JPH0883597A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPH0883597A
JPH0883597A JP24463094A JP24463094A JPH0883597A JP H0883597 A JPH0883597 A JP H0883597A JP 24463094 A JP24463094 A JP 24463094A JP 24463094 A JP24463094 A JP 24463094A JP H0883597 A JPH0883597 A JP H0883597A
Authority
JP
Japan
Prior art keywords
silver oxide
battery
positive electrode
electrolyte solution
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24463094A
Other languages
Japanese (ja)
Inventor
Masanori Sugano
昌紀 菅野
Akira Asada
朗 浅田
Kenichi Sano
健一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP24463094A priority Critical patent/JPH0883597A/en
Publication of JPH0883597A publication Critical patent/JPH0883597A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE: To provide a silver oxide battery by which capacity reduction by storage is hardly caused by restraining a utilization factor of zinc after storage caused by excessive absorption of electrolyte of an electrolyte absorbing body. CONSTITUTION: A silver oxide battery is provided with a positive electrode 1 using a silver oxide as a positive electrode active material and a negative electrode 2 using zinc as a negative electrode active material. An electrolyte absorbing body 4 having basic weight of 10 to 35g/m<2> is used, and the electrolyte absorbing body 4 is arranged between the negative electrode 2 and a separator 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化銀電池に係わり、
さらに詳しくはその電解液吸収体の改良に関する。
The present invention relates to a silver oxide battery,
More specifically, it relates to improvement of the electrolyte solution absorber.

【0002】[0002]

【従来の技術】酸化銀電池では、図1に示すように、正
極1と負極2との間にセパレ−タ3と共に電解液吸収体
4を配置して、電解液吸収体4に電解液を吸収させて、
貯蔵中の水分乾燥を防ぎ、放電反応を円滑にさせ、一
方、極間距離を長く保つことで銀イオンの移行阻止能を
向上させるようにしている。
2. Description of the Related Art In a silver oxide battery, as shown in FIG. 1, an electrolytic solution absorber 4 is arranged between a positive electrode 1 and a negative electrode 2 together with a separator 3, and the electrolytic solution absorber 4 is filled with the electrolytic solution. Let it absorb,
By preventing water from drying during storage and smoothing the discharge reaction, the interelectrode distance is kept long to improve the ability to prevent migration of silver ions.

【0003】そして、上記の電解液吸収体としては、通
常、ビニロン−レ−ヨン混抄紙が使用され、できるかぎ
り電解液を多量に保持させるという観点から、坪量50
g/m2程度のものが使用されている。
As the above-mentioned electrolytic solution absorber, vinylon-rayon mixed paper is usually used, and from the viewpoint of holding as much electrolytic solution as possible, the basis weight is 50.
The thing of about g / m 2 is used.

【0004】しかし、電池が小形、薄形化してくると、
電池の有効内容積が小さくなるため、次の〜に示す
ような問題が発生する。
However, as batteries become smaller and thinner,
Since the effective internal volume of the battery becomes small, the following problems (1) to (4) occur.

【0005】 上記のような坪量の大きい電解液吸収
体を用いていると、電解液吸収体が電解液を吸収しすぎ
るためにフリ−の電解液が少なくなり、そのため、貯蔵
後に亜鉛の利用率が低下して容量不足が発生する。
When an electrolyte solution absorber having a large grammage as described above is used, the electrolyte solution absorber absorbs too much electrolyte solution, and the free electrolyte solution is reduced. Therefore, zinc is used after storage. The rate decreases and capacity shortage occurs.

【0006】 しかし、電解液吸収体を用いないと、
フリ−の電解液は増えるが、セパレ−タ3が環状ガスケ
ット7と直接接触することになり、封口時の正極缶5の
開口端部5aの内方への締め付けによって、セパレ−タ
3が環状ガスケット7により正極1に押し付けられ、正
極1の周縁部に密着して、その部分での銀イオンの移行
が大きくなり、その部分に銀が集中的に析出し、それが
貯蔵中に蓄積して、内部短絡を引き起こす。
However, if the electrolyte solution absorber is not used,
Although the free electrolyte is increased, the separator 3 comes into direct contact with the annular gasket 7, and the separator 3 is annularly closed by tightening the opening end 5a of the positive electrode can 5 at the time of sealing. It is pressed against the positive electrode 1 by the gasket 7 and adheres to the peripheral portion of the positive electrode 1 to increase the migration of silver ions in that portion, and silver is intensively deposited in that portion, which accumulates during storage. , Cause an internal short circuit.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な小形、薄形の酸化銀電池における電解液吸収体の電解
液の吸収しすぎに基づく貯蔵後の容量不足の発生を解消
し、貯蔵による容量低下の少ない酸化銀電池を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the occurrence of insufficient capacity after storage due to excessive absorption of the electrolyte solution by the electrolyte solution absorber in the small and thin silver oxide batteries as described above, It is an object of the present invention to provide a silver oxide battery that has a small capacity loss due to storage.

【0008】[0008]

【課題を解決するための手段】本発明は、小形、薄形の
酸化銀電池に使用する電解液吸収体の坪量について種々
検討を重ねた結果、坪量10〜35g/m2の電解液吸
収体を用いるときは、貯蔵後においても、亜鉛の利用率
の低下が生じず、したがって貯蔵による容量低下の少な
い酸化銀電池が得られることを見出し、完成されたもの
である。
According to the present invention, as a result of various studies on the basis weight of an electrolyte solution absorber used for small and thin silver oxide batteries, an electrolyte solution having a basis weight of 10 to 35 g / m 2 is obtained. The present invention has been completed by finding that when an absorber is used, the utilization rate of zinc does not decrease even after storage, and thus a silver oxide battery with less capacity reduction due to storage can be obtained.

【0009】すなわち、上記のような坪量の電解液吸収
体であれば、小形、薄形の電池においても、電解液吸収
体が電解液を吸収しすぎることがなく、その結果、貯蔵
後においても亜鉛の利用率の低下が抑制されて、貯蔵に
よる容量低下の少ない酸化銀電池が得られるようになる
のである。
That is, if the electrolyte solution absorber has a basis weight as described above, the electrolyte solution absorber does not excessively absorb the electrolyte solution even in small and thin batteries, and as a result, after storage, In addition, a decrease in the zinc utilization rate is suppressed, and a silver oxide battery with less capacity loss due to storage can be obtained.

【0010】本発明においては、使用する電解液吸収体
の坪量を上記のように10〜35g/m2に特定してい
るが、これは電解液吸収体の坪量が10g/m2より小
さくなるとすきむらが生じ、銀イオン移行阻止能が低下
するとともに、電池サイズに打ち抜く際にケバが発生す
るからであり、また、電解液吸収体の坪量が35g/m
2より大きくなると電解液吸収体が電解液を吸収しすぎ
てフリ−の電解液が少なくなり、そのため、貯蔵後に亜
鉛の利用率が低下して容量不良が発生するようになるか
らであり、この電解液吸収体の坪量としては特に10〜
30g/m2が好ましい。
In the present invention, the basis weight of the electrolyte solution absorber to be used is specified to be 10 to 35 g / m 2 as described above. This is because the basis weight of the electrolyte solution absorber is 10 g / m 2 . This is because when the size is reduced, unevenness is generated, the ability to inhibit the transfer of silver ions is reduced, and fluff occurs when punching into a battery size, and the basis weight of the electrolyte solution absorber is 35 g / m 2.
If it is larger than 2 , the electrolytic solution absorber absorbs the electrolytic solution too much and the free electrolytic solution is reduced, so that the utilization rate of zinc decreases after storage and a capacity defect occurs. The basis weight of the electrolyte solution absorber is particularly 10
30 g / m 2 is preferred.

【0011】電解液吸収体の材質は、特に限定されるも
のではないが、通常、従来同様にビニロン−レ−ヨン混
抄紙製のものや、ポリプロピレン製、ナイロン製の電解
液吸収体などが用いられる。
The material of the electrolyte solution absorber is not particularly limited, but normally, a vinylon-rayon mixed paper-made paper, a polypropylene or nylon electrolyte solution absorber, etc. are used as in the prior art. To be

【0012】本発明においては、小形または薄形の酸化
銀電池を対象としているが、それを具体的数字で示す
と、直径が9.5mm以下のボタン形酸化銀電池や、厚
さが16.8mm以下の薄形酸化銀電池を対象としてい
る。
In the present invention, a small or thin type silver oxide battery is targeted, but when it is shown by a specific number, a button type silver oxide battery having a diameter of 9.5 mm or less and a thickness of 16. It is intended for thin silver oxide batteries of 8 mm or less.

【0013】[0013]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
られるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only those examples.

【0014】実施例1 坪量15g/m2のビニロン−レ−ヨン混抄紙を電解液
吸収体として用い、図1に示す構造の酸化銀電池を作製
した。
Example 1 Using a vinylon-rayon mixed paper having a basis weight of 15 g / m 2 as an electrolyte solution absorber, a silver oxide battery having the structure shown in FIG. 1 was produced.

【0015】図1に示す電池について説明すると、図
中、1は正極、2は負極、3はセパレ−タ、4は電解液
吸収体、5は正極缶、6は負極端子板、7は環状ガスケ
ットである。
The battery shown in FIG. 1 will be described. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an electrolyte solution absorber, 5 is a positive electrode can, 6 is a negative electrode terminal plate, and 7 is a ring. It is a gasket.

【0016】上記正極1は、酸化銀(Ag2O)95部
(重量部、以下同様)およびりん状黒鉛5部からなる合
剤粉末を加圧成形したものであり、負極2はポリアクリ
ル酸ソ−ダを添加し電解液でペ−スト状にしたアマルガ
ム化亜鉛からなるものである。
The positive electrode 1 is a mixture powder composed of 95 parts by weight of silver oxide (Ag 2 O) (parts by weight; the same applies hereinafter) and 5 parts of phosphorous graphite, and is molded by pressure. The negative electrode 2 is made of polyacrylic acid. It is composed of zinc amalgamate which is made into a paste with an electrolytic solution by adding soda.

【0017】セパレ−タ3はセロハンを中央にしてその
両側に架橋低密度ポリエチレンにメタクリル酸をグラフ
ト重合させたグラフトフィルムをラミネ−トしたものか
らなり、正極1上に配置され、電解液吸収体4は前記の
ように坪量15g/m2のビニロン−レ−ヨン混抄紙か
らなるものであり、セパレ−タ3と負極2との間に配置
されている。
The separator 3 is made by laminating a graft film obtained by graft-polymerizing methacrylic acid on crosslinked low-density polyethylene with cellophane in the center, and is placed on the positive electrode 1 to absorb the electrolyte solution. 4 is made of vinylon-rayon mixed paper having a basis weight of 15 g / m 2 as described above, and is arranged between the separator 3 and the negative electrode 2.

【0018】正極缶5は鉄製で表面にニッケルメッキが
施され、負極端子板6は錫メッキ(銅層の表面に形成)−
鋼−ニッケルの三層クラッド板からなり、その周縁部6
aは折り返されている。環状ガスケット7は、ナイロン
66製で、正極缶5の開口端部5aの内方への締め付け
により負極端子板6の周縁部6aに圧接して、正極缶5
の開口部を封口している。そして、この電池には、酸化
亜鉛を5.2重量%を溶解させた35重量%水酸化カリ
ウム水溶液からなる電解液が注入され、電池は直径9m
m、高さ20mmのボタン形電池である。
The positive electrode can 5 is made of iron and its surface is nickel-plated, and the negative electrode terminal plate 6 is tin-plated (formed on the surface of the copper layer).
A steel-nickel three-layer clad plate with a peripheral edge 6
a is folded back. The annular gasket 7 is made of nylon 66, and is pressed inwardly to the peripheral edge portion 6a of the negative electrode terminal plate 6 by tightening the opening end portion 5a of the positive electrode can 5 inward, so that the positive electrode can 5
The opening is sealed. Then, into this battery was injected an electrolytic solution consisting of a 35 wt% potassium hydroxide aqueous solution in which 5.2 wt% of zinc oxide was dissolved, and the battery had a diameter of 9 m.
It is a button type battery having a height of m and a height of 20 mm.

【0019】この電池の組立は、次に示すように行われ
る。まず、正極缶5内に正極1を挿入し、電解液の一部
を注入したのち、その上にセパレ−タ3および電解液吸
収体4を順次載置する。これとは別に、周縁部6aに環
状ガスケット7を嵌合した負極端子板6に負極2を入
れ、残りの電解液を注入し、この負極端子板6と前記状
態の正極缶5とを嵌合し、正極缶5の開口端部5aを内
方に締め付けることにより、正極缶5の開口部を封口し
て、図1に示す状態に仕上げる。
Assembly of this battery is performed as follows. First, the positive electrode 1 is inserted into the positive electrode can 5, a part of the electrolytic solution is injected, and then the separator 3 and the electrolytic solution absorber 4 are sequentially placed thereon. Separately from this, the negative electrode 2 is put in the negative electrode terminal plate 6 having the annular gasket 7 fitted in the peripheral edge portion 6a, and the remaining electrolytic solution is injected, and the negative electrode terminal plate 6 and the positive electrode can 5 in the above state are fitted together. Then, the opening end 5a of the positive electrode can 5 is tightened inward to close the opening of the positive electrode can 5 and finish the state shown in FIG.

【0020】実施例2 電解液吸収体として坪量23g/m2のビニロン−レ−
ヨン混抄紙を用いたほかは、実施例1と同様にして酸化
銀電池を作製した。
Example 2 As an electrolyte absorber, vinylon-ray having a basis weight of 23 g / m 2
A silver oxide battery was produced in the same manner as in Example 1 except that Yong mixed paper was used.

【0021】実施例3 電解液吸収体として坪量30g/m2のビニロン−レ−
ヨン混抄紙を用いたほかは、実施例1と同様にして酸化
銀電池を作製した。
Example 3 As an electrolyte absorber, vinylon-ray having a basis weight of 30 g / m 2
A silver oxide battery was produced in the same manner as in Example 1 except that Yong mixed paper was used.

【0022】比較例1 電解液吸収体として坪量50g/m2のビニロン−レ−
ヨン混抄紙を用いたほかは、実施例1と同様にして酸化
銀電池を作製した。この比較例1の電池は電解液吸収体
として従来電池に用いられていた坪量50g/m2のビ
ニロン−レ−ヨン混抄紙を用いており、従来電池に相当
するものである。
Comparative Example 1 Vinylon-ray having a basis weight of 50 g / m 2 as an electrolyte absorber
A silver oxide battery was produced in the same manner as in Example 1 except that Yong mixed paper was used. The battery of Comparative Example 1 uses a vinylon-rayon mixed paper having a basis weight of 50 g / m 2 which is used in a conventional battery as an electrolyte absorber, and corresponds to a conventional battery.

【0023】上記実施例1〜3の電池および比較例1の
電池を60℃で所定期間貯蔵し、各貯蔵期間経過後に放
電容量を測定し、貯蔵前の放電容量に対する容量保持率
を調べた、その結果を表1に示す。なお、放電容量の測
定は20℃で15KΩの定抵抗放電を行い、終止電圧
1.4Vまでの持続時間によって行なった。なお、表1
には貯蔵前を貯蔵日数0日で示している。
The batteries of Examples 1 to 3 and the battery of Comparative Example 1 were stored at 60 ° C. for a predetermined period, the discharge capacity was measured after each storage period, and the capacity retention ratio to the discharge capacity before storage was examined. The results are shown in Table 1. The discharge capacity was measured by performing constant resistance discharge of 15 KΩ at 20 ° C. and by maintaining the final voltage up to 1.4 V. In addition, Table 1
Shows the number of days before storage before storage.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、実施例1〜3の電池
は、従来電池に相当する比較例1の電池に比べて、貯蔵
後の容量保持率が大きく、貯蔵特性が優れていた。
As shown in Table 1, the batteries of Examples 1 to 3 had a large capacity retention after storage and excellent storage characteristics, as compared with the battery of Comparative Example 1 corresponding to the conventional battery.

【0026】この結果は、実施例1〜3の電池では、電
解液が電解液吸収体に吸収されすぎることがなく、貯蔵
後においてもフリ−の電解液が適度に存在して亜鉛の利
用率の低下を抑制したことによるものと考えられる。
The results show that in the batteries of Examples 1 to 3, the electrolytic solution was not absorbed too much by the electrolytic solution absorber, and the free electrolytic solution was appropriately present even after storage and the zinc utilization rate was high. It is thought that this is because the decrease in

【0027】つぎに、上記実施例1〜3の電池の閉路電
圧特性を調べた結果について示す。
Next, the results of examining the closed circuit voltage characteristics of the batteries of Examples 1 to 3 will be shown.

【0028】すなわち、実施例1〜3の電池および比較
例1の電池の各50個ずつについて−10℃で、放電深
度0%(すなわち、放電初期)、放電深度40%、およ
び放電深度80%時に、200Ωで5秒間放電させたと
きの閉路電圧を測定した。その結果を表2にそれぞれの
電池の平均値で示す。
That is, the discharge depth of 0% (that is, the initial stage of discharge), the discharge depth of 40%, and the discharge depth of 80% for each of the batteries of Examples 1 to 3 and the battery of Comparative Example 1 at -10 ° C. At times, the closed-circuit voltage when discharged at 200Ω for 5 seconds was measured. The results are shown in Table 2 as the average value of each battery.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、実施例1〜3の電池は
比較例1の電池とほぼ同等の閉路電圧を有しており、電
解液吸収体の坪量を小さくしたことによる大幅な閉路電
圧特性の低下は認められなかった。
As shown in Table 2, the batteries of Examples 1 to 3 have almost the same closed circuit voltage as that of the battery of Comparative Example 1, and a large closed circuit voltage is obtained by reducing the basis weight of the electrolyte solution absorber. No decrease in voltage characteristics was observed.

【0031】[0031]

【発明の効果】以上説明したように、本発明では、特定
坪量の電解液吸収体を用いることによって、電解液吸収
体の電解液の吸収しすぎによる貯蔵後の亜鉛の利用率の
低下を抑制して、貯蔵による容量低下の少ない酸化銀電
池を提供することができた。
As described above, in the present invention, the use of the electrolyte solution absorber having a specific basis weight reduces the utilization rate of zinc after storage due to excessive absorption of the electrolyte solution in the electrolyte solution absorber. It has been possible to provide a silver oxide battery that is suppressed and has a small capacity decrease due to storage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化銀電池の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing an embodiment of a silver oxide battery of the present invention.

【符合の説明】[Description of sign]

1 正極 2 負極 3 セパレ−タ 4 電解液吸収体 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte absorber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化銀を正極活物質とする正極1と、亜
鉛を負極活物質とする負極2とを備えた酸化銀電池にお
いて、上記負極2とセパレ−タ3との間に坪量10〜3
5g/m2の電解液吸収体4を配置したことを特徴とす
る酸化銀電池。
1. A silver oxide battery provided with a positive electrode 1 using silver oxide as a positive electrode active material and a negative electrode 2 using zinc as a negative electrode active material, wherein a basis weight of 10 is provided between the negative electrode 2 and the separator 3. ~ 3
A silver oxide battery comprising an electrolyte solution absorber 4 of 5 g / m 2 .
JP24463094A 1994-09-12 1994-09-12 Silver oxide battery Pending JPH0883597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24463094A JPH0883597A (en) 1994-09-12 1994-09-12 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24463094A JPH0883597A (en) 1994-09-12 1994-09-12 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPH0883597A true JPH0883597A (en) 1996-03-26

Family

ID=17121616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24463094A Pending JPH0883597A (en) 1994-09-12 1994-09-12 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPH0883597A (en)

Similar Documents

Publication Publication Date Title
US7153607B2 (en) Alkaline zinc secondary cell and method for preparation thereof
US3655449A (en) Dry cell comprising a separator composed of three layers
US5079110A (en) Alkaline storage cell
US3261715A (en) Negative electrode assembly for alkaline batteries
JPH0883597A (en) Silver oxide battery
JPH05303978A (en) Sealed nickel-zinc battery
US6534215B1 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing thereof
US6641956B1 (en) Electrode plate with a rounded corner and edge for storage battery
JP2002033093A (en) Nickel hydrogen storage battery and manufacturing method for it
JP2001332249A (en) Alkaline dry battery
JP2992781B2 (en) Manganese dry cell
JP2005285745A (en) Square shape air battery
JPH06283194A (en) Sealed alkaline zinc storage battery
JPH10106525A (en) Sealed alkaline storage battery
JPH066462Y2 (en) Non-aqueous electrolyte battery
JPS5852616Y2 (en) battery
JPS5933753A (en) Manufacture of button type alkaline battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH11307089A (en) Battery electrode plate
JPS5840779A (en) Lead storage battery
JPH0883619A (en) Silver oxide battery
JPH0536422A (en) Manganese dry battery
JPS587762A (en) Silver oxide battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPS58163158A (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527