JPH0883701A - Large power resistor - Google Patents

Large power resistor

Info

Publication number
JPH0883701A
JPH0883701A JP6244639A JP24463994A JPH0883701A JP H0883701 A JPH0883701 A JP H0883701A JP 6244639 A JP6244639 A JP 6244639A JP 24463994 A JP24463994 A JP 24463994A JP H0883701 A JPH0883701 A JP H0883701A
Authority
JP
Japan
Prior art keywords
resistor
substrate
heat
resistor substrate
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6244639A
Other languages
Japanese (ja)
Inventor
Hideo Otsuka
英夫 大塚
Kazutaka Nakagome
和隆 中込
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP6244639A priority Critical patent/JPH0883701A/en
Publication of JPH0883701A publication Critical patent/JPH0883701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE: To provide a highly reliable large power resistor, which is hardly deteriorated by aging in heat conductivity, having excellent withstand voltage characteristics. CONSTITUTION: A resitor substrate 30, on which a thick film resistor 35 is printed, and a metal heat radiating plate 10, to be attached to other heat sink, are provided on a tabular ceramic substrate 31. The resistor substrate 30 is bonded and integrally formed with the heat radiating plate 10 by a thermosetting silicon bonding agent 20 containing an excellently heat conducting filler. A silane coupling agent 60 is applied to the resistor substrate 30 which is adhered to the heat radiating plate 10. A case 4, made of resin, is placed on the resistor substrate 30 on which a silane coupling agent 60 is applied and the circumference of the resistor substrate 30 is sealed by filling resin 70 in the case 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高電力型抵抗器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high power type resistor.

【0002】[0002]

【従来技術】従来、例えばインバータ用モータの電源ラ
インには、モータ駆動時に発生する突入電流の発生を抑
える目的の高電力型抵抗器が取り付けられる。
2. Description of the Related Art Conventionally, for example, a power source line of an inverter motor is provided with a high power type resistor for the purpose of suppressing the generation of inrush current generated when the motor is driven.

【0003】この種の高電力型抵抗器は、放熱性が良
く、熱に強い構造であることが求められる。具体的に
は、金属製の放熱板上に、平板状の抵抗体基板をエポキ
シ系の接着剤で接着一体化して構成されていた。ここで
この抵抗体基板は熱に強いセラミック基板上に厚膜抵抗
体を印刷して構成される。また放熱板は他のヒートシン
クに取り付けられる。
This type of high power type resistor is required to have a good heat dissipation property and a structure resistant to heat. Specifically, a flat resistor substrate is bonded and integrated with a metal-based heat dissipation plate with an epoxy adhesive. Here, this resistor substrate is formed by printing a thick film resistor on a heat-resistant ceramic substrate. Further, the heat sink is attached to another heat sink.

【0004】そして抵抗体基板上の厚膜抵抗体にリード
線を接続して電流を流せば、該厚膜抵抗体が発熱して電
流が消費される。このとき該熱は抵抗体基板から放熱板
を介してヒートシンクに伝導される。
When a lead wire is connected to the thick film resistor on the resistor substrate and a current is passed through the thick film resistor, the thick film resistor generates heat and current is consumed. At this time, the heat is conducted from the resistor substrate to the heat sink via the heat dissipation plate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、該抵抗
体基板への通電を何度も繰り返しているうちに、経時的
に抵抗体基板から放熱板へ向かう熱の伝導が悪くなり、
断線する場合があった。
However, during the repeated energization of the resistor substrate, the heat conduction from the resistor substrate to the heat sink deteriorates over time,
There was a case of breaking the wire.

【0006】そこで本願発明者は各種の実験を行ってそ
の原因を以下のように突き止めた。即ち、放熱板と抵抗
体基板はその材質が異なるのでその熱膨張係数が相違す
るが、このため熱を加えたときに両者の延び・縮みの量
が異なる。一方両者を接着するエポキシ系の接着剤は接
着強度は強いが柔軟性はほとんどなく機械的引っ張りに
対してほとんど伸びない。このため放熱板と抵抗体基板
の伸び・縮みが繰り返されると、その度に接着剤に応力
が加わり、該接着剤による接着状態が徐々に劣化し、こ
のため該接着部分における熱の伝導が悪くなってしまう
ためである。
Therefore, the inventor of the present application conducted various experiments and found the cause as follows. That is, since the heat radiating plate and the resistor substrate are made of different materials and have different thermal expansion coefficients, the amounts of expansion and contraction of the two differ when heat is applied. On the other hand, the epoxy-based adhesive that bonds the two has strong adhesive strength, but has almost no flexibility and hardly stretches due to mechanical tension. For this reason, when the heat sink and the resistor substrate are repeatedly stretched and shrunk, stress is applied to the adhesive each time, and the adhesive state due to the adhesive gradually deteriorates, which results in poor heat conduction at the adhesive portion. This is because

【0007】本発明は上述の点に鑑みてなされたもので
ありその目的は、熱の伝導状態が経時的に劣化しにくく
信頼性が高く、且つ耐電圧特性の良好な高電力型抵抗器
を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a high-power type resistor which is highly reliable and has a high withstand voltage characteristic in which the conduction state of heat is not easily deteriorated with time. To provide.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
め本発明は、平板状のセラミック基板上に厚膜抵抗体を
印刷した抵抗体基板を、金属製であって他のヒートシン
クに取り付けられる放熱板上に取り付ける構造の高電力
型抵抗器において、前記抵抗体基板は熱伝導性の良いフ
ィラーを混入した加熱硬化型のシリコン系接着剤によっ
て放熱板に接着一体化され、且つ該放熱板に接着した抵
抗体基板上にはシランカップリング剤が塗布され、さら
に前記シランカップリング剤が塗布された抵抗体基板上
に樹脂製のケースを被せ且つ該ケース内に樹脂材を充填
することによって抵抗体基板の周囲を該樹脂材で封止し
て構成した。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to mount a resistor substrate in which a thick film resistor is printed on a flat ceramic substrate, which is made of metal and is attached to another heat sink. In a high-power type resistor having a structure to be mounted on a heat sink, the resistor substrate is bonded and integrated with the heat sink by a heat-curable silicone adhesive containing a filler having good thermal conductivity, and A silane coupling agent is applied to the adhered resistor substrate, and a resistor case is covered on the resistor substrate coated with the silane coupling agent, and the case is filled with a resin material to reduce the resistance. The periphery of the body substrate was sealed with the resin material.

【0009】[0009]

【作用】この高電力型抵抗器は、抵抗体基板の厚膜抵抗
体に所望の電流を流してその電流を消費するように使用
される。消費された電流は厚膜抵抗体で熱に変換される
が、該熱は熱伝導度の大きいセラミック基板と、フィラ
ーを混入して熱伝導度を高めたシリコン系接着剤を介し
て、やはり熱伝導度の大きい放熱板に伝導される。この
とき加熱されたセラミック基板と放熱板は、熱膨張係数
の相違によって伸び・縮みの量が異なる。しかしながら
両者を接着したシリコン系接着剤には柔軟性があるの
で、この伸び・縮み量はこのシリコン系接着剤が吸収す
る。従って、該シリコン系接着剤による接着状態が劣化
することはなく、このため抵抗体基板から放熱板に向か
う熱の伝導が経時的に悪くなることはない。
This high-power resistor is used so that a desired current is passed through the thick film resistor of the resistor substrate and the current is consumed. The consumed current is converted into heat by the thick film resistor, but this heat is also transferred to the heat through the ceramic substrate with high thermal conductivity and the silicon-based adhesive mixed with the filler to increase the thermal conductivity. Conducted by the heat dissipation plate with high conductivity. At this time, the heated ceramic substrate and the heat sink differ in the amount of expansion and contraction due to the difference in the coefficient of thermal expansion. However, since the silicone-based adhesive that bonds the two is flexible, this amount of expansion / contraction is absorbed by this silicone-based adhesive. Therefore, the adhesion state of the silicon-based adhesive does not deteriorate, and therefore the heat conduction from the resistor substrate to the heat sink does not deteriorate over time.

【0010】一方抵抗体基板を放熱板に接着するために
使用するシリコン系接着剤中のシリコンの主成分はシロ
キサンである。そして本願発明者は、本願発明に必須の
シリコン系接着剤によって抵抗体基板を放熱板に接着す
る際に、シリコン中の低分子シロキサン成分がシリコン
系接着剤中からしみだして抵抗体基板の上面側に這い上
がってきて硬化してしまい、このままの状態でその上に
ケースを被せて樹脂材を充填した場合、該硬化した低分
子シロキサン成分(これは一般有機物と接着しにくい性
質がある)が樹脂材との接着を阻害してしまい、両者の
間に薄い隙間を生じてしまうことを確認した。そしてこ
の場合、抵抗体基板の厚膜抵抗体と放熱板の間に高電圧
を印加したとき、該隙間部分において沿面放電が発生し
易くなってしまう。
On the other hand, the main component of silicon in the silicon-based adhesive used to bond the resistor substrate to the heat sink is siloxane. The inventor of the present application, when the resistor substrate is adhered to the heat dissipation plate with the silicon-based adhesive which is essential to the invention of the present application, the low-molecular-weight siloxane component in the silicon exudes from the silicon-based adhesive and the upper surface of the resistor substrate Crawling up to the side and curing, when the resin material is filled with the case covered with the resin in this state, the cured low-molecular siloxane component (which has a property that it is difficult to adhere to general organic substances) It was confirmed that the adhesion with the resin material was hindered and a thin gap was created between the two. In this case, when a high voltage is applied between the thick film resistor of the resistor substrate and the heat sink, creeping discharge is likely to occur in the gap.

【0011】この現象に対して本願発明のように抵抗体
基板の上にシランカップリング剤をプライマーとして塗
布しておき、その上に樹脂材を充填することとすれば、
たとえ抵抗体基板上に低分子シロキサンが硬化していて
も、該硬化した低分子シロキサンの上に樹脂材が容易に
接着する。このため両者間に空隙は生じず、耐電圧特性
のさらに良好な高電力型抵抗器が構成できる。
To cope with this phenomenon, if a silane coupling agent is applied as a primer on a resistor substrate as in the present invention and a resin material is filled thereon,
Even if the low-molecular-weight siloxane is cured on the resistor substrate, the resin material easily adheres to the cured low-molecular-weight siloxane. Therefore, no air gap is generated between them, and a high-power resistor having better withstand voltage characteristics can be constructed.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は本発明の1実施例にかかる高電力型
抵抗器の分解斜視図である。同図に示すようにこの高電
力型抵抗器は、放熱板10上にシリコン系接着剤20に
よって抵抗体基板30を接着一体化し、且つ該抵抗体基
板30上にシランカップリング剤60を塗布し、さらに
その上にケース40を被せ且つ該ケース40内に樹脂材
70を充填して構成されている。なお抵抗体基板30上
には2本のリード線50,50が接続される。以下各構
成部品について説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an exploded perspective view of a high power resistor according to an embodiment of the present invention. As shown in the figure, in this high power resistor, a resistor substrate 30 is bonded and integrated on a heat dissipation plate 10 with a silicon adhesive 20, and a silane coupling agent 60 is applied on the resistor substrate 30. Further, the case 40 is further covered thereon, and the case 40 is filled with the resin material 70. Two lead wires 50, 50 are connected on the resistor substrate 30. Each component will be described below.

【0013】放熱板10は熱伝導度の大きい金属板(こ
の実施例ではアルミニウム板)で構成され、その4角に
はこの放熱板10をもっと大きな面積のヒートシンクに
固定するための孔11が設けられている。
The heat radiating plate 10 is made of a metal plate having high thermal conductivity (aluminum plate in this embodiment), and holes 11 for fixing the heat radiating plate 10 to a heat sink having a larger area are provided at four corners thereof. Has been.

【0014】次に抵抗体基板30は、平板状のセラミッ
ク基板31上に、まず2本の銀パターン33,33を印
刷・焼成し、その上に銀パターン33,33間を接続す
るように厚膜抵抗体35を印刷・焼成して製造される。
Next, the resistor substrate 30 is formed by printing and firing two silver patterns 33, 33 on a flat ceramic substrate 31 and then connecting the silver patterns 33, 33 with a thick thickness. It is manufactured by printing and firing the film resistor 35.

【0015】ここでセラミック基板31は、熱伝導度の
大きい焼成セラミックで構成されており、この実施例に
おいてはアルミナを主成分(96%)としたものが用い
られている。
Here, the ceramic substrate 31 is made of a fired ceramic having a high thermal conductivity, and in this embodiment, one containing alumina as a main component (96%) is used.

【0016】次にシリコン系接着剤20は、加熱硬化型
のシリコン接着剤中に、熱伝導性の良いフィラーを混入
してその熱伝導度を高めて構成されている。ここでフィ
ラーとしては、例えば、窒化アルミやアルミナ等のセラ
ミックの粉末,銀等の金属の粉末等、各種材料のものを
用いることができる。要は熱伝導性の良いフィラーであ
れば良い。
Next, the silicon-based adhesive 20 is formed by mixing a heat-curable silicone adhesive with a filler having good thermal conductivity so as to enhance its thermal conductivity. Here, as the filler, it is possible to use various materials such as ceramic powder of aluminum nitride or alumina, metal powder of silver or the like. The point is that the filler has good thermal conductivity.

【0017】なおシリコン系接着剤20は、その材質の
特性上、エポキシ系の接着剤に比べてかなり柔軟性があ
り、この実施例においては、伸び50%〔JIS K6
301加硫ゴム物理試験の伸びの計算式(下記式
(1))による〕のものを用いている。なおエポキシ系
接着剤の場合はこの伸びはほとんど0%である。
The silicone adhesive 20 is considerably more flexible than the epoxy adhesive due to the characteristics of its material. In this embodiment, the elongation is 50% [JIS K6.
The calculation formula of elongation in the 301 vulcanized rubber physical test (according to the following formula (1)) is used. In the case of an epoxy adhesive, this elongation is almost 0%.

【0018】 ここに EB:伸び(%) L0:標線距離(mm) L1:切断時の標線間の長さ(mm)[0018] E hereB: Elongation (%) L0: Mark distance (mm) L1: Length between marked lines when cutting (mm)

【0019】次に抵抗体基板30上に塗布されるシラン
カップリング剤60は、同一分子内に異なる二種類の官
能基を有しており、これによって有機樹脂と無機物との
なかだちの役目を発揮し、又は有機樹脂同士のなかだち
の役目を発揮するものであり、プライマーとして両者の
接着性の向上を図る機能を具備している。従って硬化し
たシリコンに対しても一般有機物の接着を可能にする機
能を有する。
Next, the silane coupling agent 60 applied on the resistor substrate 30 has two different kinds of functional groups in the same molecule, and thus it plays the role of an organic resin and an inorganic substance. However, it plays the role of a bond between the organic resins, and has a function of improving the adhesiveness between the two as a primer. Therefore, it has a function of adhering general organic substances to cured silicon.

【0020】次に図2はケース40の側断面図(図1の
A−A断面図)である。図1,図2に示すようにケース
40は、例えば耐熱性の高いプラスチックを成型して構
成されており、その形状は略矩形状であって下面が開放
され且つその上面には、リード線50を貫通する2つの
孔43,43と、樹脂材70を充填するための2つの小
孔45,45が設けられている。
Next, FIG. 2 is a side sectional view of the case 40 (AA sectional view of FIG. 1). As shown in FIGS. 1 and 2, the case 40 is formed by molding, for example, a highly heat-resistant plastic, and has a substantially rectangular shape with an open lower surface and a lead wire 50 on the upper surface. There are two holes 43, 43 penetrating therethrough and two small holes 45, 45 for filling the resin material 70.

【0021】一方充填する樹脂材70としては電気絶縁
性が良くて熱に強く柔軟性のあるシリコン系の樹脂材を
用いる。なおこの樹脂材としては加熱硬化型のものを用
いる。
On the other hand, as the resin material 70 to be filled, a silicon-based resin material having good electric insulation, heat resistance and flexibility is used. A heat-curable resin material is used as the resin material.

【0022】そしてこの高電力型抵抗器を製造するに
は、図3に示すように、放熱板10の中央に抵抗体基板
30をシリコン系接着剤20(図1参照)によって接着
し乾燥固定する。この実施例にかかるシリコン系接着剤
20の乾燥条件は150℃で30分である。
In order to manufacture this high power resistor, as shown in FIG. 3, a resistor substrate 30 is adhered to the center of the heat dissipation plate 10 with a silicone adhesive 20 (see FIG. 1) and dried and fixed. . The drying conditions for the silicone adhesive 20 according to this example are 150 ° C. and 30 minutes.

【0023】次にケース40の孔43,43にリード線
50,50を挿入してその先端をそれぞれ抵抗体基板3
0の各銀パターン33,33上に半田付けする。
Next, the lead wires 50, 50 are inserted into the holes 43, 43 of the case 40, and the tips of the lead wires 50, 50 are respectively inserted into the resistor substrate 3.
Solder on each silver pattern 33, 33 of 0.

【0024】次に図4に示すように、溶剤に溶かしたシ
ランカップリング剤60を、抵抗体基板30及びその周
囲の放熱板10の上に、完全に隙間なく塗布し乾燥す
る。このときシランカップリング剤60の厚みは薄い方
が良い(例えば数μm)。この実施例にかかるシランカ
ップリング剤60の乾燥条件は120〜130℃で10
分である。
Next, as shown in FIG. 4, a silane coupling agent 60 dissolved in a solvent is applied onto the resistor substrate 30 and the heat radiating plate 10 around the resistor substrate 30 completely without gaps and dried. At this time, it is preferable that the thickness of the silane coupling agent 60 is thin (for example, several μm). The drying conditions of the silane coupling agent 60 according to this embodiment are 120 to 130 ° C. and 10
Minutes.

【0025】次に図5に示すように、ケース40を抵抗
体基板30を覆うように放熱板10上に被せ、ケース4
0に設けた小孔45,45から樹脂材70を充填して硬
化させる。これによって抵抗体基板30の周囲は樹脂材
70によって封止される。
Next, as shown in FIG. 5, the case 40 is covered on the heat sink 10 so as to cover the resistor substrate 30, and the case 4 is removed.
The resin material 70 is filled and cured through the small holes 45, 45 provided in No. 0. As a result, the periphery of the resistor substrate 30 is sealed with the resin material 70.

【0026】ところで、シリコンは安定した物質(反応
性のある手足(例えばOH基)がない)である。従って
シリコン樹脂は加熱して一旦硬化させるとその上に同じ
物質のシリコン樹脂を付けても加熱しても接着性は乏し
い。
By the way, silicon is a stable substance (no reactive limbs (eg, OH groups)). Therefore, once the silicone resin is heated and cured, the adhesiveness is poor even if the silicone resin of the same substance is applied or heated.

【0027】そして本発明の場合、抵抗体基板30をシ
リコン系接着剤20で接着しているので、該シリコン系
接着剤20中の低分子シロキサン成分がしみだして抵抗
体基板30の側面と上面に這い上がってきて硬化してし
まう場合があるが、前述のように抵抗体基板30の上に
シランカップリング剤60がプライマーとして塗布され
るので、たとえ抵抗体基板30上に低分子シロキサン成
分が硬化していても、該硬化した低分子シロキサン成分
と樹脂材70間の接着は確実に行える。従って抵抗体基
板30と樹脂材70の間に空隙が生じることはない。
In the case of the present invention, since the resistor substrate 30 is adhered by the silicon adhesive 20, the low molecular siloxane component in the silicon adhesive 20 exudes and the side surface and the upper surface of the resistor substrate 30 are extruded. The silane coupling agent 60 may be applied as a primer on the resistor substrate 30 as described above, so that the low-molecular-weight siloxane component may not be deposited on the resistor substrate 30. Even if it is cured, the cured low-molecular-weight siloxane component and the resin material 70 can be reliably bonded. Therefore, no gap is created between the resistor substrate 30 and the resin material 70.

【0028】以上のように本発明によれば、抵抗体基板
30の周囲を樹脂材70で封止したので、リード線5
0,50等の充電部から放熱板10又はヒートシンクへ
の放電が防止され、この高電力型抵抗器の耐電圧特性を
ケース40及び樹脂材70を用いない場合に比べて向上
できる。
As described above, according to the present invention, since the periphery of the resistor substrate 30 is sealed with the resin material 70, the lead wire 5
Discharging from a charging unit such as 0, 50 to the heat sink 10 or the heat sink is prevented, and the withstand voltage characteristic of this high power resistor can be improved as compared with the case where the case 40 and the resin material 70 are not used.

【0029】しかも本発明は、単にケース40及び樹脂
材70を用いただけでなく、シランカップリング剤60
によって抵抗体基板30と樹脂材70間の接着が確実に
行えて両者間に空隙が生じることはないので、該空隙部
分を介して生じる恐れのある抵抗体基板と放熱板間の沿
面放電が確実に防止される。従ってさらに耐電圧特性が
向上する。
Moreover, the present invention is not limited to simply using the case 40 and the resin material 70, but also the silane coupling agent 60.
Since the resistor substrate 30 and the resin material 70 can be reliably adhered to each other and no void is formed between them, creeping discharge between the resistor substrate and the heat sink, which may occur through the void portion, is surely performed. To be prevented. Therefore, the withstand voltage characteristic is further improved.

【0030】具体的には、シランカップリング剤60を
用いないでそれ以外は上記実施例と同一構成の高電力型
抵抗器(耐電圧の定格2500Vのもの)にあっては、
抵抗体基板30の厚膜抵抗体35と放熱板10の間に3
000V印加すると、両者間で沿面放電が生じたが、シ
ランカップリング剤60を用いた上記実施例においては
6000Vでも沿面放電は生じなかった。
Specifically, in a high power type resistor (having a withstand voltage rating of 2500 V) which has the same structure as the above embodiment except that the silane coupling agent 60 is not used,
3 between the thick film resistor 35 of the resistor substrate 30 and the heat sink 10.
When a voltage of 000 V was applied, a creeping discharge occurred between the two, but in the above example using the silane coupling agent 60, a creeping discharge did not occur even at a voltage of 6000 V.

【0031】ところでこのように構成された高電力型抵
抗器は、リード線50,50を通して抵抗体基板30の
厚膜抵抗体35に所望の電流を流してその電流を消費す
るように使用される。
By the way, the high-power type resistor configured as described above is used so that a desired current is passed through the thick film resistor 35 of the resistor substrate 30 through the lead wires 50, 50 to consume the current. .

【0032】消費された電流は厚膜抵抗体35で熱に変
換されるが、該熱は熱伝導度の大きいセラミック基板3
1と、フィラーを混入して熱伝導度を高めたシリコン系
接着剤20を介して、やはり熱伝導度の大きい放熱板1
0に伝導される。
The consumed current is converted into heat by the thick film resistor 35, and the heat is the ceramic substrate 3 having high thermal conductivity.
1 and a heat-dissipating plate 1 having a large thermal conductivity through a silicone adhesive 20 in which a filler is mixed to increase the thermal conductivity.
Conducted to zero.

【0033】このとき加熱されたセラミック基板31と
放熱板10は、熱膨張係数の相違によって伸び・縮みの
量が異なる。しかしながら両者を接着したシリコン系接
着剤20には柔軟性があるので、この伸び・縮み量はこ
のシリコン系接着剤20に吸収される。従って、該シリ
コン系接着剤20による接着状態が劣化することはな
く、このため抵抗体基板30から放熱板10へ向かう熱
の伝導が経時的に悪くなることはない。
At this time, the ceramic substrate 31 and the heat radiating plate 10 which are heated have different amounts of expansion and contraction due to the difference in the coefficient of thermal expansion. However, since the silicone adhesive 20 that bonds the two is flexible, this amount of expansion / contraction is absorbed by the silicone adhesive 20. Therefore, the adhesive state of the silicon-based adhesive 20 does not deteriorate, and therefore the heat conduction from the resistor substrate 30 to the heat sink 10 does not deteriorate over time.

【0034】図6は上記実施例にかかる高電力型抵抗器
と他の構造の高電力型抵抗器との加速試験(温度衝撃サ
イクル数−熱抵抗)の比較試験結果を示す図である。同
図において試料A,Bは、上記実施例にかかる高電力型
抵抗器(但しケース40と樹脂材70の取り付け・充填
は行わず、抵抗体基板30が剥き出しのもの)であり、
試料a,bは、抵抗体基板30と放熱板10間の接着を
エポキシ系の接着剤で行った比較例(これもケースと樹
脂材の取り付け・充填は行っていないもの)である。
FIG. 6 is a diagram showing a comparison test result of an acceleration test (temperature shock cycle number-thermal resistance) of the high power type resistor according to the above-mentioned embodiment and the high power type resistor of another structure. In the figure, samples A and B are high-power type resistors according to the above-described embodiment (however, the case 40 and the resin material 70 are not attached or filled, and the resistor substrate 30 is exposed).
Samples a and b are comparative examples in which the resistor substrate 30 and the heat radiating plate 10 are bonded with an epoxy adhesive (again, the case and the resin material are not attached / filled).

【0035】具体的実験方法は、各試料A,B,a,b
の雰囲気温度を−20℃30分⇔+150℃30分で変
化させる温度衝撃を繰返して行い、所定のサイクル数毎
に各試料の熱抵抗(℃/W)を測定したものである。
The specific experimental method is as follows: Samples A, B, a, b
The thermal resistance (° C / W) of each sample was measured for each predetermined number of cycles by repeatedly performing the temperature shock of changing the ambient temperature of -20 ° C for 30 minutes ⇔ + 150 ° C for 30 minutes.

【0036】ここで熱抵抗は、各試料A,B,a,bの
厚膜抵抗体に10Wの電力を消費させ、そのときの抵抗
体基板の温度と放熱板の温度の温度差ΔTを測定し、下
記式(2)に従ってその熱抵抗θ(℃/W)を求めたも
のである。
As for the thermal resistance, the thick film resistors of the samples A, B, a, and b consume power of 10 W, and the temperature difference ΔT between the temperature of the resistor substrate and the temperature of the heat sink at that time is measured. Then, the thermal resistance θ (° C./W) is obtained according to the following formula (2).

【0037】つまり同じ電力を消費させたときに、熱伝
導度が大きいと(即ち温度差ΔTが小さいと)熱抵抗θ
は小さく、逆に熱伝導度が小さいと熱抵抗θは大きくな
る。
That is, when the same electric power is consumed, if the thermal conductivity is large (that is, the temperature difference ΔT is small), the thermal resistance θ
Is small, and conversely, if the thermal conductivity is small, the thermal resistance θ becomes large.

【0038】同図に示すように、エポキシ系の接着剤を
用いた比較例にかかる試料a,bは、温度衝撃サイクル
を繰り返すことによって急激に熱抵抗が上昇しており、
これは抵抗体基板から放熱板への熱の伝導が経時的に悪
くなっていることを示す。
As shown in the figure, the samples a and b according to the comparative example using the epoxy-based adhesive showed a rapid increase in thermal resistance due to repeated temperature shock cycles,
This indicates that heat conduction from the resistor substrate to the heat sink deteriorates with time.

【0039】一方本発明の高電力型抵抗器にかかる試料
A,Bにおいては、ほとんど熱抵抗が大きくならず、こ
れは熱伝導度がほとんど経時的に変化しないことを示し
ている。
On the other hand, in the samples A and B relating to the high power type resistor of the present invention, the thermal resistance hardly increased, which indicates that the thermal conductivity hardly changed with time.

【0040】なお上記実施例においてはケース40内に
充填する樹脂材70としてシリコン系の樹脂材を用いた
が、本発明はこれに限定されず、加熱硬化型で耐熱性の
高いものであれば他の樹脂材、例えばエポキシ系の樹脂
材、を用いても良い。
In the above embodiment, the silicon-based resin material is used as the resin material 70 filled in the case 40. However, the present invention is not limited to this, and any heat-curable resin having high heat resistance can be used. Other resin materials such as epoxy resin materials may be used.

【0041】[0041]

【発明の効果】以上詳細に説明したように、本発明にか
かる高電力型抵抗器によれば、以下のような優れた効果
を有する。 抵抗体基板上にシランカップリング剤を塗布し、その
上に樹脂材を充填したので、シランカップリング剤によ
って抵抗体基板と樹脂材の間の接着が確実に行え両者間
に空隙が生じることはなく、従って該空隙部分を介して
生じる恐れのある抵抗体基板と放熱板間の沿面放電が確
実に防止され、耐電圧特性が向上する。
As described in detail above, the high power resistor according to the present invention has the following excellent effects. Since the silane coupling agent is applied on the resistor substrate and the resin material is filled on the resistor substrate, the silane coupling agent ensures the adhesion between the resistor substrate and the resin material and does not cause a gap between them. Therefore, creeping discharge between the resistor substrate and the heat sink, which may occur through the void portion, is reliably prevented, and the withstand voltage characteristic is improved.

【0042】同時に熱伝導性の良いフィラーを混入し
た加熱硬化型のシリコン系接着剤によって抵抗体基板を
放熱板に接着一体化したので、温度変化が激しいにもか
かわらず、抵抗体基板から放熱板への熱の伝導が経時的
に悪くなることはなくその信頼性が飛躍的に向上する。
At the same time, since the resistor substrate is adhered and integrated with the heat sink by means of a heat-curing type silicone adhesive mixed with a filler having good thermal conductivity, the resistor plate causes the heat sink to dissipate despite the drastic temperature change. The heat conduction to the metal does not deteriorate over time, and the reliability is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例にかかる高電力型抵抗器の分
解斜視図である。
FIG. 1 is an exploded perspective view of a high power resistor according to an embodiment of the present invention.

【図2】ケース40の側断面図(図1のA−A断面図)
である。
FIG. 2 is a side sectional view of a case 40 (AA sectional view of FIG. 1).
Is.

【図3】本実施例にかかる高電力型抵抗器の製造工程を
示す図である。
FIG. 3 is a diagram showing a manufacturing process of the high power resistor according to the present embodiment.

【図4】本実施例にかかる高電力型抵抗器の製造工程を
示す図である。
FIG. 4 is a diagram showing a manufacturing process of the high power resistor according to the present embodiment.

【図5】本実施例にかかる高電力型抵抗器の製造工程を
示す図である。
FIG. 5 is a diagram showing a manufacturing process of the high power resistor according to the present embodiment.

【図6】本実施例にかかる高電力型抵抗器と他の構造の
高電力型抵抗器との加速試験(温度衝撃サイクル数−熱
抵抗)の試験結果を示す図である。
FIG. 6 is a diagram showing test results of an acceleration test (temperature shock cycle number-thermal resistance) of a high power resistor according to the present example and a high power resistor having another structure.

【符号の説明】[Explanation of symbols]

10 放熱板 20 シリコン系接着剤 30 抵抗体基板 31 セラミック基板 35 厚膜抵抗体 40 ケース 50,50 リード線 60 シランカップリング剤 70 樹脂材 10 Heat Radiating Plate 20 Silicon Adhesive 30 Resistor Substrate 31 Ceramic Substrate 35 Thick Film Resistor 40 Case 50, 50 Lead Wire 60 Silane Coupling Agent 70 Resin Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平板状のセラミック基板上に厚膜抵抗体
を印刷した抵抗体基板を、金属製であって他のヒートシ
ンクに取り付けられる放熱板上に取り付ける構造の高電
力型抵抗器において、 前記抵抗体基板は熱伝導性の良いフィラーを混入した加
熱硬化型のシリコン系接着剤によって放熱板に接着一体
化され、 且つ該放熱板に接着した抵抗体基板上にはシランカップ
リング剤が塗布され、 さらに前記シランカップリング剤が塗布された抵抗体基
板上に樹脂製のケースを被せ且つ該ケース内に樹脂材を
充填することによって抵抗体基板の周囲を該樹脂材で封
止したことを特徴とする高電力型抵抗器。
1. A high-power type resistor having a structure in which a resistor substrate, in which a thick film resistor is printed on a flat ceramic substrate, is mounted on a radiator plate made of metal and attached to another heat sink, The resistor substrate is bonded and integrated with the heat sink by a heat-curable silicone adhesive containing a filler with good thermal conductivity, and a silane coupling agent is applied on the resistor substrate bonded to the heat sink. Further, a resin case is covered on the resistor substrate coated with the silane coupling agent, and a resin material is filled in the case to seal the periphery of the resistor substrate with the resin material. High power type resistor.
JP6244639A 1994-09-12 1994-09-12 Large power resistor Pending JPH0883701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244639A JPH0883701A (en) 1994-09-12 1994-09-12 Large power resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244639A JPH0883701A (en) 1994-09-12 1994-09-12 Large power resistor

Publications (1)

Publication Number Publication Date
JPH0883701A true JPH0883701A (en) 1996-03-26

Family

ID=17121747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244639A Pending JPH0883701A (en) 1994-09-12 1994-09-12 Large power resistor

Country Status (1)

Country Link
JP (1) JPH0883701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024933A (en) * 2004-07-05 2006-01-26 Tyco Electronics Uk Ltd Electrical device with resistive thermogenesis element
US8230586B2 (en) 2005-01-10 2012-07-31 International Business Machines Corporation Method of cooling a resistor
KR20180012146A (en) * 2016-07-26 2018-02-05 한밭대학교 산학협력단 High power ceramic chip resistor for high withstand voltage and assembling method thereof
EP3404674A1 (en) * 2017-05-16 2018-11-21 EBG Elektronische Bauelemente GmbH Power resistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024933A (en) * 2004-07-05 2006-01-26 Tyco Electronics Uk Ltd Electrical device with resistive thermogenesis element
US8230586B2 (en) 2005-01-10 2012-07-31 International Business Machines Corporation Method of cooling a resistor
US8881379B2 (en) 2005-01-10 2014-11-11 International Business Machines Corporation Method of making heat sink for integrated circuit devices
KR20180012146A (en) * 2016-07-26 2018-02-05 한밭대학교 산학협력단 High power ceramic chip resistor for high withstand voltage and assembling method thereof
EP3404674A1 (en) * 2017-05-16 2018-11-21 EBG Elektronische Bauelemente GmbH Power resistor
WO2018210889A1 (en) * 2017-05-16 2018-11-22 Ebg Elektronische Bauelemente Gmbh Power resistor

Similar Documents

Publication Publication Date Title
CN107039289B (en) Thermal interface material with defined thermal, mechanical and electrical properties
US7190252B2 (en) Surface mount electrical resistor with thermally conductive, electrically insulative filler and method for using same
US6651320B1 (en) Method for mounting semiconductor element to circuit board
US5989942A (en) Method for fabricating semiconductor device
KR101682761B1 (en) Thermally conductive dielectric interface
US6206997B1 (en) Method for bonding heat sinks to overmolds and device formed thereby
JP2011228336A (en) Semiconductor device and method for manufacturing the same
EP0645812B1 (en) Resin-sealed semiconductor device
US4935086A (en) Process of bonding an electrical device package to a mounting surface
JPH10242333A (en) Semiconductor device and its manufacture
JP4723479B2 (en) Insulated power semiconductor module in which partial discharge behavior is suppressed to a low level and manufacturing method thereof
JP6790226B2 (en) Semiconductor device
JPH0883701A (en) Large power resistor
JP2000340719A (en) Power semiconductor device
JPH11150441A (en) Mounting structure for surface acoustic wave element and the mount method
CN114078790A (en) Power semiconductor module device and method for manufacturing the same
JP2004015604A (en) Method of manufacturing piezoelectric component
JP3708490B2 (en) Optical semiconductor device and manufacturing method thereof
JPH01164099A (en) Heat-dissipating shield sheet
JP2598026Y2 (en) High power type resistor
JPH09237869A (en) Resin-encapsulated power module device and manufacture thereof
JP2726515B2 (en) Semiconductor tower mounting circuit board and method of manufacturing the same
JPH10256304A (en) Manufacture of semiconductor device
JP2002373961A (en) Resin sealed electronic device
JP7454129B2 (en) semiconductor equipment