越 和彦 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01B 3/12 312 H01G 4/33 H01L 21/8242 27/108 H01L 27/10 325 J (72) Inventor Horikoshi Kazuhiko 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体基板もしくは半導体基板上に結晶成
長した半導体層上に形成した、下部電極、酸化タンタル
誘電体層、および上部電極からなる酸化タンタル薄膜コ
ンデンサにおいて、上部電極および下部電極の酸化タン
タルに接する部分に金、白金、パラジウム、銀等の酸化
物生成自由エネルギーの大きな貴金属材料を用いること
を特徴とする酸化タンタル薄膜コンデンサ。
1. A tantalum oxide thin film capacitor comprising a lower electrode, a tantalum oxide dielectric layer, and an upper electrode formed on a semiconductor substrate or a semiconductor layer crystal-grown on the semiconductor substrate, wherein tantalum oxide of the upper electrode and the lower electrode is formed. A tantalum oxide thin film capacitor characterized in that a noble metal material having a large free energy of oxide formation such as gold, platinum, palladium, silver is used in a portion in contact with.
【請求項2】請求項1記載の酸化タンタル薄膜コンデン
サにおいて、上部電極あるいは下部電極が酸化タンタル
に接する部分に上記貴金属材料を配した高誘電金属との
積層構造を成すことを特徴とする酸化タンタル薄膜コン
デンサ。
2. The tantalum oxide thin film capacitor according to claim 1, wherein the upper electrode or the lower electrode has a laminated structure with a high dielectric metal in which the noble metal material is arranged in a portion in contact with tantalum oxide. Thin film capacitor.
【請求項3】請求項2記載の酸化タンタル薄膜コンデン
サにおいて、上部電極あるいは下部電極の酸化タンタル
に接する部分に上記貴金属材料の厚さが50nm以上で
あることを特徴とする酸化タンタル薄膜コンデンサ。
3. The tantalum oxide thin film capacitor according to claim 2, wherein the noble metal material has a thickness of 50 nm or more in a portion of the upper electrode or the lower electrode in contact with tantalum oxide.
【請求項4】請求項1、2又は3記載の酸化タンタル薄
膜コンデンサにおいて、上部電極と下部電極との酸化タ
ンタルに接する部分が異なる上記貴金属材料で形成され
ることを特徴とした酸化タンタル薄膜コンデンサ。
4. The tantalum oxide thin film capacitor according to claim 1, 2 or 3, wherein the upper electrode and the lower electrode are formed of the noble metal material different in contacting with tantalum oxide. .
【請求項5】請求項1記載の酸化タンタル薄膜コンデン
サを用いることを特徴としたGaAsIC。
5. A GaAs IC using the tantalum oxide thin film capacitor according to claim 1.
【請求項6】請求項2記載の酸化タンタル薄膜コンデン
サを用いることを特徴としたGaAsIC。
6. A GaAs IC using the tantalum oxide thin film capacitor according to claim 2.
【請求項7】請求項3記載の酸化タンタル薄膜コンデン
サを用いることを特徴としたGaAsIC。
7. A GaAs IC using the tantalum oxide thin film capacitor according to claim 3.
【請求項8】請求項4記載の酸化タンタル薄膜コンデン
サを用いることを特徴としたGaAsIC。
8. A GaAs IC using the tantalum oxide thin film capacitor according to claim 4.
JP6135364A 1994-06-17 1994-06-17 Tantalum oxide thin film capacitor Pending JPH088400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6135364A JPH088400A (en) 1994-06-17 1994-06-17 Tantalum oxide thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6135364A JPH088400A (en) 1994-06-17 1994-06-17 Tantalum oxide thin film capacitor

Publications (1)

Publication Number Publication Date
JPH088400A true JPH088400A (en) 1996-01-12

Family

ID=15150011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6135364A Pending JPH088400A (en) 1994-06-17 1994-06-17 Tantalum oxide thin film capacitor

Country Status (1)

Country Link
JP (1) JPH088400A (en)

Similar Documents

Publication Publication Date Title
US6259128B1 (en) Metal-insulator-metal capacitor for copper damascene process and method of forming the same
JP3623569B2 (en) How to make a capacitor
CA1159917A (en) Capacitor structures with dual dielectrics
AU729376B2 (en) Semiconductor device having a metal-insulator-metal capacitor
KR100268643B1 (en) Method for manufacturing capacitance device
JP4002647B2 (en) Thin film capacitor manufacturing method for semiconductor device
US5440174A (en) Plurality of passive elements in a semiconductor integrated circuit and semiconductor integrated circuit in which passive elements are arranged
US5909043A (en) Sacrificial oxygen sources to prevent reduction of oxygen containing materials
US6333238B2 (en) Method for minimizing the temperature coefficient of resistance of passive resistors in an integrated circuit process flow
JPH098246A (en) Semiconductor device and its manufacture
US5869381A (en) RF power transistor having improved stability and gain
JPH07263570A (en) Manufacture of dielectric device
KR100280565B1 (en) Metal to Metal Capacitor Integration Process
JP3820003B2 (en) Thin film capacitor manufacturing method
KR100237666B1 (en) Method for manufacturing semiconductor device
JPH088400A (en) Tantalum oxide thin film capacitor
KR100474589B1 (en) Capacitor Manufacturing Method
KR100190025B1 (en) Capacitor fabrication method of semiconductor device
JPH10340994A (en) Manufacture of semiconductor device
JPH05299584A (en) Thin film capacitor element and semiconductor memory device
JP3408019B2 (en) Semiconductor device and method of manufacturing semiconductor device
US7364968B2 (en) Capacitor in semiconductor device and manufacturing method
JP2776115B2 (en) Thin film capacitor and method of manufacturing the same
KR100792393B1 (en) Manufacturing method for semiconductor device
JPH1056153A (en) Thin-film capacitor and manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216