JPH08203700A - Accelerator, and beam emission control method and beam emission control device - Google Patents
Accelerator, and beam emission control method and beam emission control deviceInfo
- Publication number
- JPH08203700A JPH08203700A JP923795A JP923795A JPH08203700A JP H08203700 A JPH08203700 A JP H08203700A JP 923795 A JP923795 A JP 923795A JP 923795 A JP923795 A JP 923795A JP H08203700 A JPH08203700 A JP H08203700A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnet
- accelerator
- converter
- extraction
- focusing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はシンクロトロンのような
加速器に係り、特に、”遅い取出し”と呼ばれるビーム
出射制御方式に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accelerator such as a synchrotron, and more particularly to a beam extraction control system called "slow extraction".
【0002】[0002]
【従来の技術】シンクロトロンのような加速器の運転で
重要なことは、粒子が所定の閉軌道を周回運動している
うちに、閉軌道から逃げないように磁場を生成すること
である。この磁場は主電磁石とよばれる偏向電磁石、集
束4極電磁石、発散4極電磁石より発生する磁場の合成
である。2. Description of the Related Art An important factor in the operation of an accelerator such as a synchrotron is to generate a magnetic field so that a particle does not escape from a closed orbit while it orbits a predetermined closed orbit. This magnetic field is a combination of magnetic fields generated by a deflection electromagnet called a main electromagnet, a focusing quadrupole electromagnet, and a diverging quadrupole electromagnet.
【0003】シンクロトロンで加速したビームを出射す
る場合、通常は、キッカやバンプと呼ばれる電磁石をパ
ルス的に励磁して閉軌道を一時的に変化させ、一挙にシ
ンクロトロン外に取出し、次段の加速器等に送り出す。
このときの出射ビームのパルス幅は、マイクロ秒で測る
大きさである。When a beam accelerated by a synchrotron is emitted, an electromagnet called a kicker or bump is usually excited in a pulsed manner to temporarily change the closed orbit, and the beam is taken out of the synchrotron at once, and then the next stage. Send it to an accelerator.
The pulse width of the emitted beam at this time is a size measured in microseconds.
【0004】一方、治療用、高エネルギー物理実験ある
いは生物実験用等には、出射ビームのパルス幅を数百ミ
リ秒から数秒以上に広くとる必要がある。これは”遅い
取出し”とよばれるビーム出射制御方式によって行われ
る。On the other hand, for therapeutic purposes, high-energy physics experiments, biological experiments, etc., it is necessary to make the pulse width of the emitted beam wide from several hundred milliseconds to several seconds or more. This is done by a beam extraction control scheme called "slow extraction".
【0005】このビーム出射制御方式は、従来より種々
の方式が試みられている。代表的な方式としては、共鳴
出射法と呼ばれる方式で、閉軌道を中心として運動する
ビーム粒子のベータトロン振動周期が、ビームの安定周
回に深く関わっていることを利用するものである。Various beam extraction control methods have been tried in the past. A typical method is a method called a resonance extraction method, which utilizes the fact that the betatron oscillation period of a beam particle moving around a closed orbit is deeply related to the stable orbit of the beam.
【0006】ベータトロン振動周期を軌道の1周で規格
化したものをチューンと呼ぶ。チューンの値が、特定の
共鳴値(例えば1/2や1/3)の倍数の場合、ビーム
は安定な領域が小さく、ビームは軌道を外れやすい。チ
ューンの値が別の整数比(1/4や1/5以下)の倍数
の場合、ビームの安定領域はより大きく、全体として安
定である。A tune is one in which the betatron oscillation period is standardized in one round of the orbit. When the tune value is a multiple of a specific resonance value (for example, 1/2 or 1/3), the beam has a small stable region, and the beam easily deviates from the orbit. If the tune value is a multiple of another integer ratio (1/4 or 1/5 or less), the stable region of the beam is larger and stable as a whole.
【0007】チューンの値は、集束4極電磁石の磁場
(したがって電流)が、偏向電磁石の磁場(あるいは電
流)との間で保っているトラッキング比を変化させるこ
とにより調整できる。即ち、ビームの入射から加速の間
は安定なチューンの値(例えば1/4の倍数)を保ち、
ビーム出射区間で集束4極電磁石の磁場を不安定なチュ
ーンの値(例えば1/3の倍数)へ変化させる。これに
より、ビームの不安定領域が広がり、ビーム取り出し部
に設けた電極を介し、不安定領域のビームをシンクロト
ロン外に取り出す。The tune value can be adjusted by changing the tracking ratio maintained by the magnetic field (and hence the current) of the focusing quadrupole electromagnet with respect to the magnetic field (or current) of the deflection electromagnet. That is, a stable tune value (for example, a multiple of 1/4) is maintained from the beam incidence to the acceleration,
The magnetic field of the focusing quadrupole electromagnet is changed to an unstable tune value (eg, a multiple of 1/3) in the beam emission section. As a result, the unstable region of the beam spreads, and the beam in the unstable region is extracted to the outside of the synchrotron through the electrode provided in the beam extraction part.
【0008】このようなシンクロトロンのビーム制御方
式を解説した文献に、亀井亨、木原元央著「パリティ物
理学コース”加速器科学”」(丸善株式会社、平成5年
9月)等がある。Documents describing such a synchrotron beam control system include Toru Kamei and Motoo Kihara, "Parity Physics Course" Accelerator Science "" (Maruzen Co., Ltd., September 1993).
【0009】[0009]
【発明が解決しようとする課題】しかし、従来の”遅い
取出し”とよばれるビーム出射制御方式は、集束4極電
磁石の僅かな磁場変化でビームの不安定領域を制御する
ために、励磁電流のリップルに対し非常に敏感となり、
その結果、出射ビームが商用周波数と同期した不安定な
パルスとなってしまうことが多かった。However, the conventional beam extraction control method called "slow extraction" controls the unstable region of the beam in order to control the unstable region of the beam by a slight magnetic field change of the focusing quadrupole electromagnet. Became very sensitive to ripple,
As a result, the emitted beam often becomes an unstable pulse synchronized with the commercial frequency.
【0010】このため、加速器の出射ビームを取り込ん
で治療や試験などを行うビーム照射装置においては、照
射範囲を走査する動作周期が商用周波数程度からその数
倍と近いため、出射ビームが照射範囲の特定個所に偏る
恐れがあり、医療用の場合には被照射体(患者)の安全
上の問題、試験用の場合には精度上の問題があった。For this reason, in a beam irradiation apparatus which takes in the emitted beam of the accelerator and performs treatments and tests, the operation period for scanning the irradiation range is close to several times the commercial frequency, and therefore the emitted beam is in the irradiation range. There is a risk of being biased to a specific part, and there was a safety problem of the irradiated body (patient) for medical use, and a precision problem for a test use.
【0011】このような現象を回避するためには、励磁
電流の残留リップルを例えば10~7以下にするか、出射
ビームにのるリップルを検出して励磁電流の残留リップ
ルを抑制するフィードバック制御を行う等の対策が考え
られる。しかし、実現は困難で、仮に実現が可能として
も、装置コストの大幅アップが免れず、汎用には供し得
ないものである。In order to avoid such a phenomenon, the residual ripple of the exciting current is set to, for example, 10 to 7 or less, or feedback control for suppressing the residual ripple of the exciting current is performed by detecting the ripple on the outgoing beam. Measures such as taking measures can be considered. However, it is difficult to realize, and even if it can be realized, a large increase in the device cost is unavoidable, and it cannot be used for general purposes.
【0012】本発明の目的は、上記従来技術の問題点を
簡単な手法で解決し、電源リップルの影響がない安定な
ビーム出射制御方法及び装置を提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art by a simple method, and to provide a stable beam extraction control method and apparatus which is not affected by a power supply ripple.
【0013】本発明の目的は、加速器から取り出した照
射ビームが、特定個所に偏らない安全なビーム照射ので
きる加速器を提供することにある。An object of the present invention is to provide an accelerator capable of performing safe beam irradiation in which an irradiation beam taken out from the accelerator is not concentrated on a specific part.
【0014】[0014]
【課題を解決するための手段】本発明の目的は、偏向電
磁石、集束電磁石及び発散電磁石を備え、入射された低
速のビームを高速に加速して出射するシンクロトロンの
ような加速器で、遅い取出しと呼ばれるビームの出射制
御方法において、前記集束電磁石の磁場を、ビームの取
り出し期間(出射区間)中に、ビームが出にくい安定領
域とビームが出やすい安定領域の間で交番的に摂動させ
ることにより達成できる。SUMMARY OF THE INVENTION An object of the present invention is to provide an accelerator such as a synchrotron which includes a deflection electromagnet, a focusing electromagnet and a diverging electromagnet and accelerates and outputs an incident low-speed beam at a high speed. In a beam extraction control method called a beam extraction control method, the magnetic field of the focusing electromagnet is perturbed alternately between a stable region where the beam is hard to come out and a stable region where the beam is easy to come out during the beam extraction period (exiting section). Can be achieved.
【0015】上記磁場の摂動は、前記集束電磁石の励磁
電流を、ビームの取り出し期間中に、電磁石電源を構成
する変換器の相数で決まる点弧周期またはその倍数の周
期で変化する高周波を重畳することにより実現する。In the perturbation of the magnetic field, the exciting current of the focusing electromagnet is superposed on a high frequency which changes during the beam extraction period at an ignition cycle determined by the number of phases of the converter constituting the electromagnet power source or a cycle thereof. It is realized by doing.
【0016】さらに、ビーム照射装置の動作周期を取り
込み、これと非同期となるように前記摂動の周期を設定
することを特徴とする。Further, the operation cycle of the beam irradiation device is taken in and the perturbation cycle is set so as to be asynchronous with this.
【0017】[0017]
【作用】本発明によれば、ビーム出射区間における集束
4極電磁石の励磁電流を、前記摂動手段により、励磁電
流の電源周波数(通常、商用周波数)より十分に高い周
波数で摂動させる。これに応じて、チューンの値が変動
し、ビームの不安定領域が広がったり狭まったりするの
で、出射ビームは、電源周波数よりも大幅に高周波、例
えば周期1ミリ秒程度の細いパルス状になる。これによ
って、励磁電源のリップルの影響を回避し、出射ビーム
の安定な取り出しが可能になる。According to the present invention, the exciting current of the focusing quadrupole electromagnet in the beam extraction section is perturbed by the perturbing means at a frequency sufficiently higher than the power supply frequency of the exciting current (usually a commercial frequency). In response to this, the value of the tune fluctuates, and the unstable region of the beam expands or narrows, so that the outgoing beam becomes a pulse having a frequency significantly higher than the power supply frequency, for example, a period of about 1 millisecond. As a result, the influence of the ripple of the excitation power supply can be avoided, and the outgoing beam can be taken out stably.
【0018】また、励磁電流の摂動は、励磁電流の振幅
値の0.01〜0.1%程度の高周波を重畳して行うの
で、構成が容易でありコスト上の障害もない。さらに、
電源のリップル含有率を従来よりも高くでき、その分安
上がりな電源を使用できる。Further, since the exciting current is perturbed by superposing a high frequency of about 0.01 to 0.1% of the amplitude value of the exciting current, the structure is easy and there is no cost obstacle. further,
The ripple content of the power supply can be made higher than before, and the power supply that is cheaper can be used.
【0019】さらに、摂動周波数は前記摂動周波数設定
手段により、ビーム照射装置の動作周波数(通常、商用
周波数)と非同期に設定されるので、照射ビーム分布の
偏りを回避でき、安全で信頼度の高い照射装置を提供で
きる。Further, since the perturbation frequency is set asynchronously with the operating frequency (usually, commercial frequency) of the beam irradiation device by the perturbation frequency setting means, deviation of the irradiation beam distribution can be avoided, which is safe and highly reliable. An irradiation device can be provided.
【0020】[0020]
【実施例】本発明の一実施例を図面を参照しながら詳細
に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings.
【0021】図2は、本発明を適用する加速器全体の構
成図である。この加速器は、周期運転するシンクロトロ
ンで、閉軌道を形成するための磁場を発生する主電磁石
や、図示していない入射電極や出射電極などを備えてい
る。主電磁石には、偏向電磁石1Bと、集束電磁石1Q
fと、発散電磁石1Qdがあり、後二者は4極電磁石で
ある。FIG. 2 is a block diagram of the entire accelerator to which the present invention is applied. This accelerator is a synchrotron that periodically operates, and includes a main electromagnet that generates a magnetic field for forming a closed orbit, an incident electrode and an emission electrode (not shown), and the like. The main electromagnet includes a deflection electromagnet 1B and a focusing electromagnet 1Q.
f and a diverging electromagnet 1Qd, and the latter two are quadrupole electromagnets.
【0022】各電磁石1はそれぞれの電源2B、2Q
f、2Qdから励磁される。各電源2の点弧角制御やフ
ィードバック制御(ACR及びAVR)は、それぞれの
変換器制御装置5B、5Qf、5Qdが行う。変換器制
御装置5は制御装置6からの指令値と励磁回路の制御結
果を取り込んで、その偏差に応じて点弧角を制御する。Each electromagnet 1 has its own power supply 2B, 2Q.
It is excited from f and 2Qd. The firing angle control and feedback control (ACR and AVR) of each power supply 2 are performed by the respective converter control devices 5B, 5Qf, 5Qd. The converter control device 5 takes in the command value from the control device 6 and the control result of the excitation circuit, and controls the firing angle according to the deviation.
【0023】制御装置6B、6Qf、6Qdは、各変換
器制御装置5の制御指令値を決定し、シンクロトロンの
運転を繰返し制御する。なお、変換器制御5B、5Q
f、5Qdの基本構成は同一である。制御装置6B、6
Qf、6Qdも、本発明により付加される電流パターン
加工手段63を除けば同一である。The control devices 6B, 6Qf, 6Qd determine the control command value of each converter control device 5 and repeatedly control the operation of the synchrotron. In addition, converter control 5B, 5Q
The basic configurations of f and 5Qd are the same. Control device 6B, 6
Qf and 6Qd are also the same except for the current pattern processing means 63 added by the present invention.
【0024】図1は、本発明の一実施例による集束電磁
石の電源制御装置の構成図である。集束電磁石1Qfは
複数個が直列接続され(以下、電磁石1Qfと略称)、
電源2により励磁される。電源2はサイリスタ変換器や
GTO変換器のような電圧源である。電源2の出力電圧
Vfは分圧器3で、出力電流IfはDCCT4で、それ
ぞれ測定され、変換器制御装置5へのフィードバック値
となる。電磁石1の励磁電流Iの制御を行うためAVR
51を設け、その出力信号であるEC指令を、自動移相
器APPS52によりサイリスタ2の点弧パルスに変換
する。FIG. 1 is a block diagram of a power supply controller for a focusing electromagnet according to an embodiment of the present invention. A plurality of focusing electromagnets 1Qf are connected in series (hereinafter abbreviated as electromagnet 1Qf),
It is excited by the power supply 2. The power supply 2 is a voltage source such as a thyristor converter or a GTO converter. The output voltage Vf of the power supply 2 is measured by the voltage divider 3 and the output current If is measured by the DCCT 4, which are feedback values to the converter control device 5. AVR for controlling the exciting current I of the electromagnet 1
51 is provided, and an EC command which is an output signal thereof is converted into an ignition pulse of the thyristor 2 by the automatic phase shifter APPS52.
【0025】制御装置6は、ACR53に電流指令Ir
を与える電流パターンメモリ61、AVR51に電圧指
令Vrを与える電圧パターンメモリ63と、各々の出力
手段64、65を備えている。電流パターンはACR5
3(正確には演算器56)の指令値、電圧パターンはA
VR51(正確には演算器54)の指令値としてそれぞ
れ与えられ、出力電流Ifと出力電圧Vfのフィードバ
ック値との偏差に応じて、電源2の変換器の点弧制御を
行う。なお、図1で電圧パターンメモリ62を2つ備え
ているのは、交替バッファ方式で電圧パターンの変更を
可能にするためである。The controller 6 sends a current command Ir to the ACR 53.
And a voltage pattern memory 63 for giving a voltage command Vr to the AVR 51, and respective output means 64, 65. Current pattern is ACR5
The command value and voltage pattern of 3 (to be exact, calculator 56) are A
It is given as a command value of each of the VRs 51 (correctly, the calculator 54), and ignition control of the converter of the power supply 2 is performed according to the deviation between the output current If and the feedback value of the output voltage Vf. Note that the two voltage pattern memories 62 are provided in FIG. 1 in order to enable the change of the voltage pattern by the alternating buffer method.
【0026】図3に、各電磁石1B、1Qf及び1Qd
の励磁電流のパターンを示す。同図(a)は偏向電磁石
電流パターンIBr、(b)は集束電磁石電流パターン
Ir’(Ir)、(c)は発散電磁石電流パターンIQ
dで、繰返し運転されるシンクロトロンの1周期分の電
流指令値を示したものである。各パターンは台形を示
し、各点のタイミングは同一である。FIG. 3 shows the electromagnets 1B, 1Qf and 1Qd.
The pattern of the exciting current of is shown. In the figure, (a) is a deflection electromagnet current pattern IBr, (b) is a focusing electromagnet current pattern Ir ′ (Ir), and (c) is a diverging electromagnet current pattern IQ.
FIG. 3d shows the current command value for one cycle of the synchrotron which is repeatedly operated. Each pattern shows a trapezoid, and the timing of each point is the same.
【0027】同図(b)は、電磁石1Qfの電流パター
ンIr(IQf)で、その電流値の低い区間はシンクロ
トロンに低エネルギーの粒子を入射する期間で、電流値
(したがって磁場)の増加に比例して加速による粒子の
運動量が増加し、電流値が最大となる加速完了の区間で
シンクロトロンから照射装置7(あるいは他の加速器な
ど)へ出射する期間と対応している。FIG. 3B shows a current pattern Ir (IQf) of the electromagnet 1Qf, in which the low current value is a period in which low-energy particles are injected into the synchrotron and the current value (and therefore the magnetic field) increases. The momentum of particles due to acceleration increases in proportion to each other, and corresponds to the period of emission from the synchrotron to the irradiation device 7 (or another accelerator or the like) in the acceleration completion section in which the current value becomes maximum.
【0028】電流パターンIrは、サイリスタ変換器2
の動作と同期した指令値にするため、(数1)に示す時
系列データIriとして与えられる。The current pattern Ir is obtained by the thyristor converter 2
In order to make the command value in synchronization with the operation of, the time series data Iri shown in (Equation 1) is given.
【0029】[0029]
【数1】 [Equation 1]
【0030】ここで、1<i<n,k<m<nである。
また、kはビーム取り出し区間の開始位置、mはビーム
取り出し区間の終了位置を示す。Here, 1 <i <n and k <m <n.
Further, k indicates the start position of the beam extraction section, and m indicates the end position of the beam extraction section.
【0031】さらに、nはシンクロトンの一周期の終わ
りを示し、電源2の変換器の相数Nと商用周波数fから
(数2)のように決まる。Further, n indicates the end of one cycle of the synchroton, and is determined from the number N of phases of the converter of the power source 2 and the commercial frequency f as shown in (Equation 2).
【0032】[0032]
【数2】 [Equation 2]
【0033】通常、電源2の変換器の相数N=12また
は24であり、商用周波数f=50Hz、シンクロトロ
ンの1周期の時間Ts=2秒とすると、n=1200ま
たは2400となり、Iriは1.667または0.8
33ミリ秒毎に更新されるデータとなる。Usually, if the number of phases of the converter of the power supply 2 is N = 12 or 24, the commercial frequency f = 50 Hz, and the time Ts of one cycle of the synchrotron is Ts = 2 seconds, then n = 1200 or 2400, and Iri is 1.667 or 0.8
The data is updated every 33 milliseconds.
【0034】この電流パターンIrはパターン加工装置
63に入力され、その取り出し区間の電流値Irに高周
波の摂動(振幅のジグザグ変動)を与えて、電流パター
ンIr’に加工する。この加工は出射区間(k<i<k
+m−1)の電流パターンを、(数3)に示すように制
御する。なお、入射・加速区間(i<k−1)や出射後
のリセット区間(k+m<i<k+n)は変更なく、I
r=Ir’である。This current pattern Ir is input to the pattern processing device 63, and high-frequency perturbation (zigzag fluctuation of amplitude) is given to the current value Ir in the extraction section to process it into a current pattern Ir '. This processing is performed in the emission section (k <i <k
The current pattern of + m-1) is controlled as shown in (Equation 3). The incident / acceleration section (i <k-1) and the reset section (k + m <i <k + n) after emission are unchanged and I
r = Ir '.
【0035】[0035]
【数3】 (Equation 3)
【0036】ここで、Aは高周波の振幅値で、概ね台形
部の振幅値Irの0.01〜0.1%である。なお、A
の値を固定にせず、チューンと共に変化させるようにし
てもよい。Mは与える摂動の周期Tr(M/N・f)
を、変換器2の点弧周期の何倍とするかを決める値であ
る。Mが1以外の場合、電流パターンの(数3)による
制御はM個単位となる。Here, A is a high frequency amplitude value, which is approximately 0.01 to 0.1% of the trapezoidal amplitude value Ir. Note that A
The value of may not be fixed and may be changed with the tune. M is the perturbation period Tr (M / Nf)
Is a value that determines how many times the firing cycle of the converter 2 is to be set. When M is other than 1, the control of the current pattern by (Equation 3) is performed in M units.
【0037】また、パターン加工装置63は、摂動の周
期Trの設定手段を有し、取り込んだ照射装置7の動作
周期Tと非同期になるようにMを決定して、摂動周期T
rを設定している。動作周期Tは通常、商用電源周期程
度からその1/3〜1/4倍で、5〜6.7ミリ秒であ
るから、摂動周期Trはそれより短く且つ、整数倍とな
らないように設定される。なお、パターン加工装置63
は、制御装置6のソフトウエア処理の一部として実現し
てもよい。Further, the pattern processing device 63 has means for setting the perturbation period Tr, determines M so as to be asynchronous with the operation period T of the incorporated irradiation device 7, and determines the perturbation period T.
r is set. Since the operation cycle T is normally 1/3 to 1/4 times the commercial power supply cycle and is 5 to 6.7 milliseconds, the perturbation cycle Tr is set shorter than that and not set to an integral multiple. It The pattern processing device 63
May be implemented as part of the software processing of the control device 6.
【0038】図3(b)の拡大図は、このように作成さ
れた電流パターンを模式的に示したものである。この例
示はM=1の場合で、電磁石1Qfの電流パターンIr
の台形部分が、ジグザグに変更されたパターンIr’に
加工されている。この結果、摂動開始点kにおける電流
値(したがって磁場)はビームが出にくい安定領域とな
り、次のk+1点ではビームの出やすい不安定領域とな
り、これを短い周期で往復しながらk+m−1点まで繰
り返している。この場合、kが偶数か奇数かにより、電
流パターンIr’の摂動を始める方向が異なるが、開始
点kは変換器の相数Nの偶数倍とするのが自然である。The enlarged view of FIG. 3B schematically shows the current pattern thus created. In this example, M = 1, and the current pattern Ir of the electromagnet 1Qf is
Is processed into a pattern Ir 'which is changed in zigzag. As a result, the current value (and hence the magnetic field) at the perturbation start point k becomes a stable region in which the beam is hard to come out, and becomes an unstable region in which the beam is easy to come out at the next k + 1 point. Is repeating. In this case, the direction in which the perturbation of the current pattern Ir ′ starts is different depending on whether k is an even number or an odd number, but it is natural that the starting point k is an even multiple of the phase number N of the converter.
【0039】シンクロトロンは、Iri=1〜nのパタ
ーンに対応する動作モードをTs=1〜2秒周期で繰り
返し、ビーム出射区間(取り出し区間)の度に、ビーム
が照射装置7に取り込まれる。なお、図3のように、集
束電磁石1Qfの電流パターンIrを右肩下がりとして
いるのは、安定領域を画するセパラトリクスの内部の面
積がベータトロン振動数の共鳴線からの距離と非線形磁
場の強さとにより変動するので、これに対応させるため
である。The synchrotron repeats the operation mode corresponding to the pattern of Iri = 1 to n at a cycle of Ts = 1 to 2 seconds, and the beam is taken into the irradiation device 7 at every beam extraction section (extraction section). As shown in FIG. 3, the reason why the current pattern Ir of the focusing electromagnet 1Qf is downward-sloping is that the internal area of the separatrix that defines the stable region is the distance from the resonance line of the betatron frequency and the strength of the nonlinear magnetic field. This is because it fluctuates depending on the above, and it corresponds to this.
【0040】電圧パターンメモリ62に格納される電圧
パターンVrは、電流パターンIrと電磁石1の励磁回
路の定数から、(数4)により計算されて格納される。The voltage pattern Vr stored in the voltage pattern memory 62 is calculated and stored from the current pattern Ir and the constant of the exciting circuit of the electromagnet 1 by (Equation 4).
【0041】[0041]
【数4】 [Equation 4]
【0042】ここで、Lは電磁石1とケーブルのインダ
クタンス、Rは電磁石1とケーブルの直流抵抗である。
電圧Vrと電流Irの方向は図1の矢印の方向を正とす
る。Here, L is the inductance of the electromagnet 1 and the cable, and R is the DC resistance of the electromagnet 1 and the cable.
The direction of the voltage Vr and the current Ir is positive in the direction of the arrow in FIG.
【0043】図4は、本実施例による効果の説明図で、
電流パターン(指令値)に対応する本実施例による取り
出しビーム波形(A)と、従来の取り出しビーム波形
(B)を示したものである。FIG. 4 is an explanatory diagram of the effect of this embodiment.
FIG. 3 shows an extraction beam waveform (A) according to the present embodiment corresponding to a current pattern (command value) and a conventional extraction beam waveform (B).
【0044】本実施例では、ビーム出射区間において、
集束4極電磁石の励磁電流を0.833ミリ秒またはそ
のM倍の高周波で摂動しているので、摂動周期に応じて
広がる不安定領域において、波形(A)のように高周波
のパルス状の出射ビームとして安定に取り出すことがで
き、電源リップルの影響を除去できる。In this embodiment, in the beam emission section,
Since the exciting current of the focusing quadrupole electromagnet is perturbed at a high frequency of 0.833 milliseconds or M times of that, in the unstable region that spreads according to the perturbation period, high-frequency pulsed emission as in waveform (A) It can be stably extracted as a beam, and the effect of power supply ripple can be eliminated.
【0045】一方、従来のトラッキング比による場合
は、不安定領域が電源リップルに応じて変化するため、
波形(B)のように出射ビームが商用周波数と同期した
周期Tに近いパルス状となり且つ、振幅値がリップルの
影響を受けて不安定なものとなっている。On the other hand, in the case of the conventional tracking ratio, the unstable region changes according to the power supply ripple.
As shown in the waveform (B), the emitted beam has a pulse shape close to the period T synchronized with the commercial frequency, and the amplitude value is unstable due to the influence of ripples.
【0046】図5は、照射ビームの分布を比較する模式
図である。本実施例による(A)の場合、シンクロトロ
ンからの出射ビームのパルス周期は照射装置7の動作周
期T(照射ビームが円を1つ描く走査周期)より十分高
く且つ、非同期となるので、照射ビームは照射範囲に一
様に分布する。一方、従来の(B)の場合、出射ビーム
のパルス周期は照射装置7の動作周期Tと同期するの
で、照射ビームが一部の範囲に偏る。従って、治療用の
照射装置の場合、従来の方式では患者の照射範囲の一部
分に集中してしまう危険性がある。これに対し、本実施
例では患者の照射範囲に平均して照射でき、安全で治療
効果も向上する。FIG. 5 is a schematic diagram for comparing distributions of irradiation beams. In the case of (A) according to the present embodiment, the pulse period of the beam emitted from the synchrotron is sufficiently higher than the operation period T of the irradiation device 7 (the scanning period in which the irradiation beam draws one circle) and becomes asynchronous, so that the irradiation is performed. The beam is evenly distributed in the irradiation area. On the other hand, in the case of the conventional case (B), since the pulse cycle of the emitted beam is synchronized with the operation cycle T of the irradiation device 7, the irradiation beam is biased to a partial range. Therefore, in the case of a therapeutic irradiation device, there is a risk that the conventional method concentrates on a part of the irradiation range of the patient. On the other hand, in the present embodiment, the irradiation range of the patient can be irradiated on average, which is safe and the therapeutic effect is improved.
【0047】[0047]
【発明の効果】本発明によれば、ビーム(粒子)加速器
の”遅い取り出し”において、集束電磁石の励磁電流パ
ターンを高周波で摂動することにより、出射ビームに対
する電磁石電源のリップル(商用周波数)の影響を回避
できるので、ビーム取り出しを安定にする効果がある。According to the present invention, in the "slow extraction" of the beam (particle) accelerator, by perturbing the exciting current pattern of the focusing electromagnet with a high frequency, the influence of the ripple (commercial frequency) of the electromagnet power source on the outgoing beam is obtained. Since it can be avoided, there is an effect of stabilizing the beam extraction.
【0048】また、出射ビームに電源リップルを含まな
いので、照射装置との干渉を排除でき、照射ビームを照
射範囲に一様に分布させることができるので、安全で信
頼性の高い照射が可能になる効果がある。Further, since the emitted beam does not include the power supply ripple, interference with the irradiation device can be eliminated, and the irradiation beam can be uniformly distributed in the irradiation range, so that safe and highly reliable irradiation is possible. There is an effect.
【0049】さらに、励磁電流の振幅値の摂動は1%以
下と僅かであり、簡単且つ安価な構成で実現できる効果
がある。Further, the perturbation of the amplitude value of the exciting current is as small as 1% or less, and there is an effect that it can be realized with a simple and inexpensive structure.
【図1】本発明の一実施例を示し、加速器における電磁
石電源の制御装置のブロック図。FIG. 1 is a block diagram of a control device for an electromagnet power source in an accelerator according to an embodiment of the present invention.
【図2】本発明を適用する加速器(この例はシンクロト
ロン)の全体構成図。FIG. 2 is an overall configuration diagram of an accelerator (this example is a synchrotron) to which the present invention is applied.
【図3】本実施例による偏向、集束及び発散の各電磁石
の励磁電流パターンの模式図。FIG. 3 is a schematic diagram of exciting current patterns of deflection, focusing, and diverging electromagnets according to the present embodiment.
【図4】出射(取り出し)ビーム波形の比較図。FIG. 4 is a comparison diagram of outgoing (extracting) beam waveforms.
【図5】照射装置による照射ビーム分布を説明する模式
図。FIG. 5 is a schematic diagram illustrating an irradiation beam distribution by an irradiation device.
1…電磁石、1B…偏向電磁石、1Qf…4極集束電磁
石、1Qd…4極発散電磁石、2…電源(サイリスタ変
換器)、2B…偏向電磁石用電源、2Qf…集束4極電
磁石用電源、2Qd…発散4極電磁石用電源、5…変換
器用制御装置、6…制御装置、51…AVR、52…A
PPS、53…ACR、54〜56…演算器、61…電
流パターンメモリ、62…電圧パターンメモリ、63…
パターン加工装置、64,65…出力装置、7…照射装
置。DESCRIPTION OF SYMBOLS 1 ... Electromagnet, 1B ... Deflection electromagnet, 1Qf ... 4-pole focusing electromagnet, 1Qd ... 4-pole diverging electromagnet, 2 ... Power supply (thyristor converter), 2B ... Deflection electromagnet power supply, 2Qf ... Focusing 4-pole electromagnet power supply, 2Qd ... Power source for divergent quadrupole electromagnet, 5 ... Converter control device, 6 ... Control device, 51 ... AVR, 52 ... A
PPS, 53 ... ACR, 54-56 ... Arithmetic unit, 61 ... Current pattern memory, 62 ... Voltage pattern memory, 63 ...
Pattern processing device, 64, 65 ... Output device, 7 ... Irradiation device.
Claims (7)
を備え、入射された低速のビームを高速に加速して出射
するシンクロトロンのような加速器で、遅い取出しと呼
ばれるビームの出射制御方法において、 前記集束電磁石の磁場を、ビームの取り出し期間中に、
ビームが出にくい安定領域とビームが出やすい安定領域
の間で交番的に摂動させることを特徴とする加速器のビ
ーム出射制御方法。1. A beam extraction control method called slow extraction, which comprises a deflecting magnet, a focusing electromagnet, and a diverging electromagnet, and is an accelerator such as a synchrotron that accelerates and outputs an incident low-speed beam at a high speed. The magnetic field of the focusing electromagnet is changed during the extraction of the beam.
A method for beam extraction control of an accelerator, characterized in that perturbation is alternately performed between a stable region where a beam is hard to come out and a stable region where a beam is easy to come out.
を備え、入射された低速のビームを高速に加速して出射
するシンクロトロンのような加速器で、遅い取出しと呼
ばれるビームの出射制御方法において、 前記集束電磁石の励磁電流を、ビームの取り出し期間中
に、電磁石電源を構成する変換器の相数で決まる点弧周
期、またはその所定倍数の周期で摂動させることを特徴
とする加速器のビーム出射制御方法。2. A beam extraction control method called slow extraction, which comprises a deflecting magnet, a focusing electromagnet, and a diverging electromagnet, and is an accelerator such as a synchrotron that accelerates and emits an incident low-speed beam at a high speed. A beam extraction control method for an accelerator, wherein an exciting current of a focusing electromagnet is perturbed during a beam extraction period at an ignition period determined by the number of phases of a converter constituting an electromagnet power source or a period of a predetermined multiple thereof. .
むビーム照射装置の動作周期と非同期とすることを特徴
とする加速器のビーム出射制御方法。3. The beam extraction control method for an accelerator according to claim 2, wherein the perturbation cycle is asynchronous with an operation cycle of a beam irradiation device that takes in a beam emitted from the accelerator.
用周波数)f、前記変換器の相数N及び前記所定倍数M
のとき、M/N・fに設定することを特徴とする加速器
のビーム出射制御方法。4. The cycle of the perturbation according to claim 2 or 3, wherein a frequency (commercial frequency) f of a power source of the focusing electromagnet, a phase number N of the converter, and the predetermined multiple M.
At this time, M / N · f is set, and the beam extraction control method for the accelerator is characterized.
0.01〜0.1%の振幅で且つ、前記摂動周期で変動
する高周波を重畳することを特徴とする加速器のビーム
出射制御方法。5. The perturbation according to claim 2, 3 or 4, wherein a high frequency having an amplitude of about 0.01 to 0.1% of an original current value of the extraction period and varying in the perturbation cycle is superimposed. A beam extraction control method for an accelerator, comprising:
磁石、集束4極電磁石及び発散4極電磁石の複数の組
と、各電磁石を励磁する各々の電源用変換器と、各変換
器をフィードバック制御するACRとAVRの組合せか
らなる各々の変換器用制御装置と、前記ACRに電流指
令および前記AVRに電圧指令を与える各指令制御装置
を備え、入射された低速のビームを高速に加速して出射
するシンクロトロンのような加速器による遅い取出しと
呼ばれるビームの出射制御装置において、 前記集束4極電磁石に対応する指令制御装置は、予め記
憶されている前記電流指令のパターンを、ビームの取り
出し区間中、前記変換器の相数で決まる点弧周期に対応
する周期で摂動するパターン加工手段を設けることを特
徴とする加速器のビーム出射制御装置。6. A plurality of sets of a bending electromagnet, a focusing quadrupole electromagnet and a diverging quadrupole electromagnet, which are alternately arranged along a closed orbit, each power supply converter exciting each electromagnet, and each converter. Each converter control device composed of a combination of ACR and AVR for feedback control and each command control device for giving a current command to the ACR and a voltage command to the AVR are provided to accelerate an incident low speed beam at high speed. In a beam emission control device called slow extraction by an accelerator such as a synchrotron that emits light, a command control device corresponding to the focusing quadrupole electromagnet outputs a pattern of the current command stored in advance during a beam extraction section. , Beam extraction control of an accelerator, characterized in that pattern processing means is provided for perturbing in a cycle corresponding to an ignition cycle determined by the number of phases of the converter. Location.
石、集束電磁石及び発散電磁石の複数の組と、各電磁石
を励磁する各々の電源用変換器と、各変換器をフィード
バック制御するACRとAVRの組合せからなる各々の
変換器用制御装置と、ビームの遅い取り出しを制御する
ように前記ACRに電流指令および前記AVRに電圧指
令を与える各指令制御装置を備える加速器において、 前記集束電磁石に対応する指令制御装置は、予め記憶さ
れている前記電流指令のパターンを、ビームの取り出し
区間中、前記変換器の相数で決まる点弧周期に対応し且
つ、出射ビームを利用する照射装置の動作周期とは非同
期となるように決められた周期で摂動するパターン加工
手段を設けることを特徴とする加速器。7. A plurality of sets of a bending electromagnet, a focusing electromagnet and a diverging electromagnet, which are alternately arranged along an orbit, converters for each power source for exciting each electromagnet, and an ACR for feedback controlling each converter. An accelerator provided with each converter controller comprising an AVR combination and each command controller for giving a current command to the ACR and a voltage command to the AVR so as to control the slow extraction of the beam, corresponding to the focusing electromagnet. The command control device sets a pattern of the current command stored in advance as an operation period of an irradiation device that corresponds to an ignition period determined by the number of phases of the converter during a beam extraction section and that uses an emitted beam. Is an accelerator characterized in that it is provided with pattern processing means that perturbs at a cycle determined to be asynchronous.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00923795A JP3302852B2 (en) | 1995-01-24 | 1995-01-24 | Accelerator, beam emission control method thereof, and beam emission control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00923795A JP3302852B2 (en) | 1995-01-24 | 1995-01-24 | Accelerator, beam emission control method thereof, and beam emission control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08203700A true JPH08203700A (en) | 1996-08-09 |
JP3302852B2 JP3302852B2 (en) | 2002-07-15 |
Family
ID=11714801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00923795A Expired - Fee Related JP3302852B2 (en) | 1995-01-24 | 1995-01-24 | Accelerator, beam emission control method thereof, and beam emission control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3302852B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503037A (en) * | 2004-06-16 | 2008-01-31 | ゲゼルシャフト フュア シュヴェリオーネンフォルシュング ミット ベシュレンクテル ハフツング | Particle accelerator for ion beam radiation therapy |
CN117806170A (en) * | 2024-02-23 | 2024-04-02 | 中国科学院近代物理研究所 | Microbeam focusing control method and device |
-
1995
- 1995-01-24 JP JP00923795A patent/JP3302852B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503037A (en) * | 2004-06-16 | 2008-01-31 | ゲゼルシャフト フュア シュヴェリオーネンフォルシュング ミット ベシュレンクテル ハフツング | Particle accelerator for ion beam radiation therapy |
CN117806170A (en) * | 2024-02-23 | 2024-04-02 | 中国科学院近代物理研究所 | Microbeam focusing control method and device |
CN117806170B (en) * | 2024-02-23 | 2024-05-10 | 中国科学院近代物理研究所 | Microbeam focusing control method and device |
Also Published As
Publication number | Publication date |
---|---|
JP3302852B2 (en) | 2002-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5363008A (en) | Circular accelerator and method and apparatus for extracting charged-particle beam in circular accelerator | |
US6472834B2 (en) | Accelerator and medical system and operating method of the same | |
US20050231138A1 (en) | Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system | |
EP2140912B1 (en) | Charged particle beam irradiation system | |
US9199095B2 (en) | Particle beam irradiation system and operating method | |
JPH05198397A (en) | Circular accelerator and, beam emitting method and device | |
JPH11253563A (en) | Method and device for charged particle beam radiation | |
JPH05198398A (en) | Circular accelerator and beam incidence method for circular accelerator | |
US8456110B2 (en) | Induction accelerating device and acceleration method of charged particle beam | |
JPH08203700A (en) | Accelerator, and beam emission control method and beam emission control device | |
JP5998089B2 (en) | Particle beam irradiation system and its operation method | |
JP4650382B2 (en) | Charged particle beam accelerator and particle beam irradiation system using the charged particle beam accelerator | |
JP3052957B2 (en) | Charged particle beam extraction method and circular accelerator | |
JP2007018756A (en) | Induction voltage control device and control method thereof | |
JP3047830B2 (en) | Charged particle beam extraction method, circular accelerator, and circular accelerator system | |
JP3833390B2 (en) | Particle accelerator timing controller | |
RU2297735C2 (en) | Particle accelerator | |
JP6279036B2 (en) | Particle beam irradiation system and its operation method | |
JPH10294200A (en) | Control device of accelerator | |
Fessenden et al. | Accelerator waveform synthesis and longitudinal beam dynamics in a small induction recirculator | |
Chasman et al. | ROUND TABLE DISCUSSION ON SPACE CHARGE AND RELATED EFFECTS | |
Kühteubl | Slow Extraction Optimisation for the MedAustron Synchrotron | |
JPH04355667A (en) | Power source and particle accelerator using the same | |
Heard | The Beam-Programming System of the Bevatron | |
Chew et al. | High Energy Accelerators at the University of California Radiation Laboratory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |