JPH0883700A - Control method and its device of electromagnet power source, and particle accelerator - Google Patents

Control method and its device of electromagnet power source, and particle accelerator

Info

Publication number
JPH0883700A
JPH0883700A JP21860494A JP21860494A JPH0883700A JP H0883700 A JPH0883700 A JP H0883700A JP 21860494 A JP21860494 A JP 21860494A JP 21860494 A JP21860494 A JP 21860494A JP H0883700 A JPH0883700 A JP H0883700A
Authority
JP
Japan
Prior art keywords
current
voltage
pattern
electromagnet
current deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21860494A
Other languages
Japanese (ja)
Inventor
Hisahide Nakayama
尚英 中山
Kunio Moriyama
国夫 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Information and Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Systems Inc filed Critical Hitachi Ltd
Priority to JP21860494A priority Critical patent/JPH0883700A/en
Publication of JPH0883700A publication Critical patent/JPH0883700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE: To provide a highly accurate control system of an electromagnet power source suitable for a particle accelerator. CONSTITUTION: A current pattern Ir for imparting required excitation to an electromagnet 1 is stored in a memory 61. A voltage pattern Vr initially set in a memory 62 for realizing this current pattern Ir is imparted as a command value to an AVR(automatic voltage regulator) 51 via a calculator 54. The AVR 51 feedback-controls a converter 2 in accordance with a deviation ve between a command value Vr and an actual measured value vf. When the voltage pattern Vr is not appropriate, a calculator 56 outputs a current deviation ie between the current pattern Ir and an actual measured value if. An input means 66 of a repeat control part 6 takes the current deviation ie exceeding a specified value in time series and stores a current deviation pattern Ie corresponding to the current pattern Ir in the memory 63. A calculator 67 calculates a correction voltage pattern ΑVr based on the current deviation pattern Ie to correct the voltage pattern Vr of the memory 62.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周期運転するシンクロ
トロンのような粒子加速器に係り、その電磁石電源の制
御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle accelerator such as a synchrotron which operates cyclically, and relates to a control system for an electromagnet power source.

【0002】[0002]

【従来の技術】シンクロトロンの運転で重要なことは、
粒子が所定の閉軌道を運動するための磁場を生成するこ
とである。この磁場は複数の電磁石により発生する個々
の磁場の合成である。また、加速される粒子の運動量変
化に合わせて磁場強度も変化させる必要がある。磁場強
度を直接観測してフィードバック制御することは、運転
に要求される10~4以上の高い精度の点から困難で、実
際には電流値の制御を行っている。
2. Description of the Related Art The important thing in operating a synchrotron is
Generating a magnetic field for the particles to move in a predetermined closed orbit. This magnetic field is a composite of the individual magnetic fields generated by multiple electromagnets. Further, it is necessary to change the magnetic field strength in accordance with the change in momentum of the accelerated particles. Directly observing the magnetic field strength and performing feedback control is difficult from the viewpoint of high accuracy of 10 to 4 or more required for operation, and the current value is actually controlled.

【0003】シンクロトロンなどの電磁石電源の制御方
式では、従来より種々のが試みられている。代表的な方
法としては、サイリスタ変換器に電圧指令値と電流指令
値の両方を与えて運転するものがあげられる。各指令値
のパターンを作成するには、まず所定の磁場変化を与え
る電流指令値を電流パターンとして作成する。次に、こ
の電流パターンを電磁石に流すために、電源が電磁石に
出力すべき電圧パターンを、電源の負荷である電磁石や
ケーブルの抵抗値、インダクタンス等から決定する。
Various control methods for electromagnet power supplies such as synchrotrons have been tried in the past. As a typical method, there is a method in which both the voltage command value and the current command value are given to the thyristor converter to operate. To create a pattern of each command value, first, a current command value that gives a predetermined magnetic field change is created as a current pattern. Next, the voltage pattern that the power supply should output to the electromagnet in order to pass this current pattern to the electromagnet is determined from the resistance value, the inductance, etc. of the electromagnet or the cable that is the load of the power supply.

【0004】この方式によると、電流指令値と電流フィ
ードバック値との偏差を観測することにより、制御精度
を評価できる。そこで、一旦運転を行った後、観測され
た電流偏差を0に近づけるように電圧パターンを修正
し、新たに得られた電圧パターンで再度運転を行うこと
を繰返して、最終的には所定の電流パターンに対して偏
差の小さい高精度な運転を行おうとするもので、この操
作を自動化したものは繰返し制御方式と呼ばれている。
According to this method, the control accuracy can be evaluated by observing the deviation between the current command value and the current feedback value. Therefore, once the operation is performed, the voltage pattern is corrected so that the observed current deviation approaches 0, and the operation is repeated with the newly obtained voltage pattern. It aims to perform highly accurate operation with a small deviation from the pattern, and an automated operation of this operation is called a repetitive control method.

【0005】繰返し制御方式の典型的な公知文献とし
て、「Repetitive Voltage Controlof the Main Ring M
agnet Power Supply for the KEK12GeV PS」(Particle
Ac-celerators,1990,Vol.29,pp.133〜138)、あるい
は、「科学技術庁放射線医学総合研究所 重粒子がん治
療装置(HIMAC)主加速器系シンクロトロン用VM
E制御装置」(日立造船技法、平成4年12月、第53
巻第4号、pp.35〜41)があげられる。
As a typical publicly known document of the repetitive control system, there is "Repetitive Voltage Control of the Main Ring M".
agnet Power Supply for the KEK12GeV PS "(Particle
Ac-celerators, 1990, Vol.29, pp.133 to 138), or "VM for Heavy Particle Cancer Therapy (HIMAC) Main Accelerator Synchrotron", National Institute of Radiological Sciences
E control device "(Hitachi Zosen Gijutsu, December 1992, No. 53)
Vol. 4, No. 4, pp. 35-41).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記した従来
の電磁石電源の制御方式では、繰返し制御による補正運
転を何回実行しても、実際には電流偏差をある値より小
さくできないという現象を生じ、運転精度の高精度化を
阻んでいた。
However, in the above-mentioned conventional control method of the electromagnet power source, there is a phenomenon that the current deviation cannot be made smaller than a certain value, no matter how many times the correction operation by the repetitive control is executed. , Was hindering the improvement of driving accuracy.

【0007】本発明の目的は、上記従来技術の問題点を
克服し、電流偏差を大幅に低減して電磁石電源の制御精
度を向上できる制御方法および装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method and apparatus that overcome the problems of the prior art described above and can greatly reduce the current deviation and improve the control accuracy of the electromagnet power supply.

【0008】本発明の目的は、ビーム調整の負担少なく
高精度の磁場パターンを発生でき、ビーム品質を向上で
きる粒子加速器を提供することにある。
An object of the present invention is to provide a particle accelerator capable of generating a highly accurate magnetic field pattern with a small beam adjustment burden and improving the beam quality.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、所定周
期で電磁石を流れる電流波形の目標値を設定し、前記目
標値を実現するように電磁石に印加する電圧波形を補正
する電磁石電源の制御方式において、前記電圧波形を指
令値として自動電圧制御系(AVR)に与え、電磁石の
実測電圧との電圧偏差に応じてフィードバック制御を行
うと共に、前記目標値と前記電磁石に流れる実測電流と
の電流偏差が少なくなるように前記電圧波形を繰返し補
正する繰返し制御を行うことにより達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnet power supply which sets a target value of a waveform of a current flowing through an electromagnet in a predetermined cycle and corrects a voltage waveform applied to the electromagnet so as to realize the target value. In the control method, the voltage waveform is given as a command value to an automatic voltage control system (AVR), feedback control is performed according to a voltage deviation from an actually measured voltage of an electromagnet, and the target value and an actually measured current flowing through the electromagnet are compared. This is achieved by performing repetitive control for repeatedly correcting the voltage waveform so that the current deviation is reduced.

【0010】また、本発明の目的は、所定周期で電磁石
を流れる電流波形の目標値を自動電流制御系(以下、A
CR)に与えて、電磁石の実測電流との電流偏差に応じ
てフィードバック制御し、前記目標値を実現するために
電磁石に印加する電圧波形の指令値と前記ACRの出力
を自動電圧制御系(以下、AVR)に与えて、前記電磁
石の実測電圧との電圧偏差に応じてフィードバック制御
を行うことを特徴とする電磁石電源の制御方式におい
て、前記電流偏差が予め設定されているしきい値より大
きいとき、前記目標値を実現するように前記電磁石に印
加する電圧波形を繰返し補正する繰返し制御を行い、こ
の繰返し制御の期間は、前記ACRから前記AVRへの
出力を遮断することにより達成される。
Another object of the present invention is to set a target value of a current waveform flowing through an electromagnet in a predetermined cycle to an automatic current control system (hereinafter referred to as A
CR), feedback control is performed according to the current deviation from the actual current of the electromagnet, and the command value of the voltage waveform applied to the electromagnet in order to realize the target value and the output of the ACR are supplied to the automatic voltage control system (hereinafter , AVR) and feedback control is performed according to the voltage deviation from the measured voltage of the electromagnet, when the current deviation is larger than a preset threshold value. The repetitive control for repetitively correcting the voltage waveform applied to the electromagnet to achieve the target value is performed, and the period of this repetitive control is achieved by cutting off the output from the ACR to the AVR.

【0011】さらに、本発明の目的は、粒子の閉軌道を
構成する磁場を発生する複数の電磁石と、点弧角制御さ
れる変換器から前記電磁石に電圧を印加し、前記磁場を
発生させるための電流を供給する電磁石電源と、前記磁
場を所定のパターンで発生させるために前記変換器の点
弧角を制御する電源制御装置を備え、低エネルギーで入
射した粒子を次第に磁場を増加して加速し、高エネルギ
ーの粒子として出射する周期運転を行う粒子加速器にお
いて、前記電源制御装置は、前記所定のパターンで磁場
を与えるための台形状の電流波形を予め目標値として設
定する電流波形記憶手段と、前記目標値を実現する電圧
波形の指令値と前記電磁石に印加される実測電圧との電
圧偏差に応じて、前記変換器の点弧角をフィードバック
制御する自動電圧制御手段(以下、AVR)と、前記周
期運転の起動時または前記目標値と前記電磁石に流れる
実測電流との電流偏差がしきい値以上のときに、前記電
流偏差を低減するように前記電圧波形を補正する繰返し
制御手段を備えることにより達成される。
Further, an object of the present invention is to generate a magnetic field by applying a voltage from a plurality of electromagnets that generate a magnetic field forming a closed orbit of particles and a converter whose firing angle is controlled, to the electromagnet. Equipped with an electromagnet power supply for supplying the electric current and a power supply control device for controlling the firing angle of the converter in order to generate the magnetic field in a predetermined pattern. However, in the particle accelerator that performs periodic operation to emit as high-energy particles, the power supply control device is a current waveform storage unit that sets a trapezoidal current waveform for applying a magnetic field in the predetermined pattern as a target value in advance. , An automatic voltage for feedback-controlling the firing angle of the converter according to the voltage deviation between the command value of the voltage waveform that realizes the target value and the measured voltage applied to the electromagnet. Control means (hereinafter, AVR) and the voltage waveform so as to reduce the current deviation when the periodic operation is started or when the current deviation between the target value and the actually measured current flowing through the electromagnet is equal to or more than a threshold value. It is achieved by providing a repetitive control means for correcting

【0012】[0012]

【作用】本発明は次の点に着目してなされたものであ
る。
The present invention has been made by paying attention to the following points.

【0013】従来の制御方法では、ある運転の結果から
得られた新たな電圧パターンを算出する基となる電流偏
差には、その運転に使用した電圧パターンに含まれ、最
終的に得られるであろう完成した電圧パターンに比較し
ての誤差によるものと、自動電流制御手段(以下、AC
R)が所定の電流パターンに近づけるために制御演算し
た結果も含まれている。即ち、ACRが未完成な段階で
の電圧パターンを補うように作用するため、繰返し制御
を何回実行してもACRの作用が悪影響して、理想の電
圧パターンに収束する以前の未完成な電圧パターンの状
態でとどまってしまう。
In the conventional control method, the current deviation, which is the basis for calculating a new voltage pattern obtained from the result of a certain operation, is included in the voltage pattern used for the operation and is finally obtained. Brazing is due to an error in comparison with the completed voltage pattern, and automatic current control means (hereinafter AC
R) also includes the result of control calculation to bring the pattern closer to a predetermined current pattern. That is, since the ACR acts so as to compensate for the voltage pattern at the unfinished stage, no matter how many times the repetitive control is executed, the action of the ACR adversely affects the unfinished voltage before it converges to the ideal voltage pattern. It stays in the state of the pattern.

【0014】本発明による電磁石電源制御の作用とし
て、電流偏差は電圧パターンを補正する繰返し制御のみ
に利用されACR動作は行われないので、未完成な電圧
パターンに起因する電流偏差の影響が繰返し制御に現わ
れることがない。したがって、電流偏差は理想の電圧パ
ターンと未完成の電圧パターンの誤差を忠実に反映する
ので、電流偏差を0に近づける電圧パターンの補正を繰
返し行うことで、電流偏差を従来に比べて大幅に低減で
き、電磁石電源の高精度運転が可能になる。
As the operation of the electromagnet power supply control according to the present invention, the current deviation is used only for the repetitive control for correcting the voltage pattern and the ACR operation is not performed. Therefore, the influence of the current deviation due to the incomplete voltage pattern is repetitively controlled. Never appears in. Therefore, the current deviation faithfully reflects the error between the ideal voltage pattern and the unfinished voltage pattern. Therefore, by repeatedly correcting the voltage pattern to bring the current deviation close to 0, the current deviation is greatly reduced compared to the conventional one. This enables high-precision operation of the electromagnet power supply.

【0015】本発明による電磁石電源制御の他の作用と
して、電流偏差に基づくACRの出力が前記電圧パター
ンと共にAVRの入力として与えられるが、前記繰返し
制御の実行中はそのAVRへの入力が遮断される。した
がって、電流偏差には電圧パターンの誤差のみが反映さ
れるため、電流偏差の評価に基づく電圧パターンの修正
分はACR動作の影響を受けず、電圧パターンの誤差分
のみを正しく補正することが可能となる。
As another operation of the electromagnet power supply control according to the present invention, the output of the ACR based on the current deviation is given as the input of the AVR together with the voltage pattern, but the input to the AVR is cut off during the execution of the repetitive control. It Therefore, since only the error of the voltage pattern is reflected in the current deviation, the correction amount of the voltage pattern based on the evaluation of the current deviation is not affected by the ACR operation, and only the error amount of the voltage pattern can be correctly corrected. Becomes

【0016】これによれば、起動時等の繰返し制御期間
中はACRを不能にし、繰返し制御の終了後の通常運転
時はACRによる外乱などの抑止効果を持たせることが
でき、電磁石電源の高精度且つ安定な運転が可能にな
る。なお、ACR不能期間は、繰返し制御期間の一部に
限定することもできる。
According to this, the ACR can be disabled during the repetitive control period such as the start-up, and the effect of suppressing the disturbance due to the ACR can be exerted during the normal operation after the end of the repetitive control, and the high power of the electromagnet power supply can be obtained. Accurate and stable operation becomes possible. The ACR unavailable period can be limited to a part of the repetitive control period.

【0017】本発明の粒子加速器の作用として、加速さ
れる粒子の閉軌道を形成する磁場は、目標に極めて近い
電流パターンによって所望の台形パターンが繰返し得ら
れるので、ビーム調整の負担を大幅に低減でき且つ、リ
ップルが小さく再現性の高い高品質の粒子ビームを提供
できる効果がある。
As a function of the particle accelerator of the present invention, a magnetic field forming a closed orbit of accelerated particles can repeatedly obtain a desired trapezoidal pattern with a current pattern extremely close to a target, so that the burden of beam adjustment is greatly reduced. There is an effect that it is possible to provide a high-quality particle beam that has a small ripple and high reproducibility.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】図2は、本発明を適用する粒子加速器の全
体構成を示したものである。図示の加速器はシンクロト
ロンで、低エネルギーの粒子を入射し、加速するにつれ
て粒子の運動量に比例して磁場を増加させ、加速が完了
すると次段の加速器等へ出射する。シンクロトロンはこ
の一連の動作を、1〜数秒周期で繰り返している。
FIG. 2 shows the overall structure of a particle accelerator to which the present invention is applied. The accelerator shown in the drawing is a synchrotron, and low-energy particles are injected, the magnetic field is increased in proportion to the momentum of the particles as they are accelerated, and when the acceleration is completed, they are emitted to the next-stage accelerator or the like. The synchrotron repeats this series of operations at a cycle of 1 to several seconds.

【0020】偏向電磁石1B、集束電磁石1Qf及び発
散電磁石1Qdは主電磁石と呼ばれ、閉軌道を構成する
磁場を生成する。これらの3種の電磁石は、電力変換器
により構成される電源2B、2Qf、2Qdによりそれ
ぞれ励磁される。各電源2は、変換器制御装置5B、5
Qf、5Qdによって点弧角制御やフィードバック制御
される。繰返し制御装置6B、6Qf、6Qdは、電流
偏差を取り込んで制御指令値である電圧パターンを決定
して、変換器制御装置5に与える。
The deflecting electromagnet 1B, the focusing electromagnet 1Qf and the diverging electromagnet 1Qd are called main electromagnets and generate a magnetic field forming a closed orbit. These three types of electromagnets are respectively excited by power sources 2B, 2Qf, 2Qd configured by power converters. Each power source 2 has a converter controller 5B, 5
Firing angle control and feedback control are performed by Qf and 5Qd. Repetitive control devices 6B, 6Qf, 6Qd take in the current deviation, determine a voltage pattern that is a control command value, and apply it to converter control device 5.

【0021】図1は、本発明の第一の実施例による電磁
石電源制御装置の構成図である。電磁石電源制御装置
は、偏向電磁石1B、集束電磁石1Qf及び発散電磁石
1Qdの各々に対して同様の構成となるため、その一つ
(例えば偏向電磁石)を一般的に示したものである。
FIG. 1 is a block diagram of an electromagnet power supply controller according to a first embodiment of the present invention. Since the electromagnet power supply control device has the same configuration for each of the deflection electromagnet 1B, the focusing electromagnet 1Qf, and the diverging electromagnet 1Qd, one of them (for example, the deflection electromagnet) is generally shown.

【0022】電磁石1は複数個が直列接続され、1台の
電源2によって励磁される。電源2は、サイリスタやG
TOのような変換器で構成される電圧源である。変換器
2の出力電圧vfは分圧器3で、出力電流ifはDCC
T4で実測され、変換器制御装置5へフィードバックさ
れる。変換器制御装置5には、変換器2から電磁石1へ
印加する電圧を制御するためにフィードバック制御を行
うAVR51を設け、その出力信号(EC指令)を自動
移送器(APPS)52により変換器2の点弧パルスに
変換する。
A plurality of electromagnets 1 are connected in series and excited by one power source 2. The power supply 2 is a thyristor or G
It is a voltage source composed of a converter such as a TO. The output voltage vf of the converter 2 is the voltage divider 3, and the output current if is DCC.
It is measured at T4 and fed back to the converter control device 5. The converter control device 5 is provided with an AVR 51 that performs feedback control to control the voltage applied from the converter 2 to the electromagnet 1, and outputs its output signal (EC command) by an automatic transfer device (APPS) 52. Convert to the ignition pulse of.

【0023】繰返し制御装置6には、電流パターンメモ
リ61と、電圧パターンメモリ62と、電流偏差入力手
段66、電流偏差パターンメモリ63、補正電圧パター
ン演算器62及び補正制御回路68からなる電圧パター
ン補正機能を具備している。
The repetitive control device 6 includes a current pattern memory 61, a voltage pattern memory 62, a current deviation input means 66, a current deviation pattern memory 63, a correction voltage pattern calculator 62, and a voltage pattern correction circuit 68. It has functions.

【0024】シンクロトロンの場合、励磁電流の電流パ
ターンIrは予め所定の時間波形が目標値として設定さ
れ、電流パターンメモリ61に格納されている。なお、
電流パターンメモリ61は、繰返し制御装置6以外のと
ころに設けてもよい。
In the case of the synchrotron, the current pattern Ir of the exciting current has a predetermined time waveform set as a target value in advance and is stored in the current pattern memory 61. In addition,
The current pattern memory 61 may be provided in a place other than the repeat controller 6.

【0025】電流パターンIrは台形を示し、電流値が
低い区間でシンクロトロンに低エネルギーの粒子を入射
し、粒子の加速につれて電流を大きくして電磁石の磁場
を増加させ、加速完了の電流値が最大となる期間にシン
クロトロンから粒子の出射を行う。
The current pattern Ir shows a trapezoidal shape, and low-energy particles are injected into the synchrotron in a section where the current value is low, the current is increased as the particles accelerate, and the magnetic field of the electromagnet is increased. Particles are emitted from the synchrotron during the maximum period.

【0026】一方、電圧パターンVrはAVR51の指
令値であり、目標値の電流パターンIrを実現するため
に変換器2から電磁石1に印加される電圧波形である。
その初期値は、電流パターンIrと電源回路の負荷であ
る電磁石1やケーブルの抵抗RとインダクタンスLから
(数1)により計算し、電圧パターンメモリ62に設定
される。
On the other hand, the voltage pattern Vr is a command value of the AVR 51, and is a voltage waveform applied from the converter 2 to the electromagnet 1 in order to realize the current pattern Ir of the target value.
The initial value is calculated from the current pattern Ir and the resistance R and inductance L of the electromagnet 1 which is the load of the power supply circuit and the cable, and is set in the voltage pattern memory 62.

【0027】[0027]

【数1】Vr=L(dIr/dt)+RIr 電流パターンIrと電圧パターンVrは、それぞれの出
力装置64及び65から変換器制御装置5に出力され
る。
## EQU1 ## Vr = L (dIr / dt) + RIr The current pattern Ir and the voltage pattern Vr are output from the respective output devices 64 and 65 to the converter control device 5.

【0028】電圧パターンVrは、電圧偏差演算器54
に入力され、電圧出力値vf(フィードバック値)との
電圧偏差veを算出する。AVR51この電圧偏差ve
に応じて、上記のフィードバック制御を行う。
The voltage pattern Vr is calculated by the voltage deviation calculator 54.
To the voltage output value vf (feedback value) to calculate the voltage deviation ve. AVR51 This voltage deviation ve
According to the above, the above feedback control is performed.

【0029】このとき、電圧パターンVrが、電流パタ
ーンIrを実現するための適正な電圧パターンでなけれ
ば、電流パターンIrと実測電流ifとの電流偏差ie
が電流偏差演算器56より出力される。入力装置66は
電流偏差ieを取り込み、予め設定されているしきい値
iminと比較し、ie≧iminであれば、ieを電流偏差
パターンメモリ63に時系列に格納し、電流偏差パター
ンIeを作成する。電流偏差ieの収集期間T1は、補
正制御回路68から制御され、通常は電流パターンIr
の1周期相当分を取り込む。
At this time, if the voltage pattern Vr is not an appropriate voltage pattern for realizing the current pattern Ir, the current deviation ie between the current pattern Ir and the actual measured current if.
Is output from the current deviation calculator 56. The input device 66 takes in the current deviation IE, compares it with a preset threshold value imin, and if IE ≧ imin, stores IE in the current deviation pattern memory 63 in time series to create the current deviation pattern Ie. To do. The collection period T 1 of the current deviation ie is controlled by the correction control circuit 68, and normally the current pattern Ir
1 cycle of is taken in.

【0030】電流偏差パターンIeの作成が終わると、
補正制御回路68は補正電圧パターン演算器62を起動
し、(数2)にしたがって補正電圧パターン△Vrを演
算する。期間T2は演算の介しから終了までの演算期間
であるが、演算期間にマージンを含んだ電流パターンI
rの1ないし複数周期相当期間が設定されてもよい。
When the current deviation pattern Ie is created,
The correction control circuit 68 activates the correction voltage pattern calculator 62 and calculates the correction voltage pattern ΔVr according to (Equation 2). The period T 2 is a calculation period from the completion of calculation to the end, but the current pattern I including a margin in the calculation period
A period corresponding to one or a plurality of cycles of r may be set.

【0031】[0031]

【数2】△Vr=KF(Ie) ここで、制御ゲインKは、電流偏差1(A)あたりの補
正電圧値(v)である。関数Fは、再現性ある電流偏差
データの抽出のために施す処理で、たとえば数周期分の
平均操作や低域ろ波処理などである。電源容量が2kA
程度の場合、実際にはK=0.01、F=1.0Ieの
ようなパラメータ処理が行われる。
ΔVr = KF (Ie) Here, the control gain K is a correction voltage value (v) per current deviation 1 (A). The function F is a process performed to extract reproducible current deviation data, and is, for example, an averaging operation for several cycles or a low-pass filtering process. Power supply capacity is 2kA
In the case of the degree, parameter processing such as K = 0.01 and F = 1.0 Ie is actually performed.

【0032】補正制御回路68は、演算器62によって
演算された補正電圧パターン△Vrを、電圧パターンメ
モリ62の電圧パターンVrに加算し、電圧パターンV
rをT3の期間で更新する。この更新されたVrが、次
の繰返し制御周期に、出力装置65か出力され、電流偏
差ieがしきい値以下になるまで、上記した一連の制御
が繰返し行われる。なお、繰返し制御は、補正制御回路
68で繰返し数をカウントし、指定回数を越えたとき終
了するようにしてもよい。
The correction control circuit 68 adds the correction voltage pattern ΔVr calculated by the calculator 62 to the voltage pattern Vr of the voltage pattern memory 62 to obtain the voltage pattern Vr.
Update r with period T 3 . The updated Vr is output from the output device 65 in the next repetitive control cycle, and the series of controls described above is repeatedly performed until the current deviation ie becomes equal to or less than the threshold value. It should be noted that the repetitive control may be completed by counting the number of repetitions by the correction control circuit 68 and exceeding the designated number of times.

【0033】図示のように、電圧パターンメモリ62及
び電流偏差パターンメモリ63は、共にダブルバッファ
構成されている。これによって、現在制御または収集に
利用しているそれぞれのバッファと、補正処理に利用す
るそれぞれのバッファを交互に切替る交替バッファ方式
を採用でき、連続した繰返し制御が可能になる。
As shown in the figure, both the voltage pattern memory 62 and the current deviation pattern memory 63 have a double buffer structure. As a result, it is possible to employ an alternate buffer system in which each buffer currently used for control or acquisition and each buffer used for correction processing are alternately switched, and continuous repetitive control becomes possible.

【0034】図3に、一実施例による繰返し制御のタイ
ミングチャートを示す。繰返し制御においては、まず、
目標の電流パターンIrと初期設定した電圧パターンV
rに基づき、一周期から数周期の電源運転を実行し、電
流偏差パターンIeデータを得る。
FIG. 3 shows a timing chart of repetitive control according to one embodiment. In repetitive control, first,
Target current pattern Ir and initially set voltage pattern V
Based on r, power supply operation for one cycle to several cycles is executed to obtain current deviation pattern Ie data.

【0035】図示にはその後の波形状態を示したもの
で、電流パターンIrは台形状の波形を1〜数秒(通常
約2秒)周期で繰返し与えられる。電圧パターンVr,
電流偏差パターンIeも同一周期で出力ないし生成され
る。
The subsequent waveform state is shown in the figure, and the current pattern Ir is a trapezoidal waveform which is repeatedly applied in a cycle of 1 to several seconds (usually about 2 seconds). Voltage pattern Vr,
The current deviation pattern Ie is also output or generated in the same cycle.

【0036】繰返し制御周期は、電流パターンの複数周
期を含み、T1の期間で電流パターンIeを生成し、T2
の期間で補正電圧パターン△Vrを生成し、T3の期間
で電圧パターンVrを補正するが、これらを含む電流パ
ターンの複数周期が設定されている。上記した交替バッ
ファ方式によれば、T1の期間とT2〜の期間は同時進行
が可能になり、繰返し制御周期はさらに短縮される。
The repetitive control cycle includes a plurality of cycles of the current pattern, the current pattern Ie is generated in the period of T 1 , and T 2
The correction voltage pattern ΔVr is generated in the period of and the voltage pattern Vr is corrected in the period of T 3 , but a plurality of cycles of the current pattern including these are set. According to the above-mentioned alternate buffer system, the period of T 1 and the period of T 2 ~ can be simultaneously advanced, and the repetitive control cycle is further shortened.

【0037】上記の繰返し制御によって、電流偏差ie
が十分小さくなったところで繰返し制御を完了し、加速
器を本格運転させる。運転中は電流偏差ieを監視し、
所定以上となると再び繰返し制御を実行する。図示例
は、第3回繰返し制御で電流偏差ieがしきい値以下と
なって、繰返し制御を終了している。即ち、外乱などに
よって再び電流偏差ieが大きくなるまでは、電圧パタ
ーンの補正は行われず、加速器は通常の運転状態とな
る。
By the above-mentioned repetitive control, the current deviation IE
When the value becomes sufficiently small, the repetitive control is completed and the accelerator is put into full-scale operation. During operation, monitor the current deviation ie,
When it exceeds the predetermined value, the repetitive control is executed again. In the illustrated example, the current deviation ie becomes less than or equal to the threshold value in the third repeat control, and the repeat control is ended. That is, the voltage pattern is not corrected until the current deviation ie becomes large again due to disturbance or the like, and the accelerator is in a normal operating state.

【0038】このような本実施例によれば、演算器56
の偏差出力ieは繰返し制御にのみ使用し、電流フィー
ドバック制御には使用しないので、いわゆるACR動作
は行わない。したがって、未完成な電圧パターンVrに
起因する電流偏差ieの影響が、ACR動作を介して繰
返し制御に現われることもない。即ち、電流偏差ieは
理想の電圧パターンと未完成の電圧パターンの誤差を忠
実に反映するので、電流偏差ieを0に近づける電圧パ
ターンの補正を繰返し行うことで、電流偏差を従来に比
べて大幅に低減でき、電磁石電源の高精度運転が可能に
なる。
According to this embodiment, the arithmetic unit 56
The deviation output ie of is used only for the repetitive control and not for the current feedback control, so that the so-called ACR operation is not performed. Therefore, the influence of the current deviation ie caused by the uncompleted voltage pattern Vr does not appear in the repetitive control via the ACR operation. That is, the current deviation IE faithfully reflects the error between the ideal voltage pattern and the uncompleted voltage pattern. Therefore, by repeatedly correcting the voltage pattern that brings the current deviation IE closer to 0, the current deviation can be significantly reduced compared to the conventional one. And it is possible to operate the electromagnet power source with high precision.

【0039】この結果、電磁石は目標の電流パターンで
繰返し励磁され、加速器は高い再現性を有して粒子ビー
ムの品質が向上し、ビーム調整の負担も大幅に減少す
る。
As a result, the electromagnet is repeatedly excited with the target current pattern, the accelerator has high reproducibility, the quality of the particle beam is improved, and the burden of beam adjustment is significantly reduced.

【0040】次に、本発明の第二の実施例を説明する。
図4は、第二の実施例による電磁石電源制御装置の構成
図で、図1の構成にACR53と加算器55及びACR
53と加算器55間の接続をオン/オフするスイッチ回
路57を追加している。
Next, a second embodiment of the present invention will be described.
FIG. 4 is a block diagram of an electromagnet power source control device according to the second embodiment, which is the same as the configuration of FIG.
A switch circuit 57 for turning on / off the connection between 53 and the adder 55 is added.

【0041】ACR系の悪影響は、繰返し制御の電流偏
差の収集期間に現れる。したがって、この期間を回避す
れば、ACRは外乱(電力系統の擾乱や温度変化等)に
対してのフィードバック効果を持つので、具備している
方が望ましい。
The adverse effect of the ACR system appears in the current deviation collecting period of the repetitive control. Therefore, if this period is avoided, the ACR has a feedback effect with respect to external disturbances (disturbances of the electric power system, temperature changes, etc.), and therefore it is preferable to have the ACR.

【0042】そこで、スイッチ回路57により、繰返し
制御の全部または一部の期間、ACR53の出力信号V
iを遮断する。本例では、補正制御回路68は、電流偏
差ieの収集期間T1の間、スイッチ回路57をオフと
し、ACR53の出力信号ViがAVR51に入力され
ないようにしている。
Therefore, the switch circuit 57 controls the output signal V of the ACR 53 during the entire or part of the repetitive control.
cut off i. In the present example, the correction control circuit 68 turns off the switch circuit 57 during the collection period T 1 of the current deviation ie so that the output signal Vi of the ACR 53 is not input to the AVR 51.

【0043】これ以外の期間、すなわち補正電圧パター
ン演算器67による(数2)の処理期間T2および補正
電圧△Vrをもとの電圧パターンVrに加算する期間T
3においては、スイッチ回路57はオンとし、ACR5
3によって電流偏差ieが小となるようなフィードバッ
ク制御が行われる。
A period other than the above, that is, a period T in which the correction voltage pattern calculator 67 performs the processing period T 2 of (Equation 2) and the correction voltage ΔVr are added to the original voltage pattern Vr.
In 3 , the switch circuit 57 is turned on and the ACR5
Feedback control is performed by 3 so that the current deviation ie becomes small.

【0044】本実施例の方式によれば、電圧パターンV
rは繰返し制御を進めるにつれ、電流偏差ieが0とな
る理想の電圧パターンに限りなく近づき、電圧パターン
として完成した状態となる。その上、ACR系の働きに
より、外乱(電力系統や温度の変化等)に対してその影
響を抑止する効果がある。
According to the method of this embodiment, the voltage pattern V
As the repetitive control is advanced, r approaches the ideal voltage pattern in which the current deviation ie becomes 0 as much as possible, and the voltage pattern is completed. Moreover, the function of the ACR system has the effect of suppressing its influence on disturbances (changes in the power system, temperature, etc.).

【0045】なお、ACR53の出力信号Viの遮断期
間をT1としたが、繰返し制御が終了するまでの全期間
としてもよい。また、ACR53の出力信号Viの遮断
をスイッチ回路57のオン/オフ動作により実現した
が、遮断期間において、ACR53のゲインを0あるい
は充分小さくするなど種々の変形が可能である。
Although the cutoff period of the output signal Vi of the ACR 53 is set to T 1 , it may be set to the entire period until the repetition control is completed. Further, although the cutoff of the output signal Vi of the ACR 53 is realized by the on / off operation of the switch circuit 57, various modifications can be made such that the gain of the ACR 53 is set to 0 or sufficiently small during the cutoff period.

【0046】[0046]

【発明の効果】本発明の電磁石電源の制御方式によれ
ば、電圧パターンを補正する繰返し制御にACR動作の
悪影響を受けることがないので、目標電流を実現するた
めの所望の電圧パターンを作成することが可能となり、
電磁石電源の高精度な運転が実現できる。
According to the control system of the electromagnet power supply of the present invention, the repetitive control for correcting the voltage pattern is not adversely affected by the ACR operation, so that a desired voltage pattern for realizing the target current is created. Is possible,
Highly accurate operation of the electromagnet power supply can be realized.

【0047】さらに、本発明の粒子加速器によれば、電
磁石電源の高精度な運転が実現できるるので、粒子ビー
ムの調整の負担が大幅に低減でき且つ粒子ビームの品質
(再現性やリップル)を向上できる効果がある。
Further, according to the particle accelerator of the present invention, since the highly accurate operation of the electromagnet power source can be realized, the burden of adjusting the particle beam can be greatly reduced and the quality (reproducibility and ripple) of the particle beam can be reduced. There is an effect that can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例による電磁石電源制御装
置の構成図。
FIG. 1 is a configuration diagram of an electromagnet power supply control device according to a first embodiment of the present invention.

【図2】本発明を適用する粒子加速器の概略構成図。FIG. 2 is a schematic configuration diagram of a particle accelerator to which the present invention is applied.

【図3】電磁石電源制御装置の繰返し制御動作を説明す
るタイミングチャート。
FIG. 3 is a timing chart illustrating a repetitive control operation of the electromagnet power supply control device.

【図4】本発明の第二の実施例による電磁石電源制御装
置の構成図。
FIG. 4 is a configuration diagram of an electromagnet power supply control device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電磁石、2…電源(変換器)、3…分圧器、4…D
CCT、5…変換器制御装置、51…AVR、52…自
動移相器、53…ACR、54…電圧偏差演算器、55
…加算器、56…電流偏差演算器、57…スイッチ回
路、6…繰返し制御装置、61…電流パターンメモリ、
62…電圧パターンメモリ、63…電流偏差パターンメ
モリ、64,65…出力装置、66…入力装置、67…
補正電圧パターン演算器、68…補正制御回路。
1 ... Electromagnet, 2 ... Power supply (converter), 3 ... Voltage divider, 4 ... D
CCT, 5 ... Converter control device, 51 ... AVR, 52 ... Automatic phase shifter, 53 ... ACR, 54 ... Voltage deviation calculator, 55
... Adder, 56 ... Current deviation calculator, 57 ... Switch circuit, 6 ... Repeat control device, 61 ... Current pattern memory,
62 ... Voltage pattern memory, 63 ... Current deviation pattern memory, 64, 65 ... Output device, 66 ... Input device, 67 ...
Correction voltage pattern calculator, 68 ... Correction control circuit.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 所定周期で電磁石を流れる電流波形の目
標値を設定し、前記目標値を実現するように電磁石に印
加する電圧波形を補正する電磁石電源の制御方法におい
て、 前記電圧波形を指令値として自動電圧制御系(AVR)
に与え、電磁石の実測電圧との電圧偏差に応じてフィー
ドバック制御を行うと共に、前記目標値と前記電磁石に
流れる実測電流との電流偏差が少なくなるように前記電
圧波形を繰返し補正する繰返し制御を行うことを特徴と
する電磁石電源の制御方法。
1. A method of controlling an electromagnet power supply, wherein a target value of a current waveform flowing through an electromagnet is set at a predetermined cycle, and a voltage waveform applied to the electromagnet is corrected so as to realize the target value. Automatic voltage control system (AVR)
Feedback control is performed according to the voltage deviation from the actual measured voltage of the electromagnet, and repetitive control is performed to repeatedly correct the voltage waveform so that the current deviation between the target value and the actually measured current flowing through the electromagnet is reduced. A method of controlling an electromagnet power supply, which is characterized in that:
【請求項2】 請求項1において、 前記繰返し制御は、前記電流偏差を前記電流波形の少な
くとも1周期分時系列に収集して電流偏差パターンを作
成し、このパターンに基づいて前記電流偏差を0に近づ
ける補正電圧パターンを作成し、この補正電圧パターン
によって前記電圧波形を補正または更新することを特徴
とする電磁石電源の制御方法。
2. The repetitive control according to claim 1, wherein the repetitive control collects the current deviation in a time series of at least one cycle of the current waveform to create a current deviation pattern, and based on this pattern, the current deviation is set to 0. A method of controlling an electromagnet power supply, characterized in that a correction voltage pattern that approaches the above is created, and the voltage waveform is corrected or updated by this correction voltage pattern.
【請求項3】 請求項2において、 前記電流偏差パターンは、低域ろ波処理または複数周期
の平均処理を加えて作成することを特徴とする電磁石電
源の制御方法。
3. The method of controlling an electromagnet power source according to claim 2, wherein the current deviation pattern is created by adding low-pass filtering processing or averaging processing of a plurality of cycles.
【請求項4】 請求項1または2または3において、 前記繰返し制御は、前記電流偏差が予め設定されている
しきい値以下になるとき又は前記繰返し制御が所定回行
われたときに終了することを特徴とする電磁石電源の制
御方法。
4. The repetitive control according to claim 1, 2 or 3, wherein the repetitive control is terminated when the current deviation becomes equal to or less than a preset threshold value or when the repetitive control is performed a predetermined number of times. And a method for controlling an electromagnet power supply.
【請求項5】 所定周期で電磁石を流れる電流波形の目
標値を自動電流制御系(以下、ACR)に与えて、電磁
石の実測電流との電流偏差に応じてフィードバック制御
し、前記目標値を実現するために電磁石に印加する電圧
波形の指令値と前記ACRの出力を自動電圧制御系(以
下、AVR)に与えて、前記電磁石の実測電圧との電圧
偏差に応じてフィードバック制御を行うことを特徴とす
る電磁石電源の制御方法において、 前記電流偏差が予め設定されているしきい値より大きい
とき、前記目標値を実現するように前記電磁石に印加す
る電圧波形を繰返し補正する繰返し制御を行い、この繰
返し制御の期間は、前記ACRから前記AVRへの出力
を遮断することを特徴とする電磁石電源の制御方法。
5. A target value of a current waveform flowing through an electromagnet in a predetermined cycle is given to an automatic current control system (hereinafter referred to as ACR), and feedback control is performed according to a current deviation from an actually measured current of the electromagnet to realize the target value. In order to achieve this, the command value of the voltage waveform applied to the electromagnet and the output of the ACR are given to an automatic voltage control system (hereinafter referred to as AVR), and feedback control is performed according to the voltage deviation from the actually measured voltage of the electromagnet. In the control method for the electromagnet power supply, when the current deviation is larger than a preset threshold value, iterative control is performed to repeatedly correct the voltage waveform applied to the electromagnet so as to achieve the target value. A method of controlling an electromagnet power supply, characterized in that the output from the ACR to the AVR is shut off during a period of repetitive control.
【請求項6】 請求項5において、 前記繰返し制御は、前記所定周期の整数倍の期間を1周
期とし、前記電流偏差を前記電流波形の少なくとも1周
期分収集して電流偏差パターンを作成する第1の期間
と、このパターンに基づいて前記電流偏差を0に近づけ
る補正電圧パターンを作成する第2の期間と、この補正
電圧パターンによって前記電圧波形を補正または更新す
る第3の期間を含むことを特徴とする電磁石電源の制御
方法。
6. The repetitive control according to claim 5, wherein a period that is an integral multiple of the predetermined period is one cycle, and the current deviation is collected for at least one cycle of the current waveform to create a current deviation pattern. 1 period, a second period for creating a correction voltage pattern for making the current deviation closer to 0 based on this pattern, and a third period for correcting or updating the voltage waveform by the correction voltage pattern. A characteristic method for controlling an electromagnet power supply.
【請求項7】 請求項6において、 前記ACRの出力を遮断は、前記第1の期間について行
うことを特徴とする電磁石電源の制御方法。
7. The method of controlling an electromagnet power source according to claim 6, wherein the output of the ACR is cut off during the first period.
【請求項8】 1または複数の電磁石と、予め設定され
る電流波形の目標値に応じた電流を前記電磁石に供給す
る変換器と、前記目標値を実現する電圧波形の指令値と
前記電磁石に印加される実測電圧との電圧偏差に応じ
て、前記変換器の点弧角をフィードバック制御する自動
電圧制御手段(AVR)を備える電磁石電源の制御装置
において、 前記目標値と前記電磁石に流れる実測電流との電流偏差
が少なくなるように、前記電圧波形を繰返し補正する繰
返し制御手段を備えることを特徴とする電磁石電源の制
御装置。
8. An electromagnet, one or a plurality of electromagnets, a converter for supplying a current corresponding to a preset target value of a current waveform to the electromagnet, a command value of a voltage waveform for realizing the target value, and the electromagnet. In a control device for an electromagnet power supply, which comprises an automatic voltage control means (AVR) for feedback-controlling the firing angle of the converter according to a voltage deviation from an actually measured voltage applied, the target value and an actually measured current flowing through the electromagnet. A control device for an electromagnet power supply, comprising repetitive control means for repetitively correcting the voltage waveform so that the current deviation between
【請求項9】 請求項8において、 前記繰返し制御手段は、前記電流偏差を前記電流波形に
相応する分だけ時系列に収集して電流偏差パターンを作
成、記憶する電流偏差パターン管理手段と、この電流偏
差パターンに基づいて前記電流偏差を0に近づける補正
電圧パターンを作成する補正電圧パターン作成手段と、
前記補正電圧パターンによって前記電圧波形を補正また
は更新、記憶する電圧波形管理手段を備えることを特徴
とする電磁石電源の制御装置。
9. The current deviation pattern management means according to claim 8, wherein the repetitive control means collects the current deviation in time series by an amount corresponding to the current waveform to create and store a current deviation pattern, and Correction voltage pattern creating means for creating a correction voltage pattern for making the current deviation close to 0 based on the current deviation pattern;
A control device for an electromagnet power supply, comprising: a voltage waveform management unit that corrects, updates, or stores the voltage waveform according to the correction voltage pattern.
【請求項10】 1または複数の電磁石と、予め設定さ
れる電流波形の目標値に応じた電流を前記電磁石に供給
する変換器と、前記目標値と前記電磁石に流れる実測電
流との電流偏差に応じてフィードバック制御する自動電
流制御手段(以下、ACR)と、前記目標値を実現する
ために前記電磁石に印加する電圧波形の指令値及び前記
ACRの出力と前記電磁石の実測電圧との電圧偏差に応
じて、前記変換器の点弧角をフィードバック制御する自
動電圧制御手段(以下、AVR)を備える電磁石電源の
制御装置において、 前記目標値を実現するように前記電圧波形を補正処理す
る補正手段と、この補正手段の実行期間には、前記AC
Rから前記AVRへの出力を遮断する遮断指令を出力す
る切替指示手段と、前記電流偏差がしきい値より大きい
とき前記補正処理を行う判定手段と、を含む繰返し制御
手段を備えることを特徴とする電磁石電源の制御装置。
10. One or a plurality of electromagnets, a converter for supplying a current corresponding to a target value of a preset current waveform to the electromagnet, and a current deviation between the target value and a measured current flowing through the electromagnet. An automatic current control means (hereinafter referred to as ACR) that performs feedback control according to the command value of the voltage waveform applied to the electromagnet to realize the target value, and a voltage deviation between the output of the ACR and the actually measured voltage of the electromagnet. Accordingly, in a control device for an electromagnet power source including an automatic voltage control means (hereinafter, AVR) for feedback controlling the firing angle of the converter, a correction means for correcting the voltage waveform so as to realize the target value. During the execution period of this correction means, the AC
A repetitive control unit including a switching instruction unit that outputs a cutoff command that cuts off the output from R to the AVR and a determination unit that performs the correction process when the current deviation is larger than a threshold value. Control device for electromagnet power supply.
【請求項11】 請求項10において、 前記補正手段は、前記電流偏差を前記電流波形に相応す
る分だけ時系列に収集して電流偏差パターンを作成、記
憶する電流偏差パターン管理手段と、この電流偏差パタ
ーンに基づいて前記電流偏差を0に近づける補正電圧パ
ターンを作成する補正電圧パターン作成手段と、最初は
初期設定される前記電圧波形を前記補正電圧パターンに
よって補正または更新、記憶する電圧波形管理手段を備
え、 前記切替指示手段は、前記電流偏差パターンの作成、前
記補正電圧パターンの作成及び前記電圧波形の補正また
は更新を切替制御すると共に、前記電流偏差パターンの
作成期間は前記遮断指令をオン出力することを特徴とす
る電磁石電源の制御装置。
11. The current deviation pattern management means according to claim 10, wherein the correction means collects the current deviation in time series by an amount corresponding to the current waveform to create and store a current deviation pattern, and the current deviation pattern management means. A correction voltage pattern creating means for creating a correction voltage pattern for making the current deviation closer to 0 based on the deviation pattern, and a voltage waveform managing means for correcting, updating, and storing the initially initialized voltage waveform by the correction voltage pattern. The switching instruction means controls switching of creation of the current deviation pattern, creation of the correction voltage pattern, and correction or update of the voltage waveform, and outputs the cutoff command on during the creation period of the current deviation pattern. A control device for an electromagnet power supply characterized by:
【請求項12】 請求項9または11において、 前記電流偏差パターン管理手段および/または前記電圧
波形管理手段は、交替バッファを具備して構成されるこ
とを特徴とする電磁石電源の制御装置。
12. The control device for an electromagnet power supply according to claim 9, wherein the current deviation pattern management means and / or the voltage waveform management means is configured to include an alternation buffer.
【請求項13】 粒子の閉軌道を構成する磁場を発生す
る複数の電磁石と、点弧角制御される変換器から前記電
磁石に電圧を印加し、前記磁場を発生させるための電流
を供給する電磁石電源と、前記磁場を所定のパターンで
発生させるために前記変換器の点弧角を制御する電源制
御装置を備え、低エネルギーで入射した粒子を次第に磁
場を増加して加速し、高エネルギーの粒子として出射す
る周期運転を行う粒子加速器において、 前記電源制御装置は、前記所定のパターンで磁場を与え
るための台形状の電流波形を予め目標値として設定する
電流波形記憶手段と、前記目標値を実現する電圧波形の
指令値と前記電磁石に印加される実測電圧との電圧偏差
に応じて、前記変換器の点弧角をフィードバック制御す
る自動電圧制御手段(以下、AVR)と、前記周期運転
の起動時または前記目標値と前記電磁石に流れる実測電
流との電流偏差がしきい値以上のときに、前記電流偏差
を低減するように前記電圧波形を補正する繰返し制御手
段を備えることを特徴とする粒子加速器。
13. A plurality of electromagnets that generate a magnetic field that forms a closed orbit of particles, and an electromagnet that applies a voltage to the electromagnets from a converter whose firing angle is controlled to supply a current for generating the magnetic field. A power supply and a power supply control device for controlling the firing angle of the converter to generate the magnetic field in a predetermined pattern are provided. In the particle accelerator that performs a periodic operation to emit as, the power supply control device realizes the target value and a current waveform storage unit that sets a trapezoidal current waveform for applying a magnetic field in the predetermined pattern as a target value in advance. Automatic voltage control means for feedback controlling the firing angle of the converter in accordance with the voltage deviation between the command value of the voltage waveform to be applied and the measured voltage applied to the electromagnet (hereinafter referred to as AV ) And when the periodic operation is started or when the current deviation between the target value and the actually measured current flowing through the electromagnet is equal to or more than a threshold value, the repetitive control means for correcting the voltage waveform so as to reduce the current deviation. A particle accelerator comprising:
【請求項14】 請求項13において、 前記電源制御装置は、前記電流偏差に応じてフィードバ
ック制御する自動電流制御手段(以下、ACR)と、こ
のACRの出力部と前記AVRの入力部間を前記繰返し
制御手段の実行期間中は遮断するスイッチ装置を設けた
ことを特徴とする粒子加速器。
14. The power supply control device according to claim 13, wherein the power supply control device performs automatic feedback control according to the current deviation (hereinafter referred to as ACR), and between the output unit of the ACR and the input unit of the AVR. A particle accelerator characterized by comprising a switch device for shutting off during execution of the repetitive control means.
JP21860494A 1994-09-13 1994-09-13 Control method and its device of electromagnet power source, and particle accelerator Pending JPH0883700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21860494A JPH0883700A (en) 1994-09-13 1994-09-13 Control method and its device of electromagnet power source, and particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21860494A JPH0883700A (en) 1994-09-13 1994-09-13 Control method and its device of electromagnet power source, and particle accelerator

Publications (1)

Publication Number Publication Date
JPH0883700A true JPH0883700A (en) 1996-03-26

Family

ID=16722565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21860494A Pending JPH0883700A (en) 1994-09-13 1994-09-13 Control method and its device of electromagnet power source, and particle accelerator

Country Status (1)

Country Link
JP (1) JPH0883700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043095A (en) * 2000-03-27 2002-02-08 Applied Materials Inc Controller for linear accelerator
JP2014116408A (en) * 2012-12-07 2014-06-26 Nichicon Corp Power source device for electromagnet
CN110856336A (en) * 2019-11-27 2020-02-28 中国原子能科学研究院 Real-time adjustment equipment and method for magnet power supply of cyclotron
CN115968096A (en) * 2022-11-22 2023-04-14 中国科学院近代物理研究所 Non-resonant fast-acceleration full-waveform dynamic compensation method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043095A (en) * 2000-03-27 2002-02-08 Applied Materials Inc Controller for linear accelerator
JP2014116408A (en) * 2012-12-07 2014-06-26 Nichicon Corp Power source device for electromagnet
CN110856336A (en) * 2019-11-27 2020-02-28 中国原子能科学研究院 Real-time adjustment equipment and method for magnet power supply of cyclotron
CN115968096A (en) * 2022-11-22 2023-04-14 中国科学院近代物理研究所 Non-resonant fast-acceleration full-waveform dynamic compensation method and system
CN115968096B (en) * 2022-11-22 2023-11-03 中国科学院近代物理研究所 Non-resonant fast acceleration full-waveform dynamic compensation method and system

Similar Documents

Publication Publication Date Title
KR102364185B1 (en) Adaptive control of generators
JPH0883700A (en) Control method and its device of electromagnet power source, and particle accelerator
Edelen et al. Machine learning models for optimization and control of x-ray free electron lasers
JPH06309021A (en) Period switching repetitive control system
Boyarski Automatic control program for SPEAR
JP2001137214A (en) Power supply device and magnetic resonance imaging apparatus using the same
Smith Production of intense low emittance beams for free electron lasers using electron linear accelerators
JP5693876B2 (en) Particle beam irradiation apparatus and particle beam irradiation program
Fröhlich et al. Magnet server and control system database infrastructure for the European XFEL
Lens et al. Stability of longitudinal bunch length feedback for heavy-ion synchrotrons
US4982320A (en) Adaptive control for accelerators
Kwon et al. SNS Superconducting RF cavity modeling-iterative learning control
JP2649443B2 (en) Power supply device and particle accelerator using the same
Li et al. Power Supply Decoupling Design
JP2799066B2 (en) Accelerator
Keshwani et al. A Novel Tuning Scheme for Fast Norm Optimal Iterative Learning Controller
Zhu et al. Machine Learning Based Surrogate Model Construction for Optics Matching at the European XFEL
JP2010277770A (en) High frequency accelerator, and ring accelerator
JPH03236862A (en) Medical electron accelerating device
JPH05198399A (en) Control device for synchrotron
JPH08203700A (en) Accelerator, and beam emission control method and beam emission control device
JPH04326402A (en) Fuzzy controller
CN116882273A (en) Electron beam injector macro-pulse optimization method and system based on NSGA-III algorithm
Johnson et al. Commissioning of the ground test accelerator intertank matching section
Scheinker Adaptive Feedback and Machine Learning for Particle Accelerators