JP2000340719A - Power semiconductor device - Google Patents

Power semiconductor device

Info

Publication number
JP2000340719A
JP2000340719A JP11145973A JP14597399A JP2000340719A JP 2000340719 A JP2000340719 A JP 2000340719A JP 11145973 A JP11145973 A JP 11145973A JP 14597399 A JP14597399 A JP 14597399A JP 2000340719 A JP2000340719 A JP 2000340719A
Authority
JP
Japan
Prior art keywords
insulating substrate
insulating
semiconductor device
power semiconductor
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11145973A
Other languages
Japanese (ja)
Inventor
Tadao Kushima
忠雄 九嶋
Akira Tanaka
明 田中
Ryuichi Saito
隆一 斎藤
Kazuhiro Suzuki
和弘 鈴木
Yoshihiko Koike
義彦 小池
Hideo Shimizu
英雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11145973A priority Critical patent/JP2000340719A/en
Publication of JP2000340719A publication Critical patent/JP2000340719A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To improve a level of insulating withstand voltage by coating a boundary of a conductive part on a creepage surface of an insulating substrate between a conductive pattern end and a base plate with an amorphous inorganic glass material, which is larger in breakdown voltage than an insulation-resistant gelling agent and has high resistance against discharged withstand voltage. SOLUTION: A boundary of the end of a conductive pattern 3b is coated on the creepage surface of an insulating substrate, such as aluminum nitride 3a. The conductive patterns 3b, such as Cu foil, are brazed with Ag on both surfaces of the insulating substrate. For instance, a discharging method such as a mask printing method is used. Coating is made with crystalline inorganic glass 4a such as a Bi2O3-B2O3 material, which is higher in breakdown voltage than an insulation-resistant gelling agent 5a by 10 kV or higher, has high resistance against discharged withstand voltage, and has a thermal expansion coefficient of 3.2 to 12.5×10-6/ deg.C. Afterwards, a heating operation is performed in the air or in N2 gas, and fusion bonding is carried out at a sealing temperature of 410 to 750 deg.C. A case structure 6, which is made of a polyphenylene sulfide insulating resin material, is bonded and sealed into the peripheral part of a base plate 1 with an adhesive 7 made of silicon resin, to complete a module.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パワー半導体装置
における内部絶縁耐電圧構造に関する。
The present invention relates to an internal withstand voltage structure in a power semiconductor device.

【0002】[0002]

【従来の技術】従来の装置は、特開平8−125071 号公報
に示す構造の半導体装置(概略説明図;図8Aに示す)
のように、容器底板1に銅板と銅回路3bを形成したセ
ラミックス基板3aを半田付けし、銅回路から外部引出
端子9を取り出し、容器底板1の外に容器外壁6を設
け、回路基板の周縁部を、基板及び容器底板との接着力
の強いシリコーンゴム接着剤10aによって被覆したの
ち、ポッテイング剤(ゲル状シリコーンゴム)5aを注
入し、さらにエポキシ樹脂13を充填させたものであ
る。この構造の主目的としているのは、ポッテイング材
5aが回路基板から剥離して耐電圧性能が低下すること
を防ぐことにある。
2. Description of the Related Art A conventional device is a semiconductor device having a structure disclosed in Japanese Patent Application Laid-Open No. H08-125071 (schematic explanatory diagram; shown in FIG. 8A).
Then, a ceramic plate 3a having a copper plate and a copper circuit 3b formed thereon is soldered to the container bottom plate 1, an external lead-out terminal 9 is taken out from the copper circuit, a container outer wall 6 is provided outside the container bottom plate 1, and a peripheral edge of the circuit board is provided. After the portion is covered with a silicone rubber adhesive 10a having a strong adhesive force to the substrate and the container bottom plate, a potting agent (gel-like silicone rubber) 5a is injected, and an epoxy resin 13 is further filled. The main purpose of this structure is to prevent the potting material 5a from peeling off from the circuit board and reducing the withstand voltage performance.

【0003】[0003]

【発明が解決しようとする課題】従来の構造では以下の
問題が発生する。
The following problems occur in the conventional structure.

【0004】まず、第一に、ポッテイング材5aがエポ
キシ樹脂13で完全に封じられているため、装置稼働時
にポッテイング材5aの膨張収縮が発生した場合その内
部応力14の発生によりシリコーンゴム接着剤10aと
の界面で剥離欠陥(図8Bの16)が生じやすい。この
ような剥離欠陥は絶縁破壊に至らしめるものである。ま
た、第2に、この従来構造では、回路基板周縁部を被覆
したシリコーンゴム接着剤10aがその膨張収縮(図8
Aの15)によって回路基板周縁部を持ち上げたり、ま
た下げたりするため、回路基板周縁部(セラミックス基
板3a)を脆性破壊させ(図8Bの3c)てしまう恐れ
がある。その結果、絶縁耐圧を持たせる役目の周縁部距
離が短くなり、ひいては耐電圧性能を低下させてしまう
懸念がある。
First, since the potting material 5a is completely sealed with the epoxy resin 13, when the potting material 5a expands and contracts during operation of the apparatus, the silicone rubber adhesive 10a is generated due to the internal stress 14 generated. Defects (16 in FIG. 8B) are likely to occur at the interface with. Such peeling defects lead to dielectric breakdown. Second, in this conventional structure, the silicone rubber adhesive 10a covering the peripheral portion of the circuit board expands and contracts (FIG. 8).
Since the peripheral portion of the circuit board is raised or lowered according to 15) A), the peripheral portion of the circuit board (the ceramic substrate 3a) may be brittlely broken (3c in FIG. 8B). As a result, there is a concern that the peripheral edge distance serving to provide the withstand voltage is reduced, and the withstand voltage performance is reduced.

【0005】また、第3に近年これまでの半導体装置の
使用条件と異なり、より付加電圧高レべルの高絶縁耐圧
(耐電圧:9kVrms以上)構造が要求されてきている。
従来構造(図7A)での絶縁耐電圧耐量は、回路基板の
耐電圧特性と回路基板上面に形成された銅回路端部から
容器底板間の距離並びに内部に充填したポッテイング材
や回路基板周縁部を被覆したシリコーンゴム接着剤等の
絶縁特性に委ねられていると考えられる。しかし、より
高電圧化された半導体装置の場合には、導電部端部のA
gろう付部(図7A,Bの3d)での電界集中等による
部分放電が発生し、図7Aの18aや図7Bの18a,
18bに示したモデル図のように、耐絶縁樹脂の結合力
を破壊させる部分放電が進行し、絶縁破壊に至らしめる
ことが多い。
Third, unlike the use conditions of semiconductor devices up to now, a high withstand voltage (withstand voltage: 9 kVrms or more) structure with a higher additional voltage has been required in recent years.
The dielectric strength withstand voltage of the conventional structure (FIG. 7A) is based on the withstand voltage characteristics of the circuit board, the distance between the copper circuit end formed on the upper surface of the circuit board and the container bottom plate, the potting material filled inside and the peripheral portion of the circuit board. It is considered that it is left to the insulating properties of the silicone rubber adhesive coated with the resin. However, in the case of a semiconductor device with a higher voltage, A
7g, a partial discharge occurs due to electric field concentration at the brazing portion (3d in FIGS. 7A and 7B), and 18a in FIG. 7A and 18a in FIG.
As shown in the model diagram of FIG. 18b, a partial discharge that breaks the bonding strength of the insulating resin progresses, and often causes dielectric breakdown.

【0006】本発明の目的は、パワー半導体装置におけ
る内部構造の絶縁耐電圧耐量を向上させることにある。
An object of the present invention is to improve the withstand voltage and withstand voltage of the internal structure of a power semiconductor device.

【0007】[0007]

【課題を解決するための手段】本発明によるパワー半導
体装置においては、導電パターン端部とベース板間の絶
縁基板沿面上の導電部との境界領域を耐絶縁性ゲル剤よ
りも絶縁破壊電圧が高く、耐部分放電性に強い無機材
料、例えば熱膨張係数7.5〜9.0×10-6/℃,封着
温度500〜600℃,絶縁耐圧10kVrms以上を有す
る非結晶性の無機系ガラス(Bi23−B23系)材で
被覆する。
In the power semiconductor device according to the present invention, the boundary region between the end of the conductive pattern and the conductive portion on the surface of the insulating substrate between the base plate has a higher breakdown voltage than the insulating gel. Highly inorganic material having high partial discharge resistance, for example, an amorphous inorganic glass having a coefficient of thermal expansion of 7.5 to 9.0 × 10 −6 / ° C., a sealing temperature of 500 to 600 ° C., and a withstand voltage of 10 kVrms or more. (Bi 2 O 3 -B 2 O 3 ) material.

【0008】[0008]

【発明の実施の形態】以下に、本発明の実施例を図1〜
図7Bにより説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG. 7B.

【0009】図1は、本発明の一実施例のパワー半導体
装置を説明するための部分拡大断面図で、図2はその平
面図である。
FIG. 1 is a partially enlarged sectional view for explaining a power semiconductor device according to one embodiment of the present invention, and FIG. 2 is a plan view thereof.

【0010】図1並びに図2に示すように、表裏間に導
電パターン3b(例えばCu箔)をAgろう付け(例え
ば、溶融温度800〜850℃のTi入りのCu−Ag
共晶系Agろう)した絶縁基板(例えば窒化アルミニュ
ーム:AlN)3aの沿面上で導電パターン3b端部と
の境界部を、例えばマスク印刷方式やデスペンサー等の
吐出方式を用い、耐絶縁性ゲル剤5aよりも絶縁破壊電
圧(10kV以上)が高く、耐部分放電性に強い(材料内
の結合力が強い)表1に示す結晶性の無機系ガラス4a
(例えばA:Bi23−B23系)材で被覆し、その後
に大気中あるいはN2 ガス中で加熱(700℃)し融着さ
せた。
As shown in FIGS. 1 and 2, a conductive pattern 3b (for example, Cu foil) is brazed between the front and back with Ag (for example, Cu-Ag containing Ti at a melting temperature of 800 to 850 ° C.).
The boundary between the surface of the insulating substrate (e.g., aluminum nitride: AlN) 3a on which eutectic Ag brazing is performed and the end of the conductive pattern 3b is formed using, for example, a mask printing method or a discharge method such as a dispenser. Inorganic glass 4a having a higher dielectric breakdown voltage (10 kV or more) than the gel agent 5a and having a high partial discharge resistance (having a strong bonding force in the material) as shown in Table 1
(E.g. A: Bi 2 O 3 -B 2 O 3 system) coated with material was then heated in air or in N 2 gas (700 ° C.) was fused.

【0011】[0011]

【表1】 [Table 1]

【0012】そして、導電パターン3b上に半導体チッ
プ19aを高融点半田材(例えばPb−5wt%Sn−
1.5wt%Ag:融点296〜305℃)で接合し、
Alワイヤ20aでボンデイング配線する。ついで、こ
れらのALN絶縁基板をベース板(モリブデン:Moま
たはAl−SiC複合材あるいはCuCuO2 焼結材)
1に半田(例えばSn−40wt%Pb:融点183〜
191℃)2で接合する。いずれもH2 ガス中で加熱し
て接合する。そして該ベース板1の外周部にPPS(ポ
リフェニレンサルファイド)絶縁樹脂材からなるケース
構造体6をシリコーン系樹脂の接着剤7で接着する。さ
らに、その上部層へ絶縁性ゲル剤5aを充填して硬化さ
せた後、上部を封止してモジュールを完成させる。
Then, a semiconductor chip 19a is formed on the conductive pattern 3b with a high melting point solder material (for example, Pb-5 wt% Sn-
1.5 wt% Ag: melting point: 296-305 ° C)
Bonding wiring is performed with the Al wire 20a. Next, these ALN insulating substrates are used as base plates (molybdenum: Mo or Al-SiC composite material or CuCuO 2 sintered material).
Solder No. 1 (for example, Sn-40 wt% Pb: melting point 183 or more)
(191 ° C.) 2 Both are joined by heating in H 2 gas. Then, a case structure 6 made of a PPS (polyphenylene sulfide) insulating resin material is bonded to the outer peripheral portion of the base plate 1 with an adhesive 7 made of a silicone resin. Further, after the upper layer is filled with the insulating gel agent 5a and cured, the upper part is sealed to complete the module.

【0013】本発明では、導電パターン3b端部とベー
ス板1間のALN絶縁基板3a沿面上の導電部との境界
領域を、結晶性の無機系ガラス(Bi23−B23系)
材で被覆した構造とすることにより、耐絶縁性ゲル剤5
aよりも絶縁破壊電圧が高くなり、また部分放電による
破壊進行を抑制できるので、導電パターン3b端部とベ
ース板1間の絶縁耐圧耐量が大幅に向上された。
In the present invention, the boundary region between the end of the conductive pattern 3b and the conductive portion on the surface of the ALN insulating substrate 3a between the base plate 1 is formed by using a crystalline inorganic glass (Bi 2 O 3 -B 2 O 3 system). )
By having a structure covered with a material, the insulating gel agent 5
Since the dielectric breakdown voltage is higher than that of a and the progress of the breakdown due to the partial discharge can be suppressed, the withstand voltage between the end of the conductive pattern 3b and the base plate 1 is greatly improved.

【0014】また、ベース板1上に半田2付けされた絶
縁基板3aが、セラミックス等からなる基板であること
や、絶縁基板3aの沿面全外周部に接合配置する構造体
が、ケース材6と同等の絶縁樹脂あるいは絶縁基板と同
様のセラミックス材であることにより、目的とする絶縁
耐圧耐量が確実に確保できるものである。
The insulating substrate 3a soldered 2 on the base plate 1 is a substrate made of ceramics or the like, and the structure bonded and arranged on the entire outer peripheral surface of the insulating substrate 3a is By using the same insulating resin or the same ceramic material as the insulating substrate, the intended withstand voltage resistance can be reliably ensured.

【0015】また、導電パターン3b部を形成した絶縁
基板3aを半田2付けしたベース材1が、線膨張係数が
シリコーン(Si)の3倍以下である材料からなるよう
にしたことにより、半導体装置の稼働時における絶縁基
板3aとベース材1間の線膨張係数差を小さくでき、従
って半田2への熱歪を低下させることができる。このこ
とで、高信頼性の半導体装置が得られる。
Further, the base material 1 to which the insulating substrate 3a on which the conductive pattern 3b is formed is soldered 2 is made of a material having a coefficient of linear expansion of three times or less that of silicone (Si). In operation, the difference in the coefficient of linear expansion between the insulating substrate 3a and the base material 1 can be reduced, so that the thermal strain on the solder 2 can be reduced. Thus, a highly reliable semiconductor device can be obtained.

【0016】また、前述した理由から、ベース材として
はモリブデン(Mo)またはAl−SiC複合材あるい
はCuCuO2 焼結材などの金属材料や複合材料が望ま
しい。これらの作用により、高絶縁耐圧耐量に優れた構
造が得られ、安価でかつ信頼性の高いパワー半導体装置
を得ることができる。
For the reasons described above, the base material is preferably a metal material or a composite material such as molybdenum (Mo) or an Al—SiC composite material or a CuCuO 2 sintered material. By these effects, a structure excellent in high withstand voltage and withstand voltage can be obtained, and a low-cost and highly reliable power semiconductor device can be obtained.

【0017】図3は、本発明の他の一実施例の拡大断面
図である。
FIG. 3 is an enlarged sectional view of another embodiment of the present invention.

【0018】表裏間に導電パターン3bをAgろう付け
したALN絶縁基板3a沿面上で導電パターン3b端部
に、例えばマスク印刷方式やデスペンサー等の吐出方式
を用い、表2に示した非金属材料、例えばAu−Sn2
元系からなる共晶ろう材(溶融温度:280℃)のペー
スト剤を被覆し、加熱(320℃)して融着させ、その
接合端部を曲率半径:0.15mm 以上の球形形状になる
ようにした。
A non-metallic material shown in Table 2 is applied to the end of the conductive pattern 3b on the surface of the ALN insulating substrate 3a on which the conductive pattern 3b is Ag-brazed between the front and back sides by using, for example, a mask printing method or a discharge method such as a dispenser. , For example, Au-Sn2
A paste of a eutectic brazing material (melting temperature: 280 ° C.) consisting of the original system is coated and heated (320 ° C.) to be fused, and the joint end is formed into a spherical shape having a radius of curvature of 0.15 mm or more. I did it.

【0019】[0019]

【表2】 [Table 2]

【0020】接合端部を曲率半径:0.15mm 以上の球
形形状にする要点は、まずALN絶縁基板3aのALN
バルク面にはAu−Sn2元系からなる共晶ろう材は直
接濡れない。従って、溶融金属特有の表面張力によって
球状化する。ろう材が濡れるのは、導電パターン3b端
部とその接合Agろう部だけである。従って、スク印刷
方式やデスペンサー等の吐出方式による共晶ろう材のペ
ースト剤供給量を調節することで、接合端部を曲率半
径:0.15 mm以上の球形形状にすることができる。
The main point of making the joint end portion into a spherical shape having a radius of curvature of 0.15 mm or more is that the ALN insulating substrate 3a
The eutectic brazing material composed of the Au-Sn binary system does not directly wet the bulk surface. Therefore, it is spheroidized by the surface tension specific to the molten metal. The brazing material wets only at the end of the conductive pattern 3b and the joined Ag brazing portion. Therefore, by adjusting the supply amount of the paste material of the eutectic brazing material by a discharge printing method such as a screen printing method or a dispenser, the joining end portion can be formed into a spherical shape having a radius of curvature of 0.15 mm or more.

【0021】これまでの構造では、ALN基板に導電パ
ターン3bを形成する場合、Ti入りのCu−Ag共晶
系Agろうで接合するが、接合したAgろうの末端部が
鋭角な形状を呈するのでその部分に電界強度が集中し、
部分放電を発生しやすい構造となっていた。
In the conventional structure, when the conductive pattern 3b is formed on the ALN substrate, it is joined by a Cu-Ag eutectic Ag solder containing Ti, but since the end portion of the joined Ag solder has an acute angle shape. The electric field strength concentrates on that part,
The structure was such that partial discharge easily occurred.

【0022】本発明の構造とすることで、端部での電界
集中が緩和され、部分放電を発生や成長進行が抑制さ
れ、前述と同様の高絶縁耐電圧の結果が得られた。
By adopting the structure of the present invention, the concentration of the electric field at the end portions is reduced, the generation of partial discharge and the progress of growth are suppressed, and the same high dielectric strength voltage as described above was obtained.

【0023】図4A,図4B,図4Cは、本発明の他の
実施例の拡大断面図である。
FIGS. 4A, 4B and 4C are enlarged sectional views of another embodiment of the present invention.

【0024】図4Aは、絶縁基板3a沿面上の導電部と
の境界領域を結晶性の無機系ガラス材(Bi23−B2
3系)で被覆し、それ以外の領域を、表1のDに示す
耐電圧性に優れたシリコーン系高絶縁耐電圧性樹脂剤4
bで被覆させた構造で、図4Bは、前記無機材で被覆し
た絶縁基板沿面上の導電部境界領域を、その領域部を含
んだ絶縁基板沿面上を、表1のDに示す絶縁破壊電圧が
高いシリコーン系の高絶縁耐圧性樹脂剤で被覆した構造
であり、図4Cは、前記無機材料で被覆した絶縁基板沿
面上の導電部境界領域を含み、導電部絶縁基板沿面上と
ベース間の領域を、前記述のシリコーン系高絶縁耐圧性
樹脂剤で被覆した構造である。
FIG. 4A shows a crystalline inorganic glass material (Bi 2 O 3 -B 2
O 3 ), and the other areas were coated with a silicone-based high insulation voltage-resistant resin agent 4 having excellent voltage resistance shown in Table 1D.
FIG. 4B shows a dielectric breakdown voltage shown in D of Table 1 on the surface of the insulating substrate covered with the inorganic material, and on the surface of the insulating substrate including the region. FIG. 4C includes a conductive portion boundary region on the surface of an insulating substrate coated with the inorganic material, and a portion between the base on the conductive portion insulating substrate and the base. The region has a structure in which the region is covered with the silicone-based high-breakdown-voltage resin agent described above.

【0025】本発明の図4A構造とすることで、ALN
絶縁基板3a沿面上での部分放電による破壊進行を2段
に抑制できる構造となるので、絶縁耐圧耐量がより一層
向上できる。また、本発明の図4B構造とすることで、
該絶縁基板の沿面距離を延長させて絶縁耐圧を向上させ
るばかりでなく、前記無機材料での被覆部を保護しかつ
ALN絶縁基板3a沿面上での部分放電による破壊進行
を2重構造で抑制できるので、絶縁耐圧耐量がなお一層
向上できるものである。また、本発明の図4C構造とす
ることで、ベース間側までの高絶縁耐圧耐量が得られ
た。
With the structure of FIG. 4A of the present invention, ALN
Since the structure is such that the progress of destruction due to partial discharge on the surface of the insulating substrate 3a can be suppressed in two steps, the withstand voltage resistance can be further improved. Further, by adopting the structure of FIG. 4B of the present invention,
In addition to extending the creepage distance of the insulating substrate to improve the withstand voltage, the covering portion with the inorganic material can be protected and the destruction progress due to partial discharge on the ALN insulating substrate 3a can be suppressed by a double structure. Therefore, the withstand voltage resistance can be further improved. In addition, with the structure of FIG. 4C of the present invention, a high withstand voltage withstand voltage up to the inter-base side was obtained.

【0026】本発明の3構造は、端部での電界集中が第
1層の無機材で緩和され、さらにその周辺の絶縁耐圧が
確保されることから、部分放電の発生や成長進行が抑制
されて、前述同様の高絶縁耐電圧の結果が得られた。
In the three structures according to the present invention, the concentration of the electric field at the end is alleviated by the inorganic material of the first layer, and furthermore, the withstand voltage around the periphery is ensured. As a result, the same high dielectric strength voltage as described above was obtained.

【0027】また、本発明に用いた高絶縁耐電圧性樹脂
剤4が、該ALN絶縁基板沿面部との接着性の良いシリ
コーン系樹脂あるいはポリアミド系樹脂からなるため、
その入手が容易でかつ組み立てプロセス面からも安価な
構造が得られるものである。図5は、本発明の他の一実
施例の拡大断面図である。
Further, since the high insulation withstand voltage resin agent 4 used in the present invention is made of a silicone resin or a polyamide resin having good adhesion to the surface of the ALN insulating substrate,
The structure can be obtained easily and at a low cost in terms of the assembling process. FIG. 5 is an enlarged sectional view of another embodiment of the present invention.

【0028】図5は、絶縁基板3a沿面上の導電部との
境界領域を前記の無機系ガラス材で被覆した後、該境界
領域部以外の絶縁基板沿面外周部に、PPS(ポリフェ
ニレンサルファイド)樹脂材或いはセラミックス材から
なる絶縁性樹脂構造体12を、シリコーン系高絶縁耐圧
性樹脂剤4bで接着した構造である。
FIG. 5 shows that the boundary region between the conductive portion on the surface of the insulating substrate 3a and the conductive glass is coated with the above-mentioned inorganic glass material, and then the PPS (polyphenylene sulfide) resin is applied to the outer peripheral portion of the surface of the insulating substrate other than the boundary region. This is a structure in which an insulating resin structure 12 made of a material or a ceramic material is bonded with a silicone-based high withstand voltage resin material 4b.

【0029】本発明の構造とすることで、該絶縁基板の
沿面距離を2倍以上に延長させることができ、従来構造
の破壊電圧よりも一段と高い高絶縁耐電圧の結果が得ら
れた。
By employing the structure of the present invention, the creepage distance of the insulating substrate can be extended to twice or more, and a higher dielectric strength voltage higher than the breakdown voltage of the conventional structure can be obtained.

【0030】図6は、本発明による絶縁耐電圧耐量を絶
縁破壊電圧で示し、従来構造のそれと比較した説明図で
ある。
FIG. 6 is an explanatory diagram showing the withstand voltage withstand voltage according to the present invention in terms of the dielectric breakdown voltage and comparing it with that of the conventional structure.

【0031】図は、本発明による代表構造の絶縁破壊電
圧を示した結果である。導電パターン端部とベース板間
のALN絶縁基板沿面上の導電部との境界領域を,結晶
性の無機系ガラス材や非鉄金属材料で被覆した構造で、
電界集中を緩和し部分放電による耐絶縁性ゲル剤の破壊
進行を抑制でき、さらに本発明の前記構造のそれらをシ
リコーン系高絶縁耐圧性樹脂剤で覆いかぶせるように接
着した構造とすることにより、耐絶縁性ゲル剤を充填し
た従来構造よりも絶縁破壊電圧が数段と高い高内部絶縁
耐圧耐量構造が確立できた。
FIG. 3 shows the results showing the breakdown voltage of the representative structure according to the present invention. A structure in which the boundary area between the conductive pattern edge and the conductive part on the surface of the ALN insulating substrate between the base plate and the conductive part is covered with a crystalline inorganic glass material or a non-ferrous metal material.
By alleviating the electric field concentration, it is possible to suppress the progress of destruction of the insulating gel agent due to partial discharge, and by adopting a structure in which the above-mentioned structures of the present invention are bonded so as to be covered with a silicone-based high withstand voltage resin, A high internal withstand voltage withstand voltage structure with several levels of dielectric breakdown voltage higher than that of the conventional structure filled with insulating gel was successfully established.

【0032】[0032]

【発明の効果】本発明によれば、絶縁基板を搭載したパ
ワー半導体装置において、高い絶縁破壊電圧(例えば約
16kVrms)を確保することができる。
According to the present invention, a high breakdown voltage (for example, about 16 kVrms) can be secured in a power semiconductor device having an insulating substrate mounted thereon.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例であるパワー半導体装置
の部分断面図。
FIG. 1 is a partial cross-sectional view of a power semiconductor device according to a first embodiment of the present invention.

【図2】本発明(図1)のAlN絶縁基板の全体を示す
平面図。
FIG. 2 is a plan view showing the entire AlN insulating substrate of the present invention (FIG. 1).

【図3】本発明の第2の実施例であるパワー半導体装置
の部分断面図。
FIG. 3 is a partial cross-sectional view of a power semiconductor device according to a second embodiment of the present invention.

【図4A,B,C】本発明の第3,4,5の実施例であ
るパワー半導体装置の部分断面図。
FIGS. 4A, 4B and 4C are partial cross-sectional views of power semiconductor devices according to third, fourth and fifth embodiments of the present invention.

【図5】本発明の第6の実施例であるパワー半導体装置
の部分断面図。
FIG. 5 is a partial sectional view of a power semiconductor device according to a sixth embodiment of the present invention.

【図6】本発明の実施例における絶縁基板沿面距離と絶
縁破壊電圧との関係の1例。
FIG. 6 shows an example of a relationship between a creepage distance of an insulating substrate and a dielectric breakdown voltage according to the embodiment of the present invention.

【図7A】従来のパワー半導体装置における破壊現象を
示す断面構造モデル図。
FIG. 7A is a sectional structural model diagram showing a destruction phenomenon in a conventional power semiconductor device.

【図7B】従来のパワー半導体装置における破壊現象を
示す平面モデル図。
FIG. 7B is a plan model diagram showing a breakdown phenomenon in a conventional power semiconductor device.

【図8】従来のパワー半導体装置第2例における剥離欠
陥を示す図。
FIG. 8 is a view showing a separation defect in a second example of the conventional power semiconductor device.

【図9】従来のパワー半導体装置における破壊現象を示
す断面構造モデル図。
FIG. 9 is a cross-sectional structural model diagram showing a breakdown phenomenon in a conventional power semiconductor device.

【図10】従来のパワー半導体装置における破壊現象を
示す断面構造モデル図。
FIG. 10 is a cross-sectional structural model diagram showing a breakdown phenomenon in a conventional power semiconductor device.

【符号の説明】[Explanation of symbols]

1…ベース板、2…半田、3a…絶縁基板、3b…導電
パターン、3c…絶縁基板端部、3d…Agろう部、4
a…無機系ガラス材、4b…高絶縁耐電圧性樹脂(シリ
コーン系)剤、4c…非鉄金属材、5a…絶縁ゲル(シ
リコーン系)剤、6…ケース構造体(PPS樹脂)、7
…ケース接着剤、8…端子ブロック、9…外部引出端
子、10a…シリコーンゴム接着剤、12…絶縁性樹脂
構造体、13…硬質エポキシ樹脂、14…内部応力矢
図、15…膨張収縮矢図、16…剥離欠陥、17…部分
放電部、18a…破壊痕跡、19a…半導体チップ、2
0a…Alワイヤ、21…高電圧回路、22…高電圧交
流計。
DESCRIPTION OF SYMBOLS 1 ... Base plate, 2 ... Solder, 3a ... Insulating board, 3b ... Conductive pattern, 3c ... Insulating board edge part, 3d ... Ag brazing part, 4
a: inorganic glass material, 4b: high insulation withstand voltage resin (silicone) agent, 4c: non-ferrous metal material, 5a: insulating gel (silicone) agent, 6: case structure (PPS resin), 7
... case adhesive, 8 ... terminal block, 9 ... external lead-out terminal, 10a ... silicone rubber adhesive, 12 ... insulating resin structure, 13 ... hard epoxy resin, 14 ... internal stress arrow diagram, 15 ... expansion and contraction arrow diagram , 16: peeling defect, 17: partial discharge portion, 18a: destruction trace, 19a: semiconductor chip, 2
0a: Al wire, 21: high voltage circuit, 22: high voltage AC meter.

フロントページの続き (72)発明者 斎藤 隆一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 和弘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小池 義彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 清水 英雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4M109 AA02 AA03 BA03 CA02 DB02 DB09 DB10 DB16 EC07 ED04 GA02 Continued on the front page (72) Inventor Ryuichi Saito 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kazuhiro Suzuki 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Yoshihiko Koike 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. No. 1-1 F-term in Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 4M109 AA02 AA03 BA03 CA02 DB02 DB09 DB10 DB16 EC07 ED04 GA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導電パターンを形成した絶縁基板を単数枚
以上搭載したベース材の外周部に、絶縁樹脂からなるケ
ース構造体を配置し、その内部全域を耐絶縁性ゲル剤で
充填させた構造のパワー半導体装置において、導電パタ
ーン端部とベース板間の絶縁基板沿面上の導電部との境
界領域を、熱膨張係数3.2〜12.5×10-6/℃,封
着温度410〜750℃,絶縁耐圧10kVrms以上を有
する結晶性並びに非結晶性の無機系ガラス材で被覆した
ことを特徴とするパワー半導体装置。
1. A structure in which a case structure made of an insulating resin is arranged on an outer peripheral portion of a base material on which at least one insulating substrate on which a conductive pattern is formed is mounted, and the entire inner region is filled with an insulating gel agent. In the power semiconductor device of (1), the boundary area between the end of the conductive pattern and the conductive portion on the surface of the insulating substrate between the base plate is defined by a coefficient of thermal expansion of 3.2 to 12.5 × 10 −6 / ° C. and a sealing temperature of 410 to 410. A power semiconductor device characterized by being coated with a crystalline and non-crystalline inorganic glass material having 750 ° C. and a withstand voltage of 10 kVrms or more.
【請求項2】導電パターンを形成した絶縁基板の導電パ
ターン端部とベース板間の絶縁基板沿面上の導電部との
境界領域を、溶融温度200〜500℃,Pbを含まな
い2元素以上からなる非鉄金属材の溶融金属で融着し、
曲率半径:0.15mm 以上の形状を形成させ、端部の電
界強度を低下させて部分放電を減少可能な構造としたこ
とを特徴とするパワー半導体装置。
2. The method according to claim 1, wherein a boundary region between an end of the conductive pattern of the insulating substrate on which the conductive pattern is formed and a conductive portion on the surface of the insulating substrate between the base plate is formed by melting at a temperature of 200 to 500 ° C. Fused with a non-ferrous metal material
A power semiconductor device having a structure in which a shape having a radius of curvature of 0.15 mm or more is formed, and an electric field intensity at an end portion is reduced to reduce a partial discharge.
【請求項3】無機材料で被覆した絶縁基板沿面上の導電
部境界領域以外の絶縁基板沿面上を、それとの接着性が
強く、耐絶縁性ゲル剤よりも絶縁破壊電圧が高い高絶縁
耐圧性有機樹脂剤で被覆したことを特徴とするパワー半
導体装置。
3. A high withstand voltage with high adhesion to the surface of the insulating substrate other than the conductive region boundary region on the surface of the insulating substrate coated with an inorganic material and having a higher dielectric breakdown voltage than an insulating gel agent. A power semiconductor device characterized by being coated with an organic resin agent.
【請求項4】無機材料で被覆した絶縁基板沿面上の導電
部境界領域を含んだ導電部絶縁基板沿面上を、耐絶縁性
ゲル剤よりも絶縁破壊電圧が高い高絶縁耐圧性樹脂剤で
被覆したことを特徴とするパワー半導体装置。
4. A surface of a conductive part insulating substrate including a conductive part boundary region on a surface of the insulating substrate coated with an inorganic material is coated with a high dielectric strength resin having a higher dielectric breakdown voltage than an insulating gel. A power semiconductor device, comprising:
【請求項5】無機材料で被覆した絶縁基板沿面上の導電
部境界領域を含み、導電部絶縁基板沿面上とベース間
を、耐絶縁性ゲル剤よりも絶縁破壊電圧が高い高絶縁耐
圧性樹脂剤で被覆したことを特徴とするパワー半導体装
置。
5. A high withstand voltage resin including a conductive portion boundary region on an insulating substrate surface covered with an inorganic material, and having a higher dielectric breakdown voltage than the insulating gel agent between the conductive portion insulating substrate surface and the base. A power semiconductor device characterized by being coated with an agent.
【請求項6】無機材料で被覆した絶縁基板導電部とその
境界領域部以外の絶縁基板沿面外周部に、絶縁性樹脂構
造体を、高絶縁耐圧性樹脂剤で接着し、絶縁基板の沿面
距離を延長させたことを特徴とするパワー半導体装置。
6. An insulating resin structure is adhered to a conductive portion of an insulating substrate coated with an inorganic material and an outer peripheral surface of the insulating substrate other than a boundary region thereof with a high-breakdown-voltage resin material. A power semiconductor device characterized by extending the length.
JP11145973A 1999-05-26 1999-05-26 Power semiconductor device Pending JP2000340719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11145973A JP2000340719A (en) 1999-05-26 1999-05-26 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11145973A JP2000340719A (en) 1999-05-26 1999-05-26 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2000340719A true JP2000340719A (en) 2000-12-08

Family

ID=15397278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11145973A Pending JP2000340719A (en) 1999-05-26 1999-05-26 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2000340719A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928347B2 (en) * 2006-04-12 2011-04-19 Rohm Co., Ltd. Heating unit and method of making the same
WO2013140663A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 Semiconductor module and method for manufacturing same
JP2015015434A (en) * 2013-07-08 2015-01-22 三菱電機株式会社 Module structure
JP2015195415A (en) * 2015-08-10 2015-11-05 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2015170488A1 (en) * 2014-05-08 2015-11-12 三菱電機株式会社 Semiconductor device and method for producing same
JP2015207731A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 semiconductor device
US9466548B2 (en) 2012-02-22 2016-10-11 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
JP2016192497A (en) * 2015-03-31 2016-11-10 日立化成株式会社 Semiconductor device and power module having the same
JP2017028132A (en) * 2015-07-23 2017-02-02 富士電機株式会社 Semiconductor module and manufacturing method therefor
JPWO2014128899A1 (en) * 2013-02-22 2017-02-02 株式会社日立製作所 Resin-sealed electronic control unit
JP6081042B1 (en) * 2015-12-16 2017-02-15 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2017154408A1 (en) * 2016-03-10 2017-09-14 株式会社日立製作所 POWER SEMICONDUCTOR MODULE, SiC SEMICONDUCTOR ELEMENT TO BE MOUNTED ON SAME, AND METHOD OF MANUFACTURING SiC SEMICONDUCTOR ELEMENT
JP2018098442A (en) * 2016-12-16 2018-06-21 富士電機株式会社 Semiconductor device
CN111033736A (en) * 2017-09-05 2020-04-17 三菱电机株式会社 Power module, method for manufacturing same, and power conversion device
JPWO2021085234A1 (en) * 2019-10-31 2021-05-06

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928347B2 (en) * 2006-04-12 2011-04-19 Rohm Co., Ltd. Heating unit and method of making the same
US9466548B2 (en) 2012-02-22 2016-10-11 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
WO2013140663A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 Semiconductor module and method for manufacturing same
JPWO2014128899A1 (en) * 2013-02-22 2017-02-02 株式会社日立製作所 Resin-sealed electronic control unit
JP2015015434A (en) * 2013-07-08 2015-01-22 三菱電機株式会社 Module structure
JP2015207731A (en) * 2014-04-23 2015-11-19 三菱電機株式会社 semiconductor device
WO2015170488A1 (en) * 2014-05-08 2015-11-12 三菱電機株式会社 Semiconductor device and method for producing same
JP5826443B1 (en) * 2014-05-08 2015-12-02 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2016192497A (en) * 2015-03-31 2016-11-10 日立化成株式会社 Semiconductor device and power module having the same
JP2017028132A (en) * 2015-07-23 2017-02-02 富士電機株式会社 Semiconductor module and manufacturing method therefor
JP2015195415A (en) * 2015-08-10 2015-11-05 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP6081042B1 (en) * 2015-12-16 2017-02-15 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2017154408A1 (en) * 2016-03-10 2017-09-14 株式会社日立製作所 POWER SEMICONDUCTOR MODULE, SiC SEMICONDUCTOR ELEMENT TO BE MOUNTED ON SAME, AND METHOD OF MANUFACTURING SiC SEMICONDUCTOR ELEMENT
JP2018098442A (en) * 2016-12-16 2018-06-21 富士電機株式会社 Semiconductor device
CN111033736A (en) * 2017-09-05 2020-04-17 三菱电机株式会社 Power module, method for manufacturing same, and power conversion device
JPWO2021085234A1 (en) * 2019-10-31 2021-05-06

Similar Documents

Publication Publication Date Title
JP5656907B2 (en) Power module
JP2000340719A (en) Power semiconductor device
JP5602077B2 (en) Semiconductor device
CN110494977A (en) The manufacturing method of semiconductor module for electric power, electronic component and semiconductor module for electric power
US9466542B2 (en) Semiconductor device
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
EP0962974A2 (en) Semiconductor device
JP3440824B2 (en) Semiconductor device
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
JP2000216332A (en) Semiconductor device
JP2004228286A (en) Power semiconductor device
CN113206048A (en) Semiconductor device and method for manufacturing the same
US10692794B2 (en) Radiation plate structure, semiconductor device, and method for manufacturing radiation plate structure
JPH11214612A (en) Power semiconductor module
JP5987297B2 (en) Method for manufacturing power semiconductor device
JP3573955B2 (en) Power semiconductor device and method of manufacturing the same
JP2000349231A (en) Power semiconductor module
JP2004128510A (en) Power semiconductor module having improved dielectric strength
JP2000252392A (en) Wiring board for mounting semiconductor device and its mounting structure
JP2000340715A (en) Wiring board for mounting semiconductor element and semiconductor device using the same
CN220400898U (en) Electronic device
JPH11238962A (en) Manufacture of semiconductor device and the semiconductor device
CN107170878A (en) The ceramic substrate and preparation method of a kind of nanometer Ag composite solder paste LED/light source
JP2004288661A (en) Wiring board
JP2022181779A (en) Semiconductor device and method for manufacturing semiconductor device