JPH088261A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH088261A
JPH088261A JP14141494A JP14141494A JPH088261A JP H088261 A JPH088261 A JP H088261A JP 14141494 A JP14141494 A JP 14141494A JP 14141494 A JP14141494 A JP 14141494A JP H088261 A JPH088261 A JP H088261A
Authority
JP
Japan
Prior art keywords
film
etching
electrode wiring
semiconductor device
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14141494A
Other languages
Japanese (ja)
Inventor
Mitsumasa Hiraki
光政 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP14141494A priority Critical patent/JPH088261A/en
Publication of JPH088261A publication Critical patent/JPH088261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the coverage of a passivation film by forming an electrode wiring into a forward tapered shape. CONSTITUTION:A metal wiring material (Al-Si-Cu alloy film 13) is formed on a semiconductor substrate 11, and a photoresist film 14 is formed by ordinary photolithography for the formation of a desired wiring pattern. In subsequent etching by an ordinary RIE technique, etching is continuously performed after the exposure of a base silicon oxide film 12. As a result the photoresist film is first tapered, and the wiring material is etched accordingly, which forms tapered electrode wiring 13b. This improves the coverage of a passivation film 15 when it is formed, which enhances the reliability of the resultant semiconductor device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に電極配線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming electrode wiring.

【0002】[0002]

【従来の技術】従来の電極配線の形成方法について説明
すると、まず図2(a)に示すように、半導体基板1上
の厚さ0.2μmの酸化シリコン膜2(フィールド酸化
膜、ゲート酸化膜およびまたは層間絶縁膜を代表して示
す)上に厚さ0.8μmのAl−Si−Cu膜3を被着
し、通常のフォトリソグラフィー技術により、図2
(b)に示すように、ホトレジスト膜4を形成し、エッ
チング技術により、図2(c)に示すように、側面が垂
直もしくは逆テーパ状の配線3aを形成する。次に、図
2(d)に示すように、プラズマCVD法による窒化シ
リコン膜5(以下、プラズマ窒化膜と記す)を1.2μ
m成長し、パッシベーション膜を形成していた。
2. Description of the Related Art A conventional method for forming electrode wiring will be described. First, as shown in FIG. 2A, a silicon oxide film 2 (field oxide film, gate oxide film) having a thickness of 0.2 μm is formed on a semiconductor substrate 1. And / or the interlayer insulating film is shown as a representative example), and an Al-Si-Cu film 3 having a thickness of 0.8 μm is deposited on the insulating film.
As shown in (b), a photoresist film 4 is formed, and an etching technique is used to form a wiring 3a whose side surface is vertical or has an inverse tapered shape as shown in FIG. 2 (c). Next, as shown in FIG. 2D, a silicon nitride film 5 (hereinafter referred to as a plasma nitride film) formed by the plasma CVD method is 1.2 μm thick.
m was grown and a passivation film was formed.

【0003】しかし、この方法では配線間隔が狭いとこ
ろでは、パッシベーション膜がオーバーハング状とな
り、電極配線の側壁や底部でのパッシベーション膜が薄
くなり、水分が入り込み易くなるために、配線材料を腐
食させる等の信頼性上の問題があった。
In this method, however, the passivation film becomes overhanging in a place where the wiring interval is narrow, the passivation film on the side wall and the bottom of the electrode wiring becomes thin, and water easily enters, so that the wiring material is corroded. There was a problem in reliability.

【0004】また、特開昭63−177559号公報に
記載されているように、ゲート電極を順テーパ状に形成
する方法として、CVD WSi膜/スッパタWSi膜
/多結晶Si膜のように、上部にエッチレートの速い膜
を成長させた多層膜を形成し、通常のドライエッチを行
う。すると、上部のCVD WSi膜はエッチレートが
速いために、上面と側面が鈍角(以下側面順テーパ状と
記す)のゲート電極を形成することができる。ゲート電
極以外の電極配線としてはアルミニウム系合金の単層膜
が使用されるのが普通であり一般性がない。また、多層
膜を形成するので工程が複雑となる。
Further, as described in Japanese Patent Application Laid-Open No. 63-177559, a method of forming a gate electrode in a forward taper shape is as follows: CVD WSi film / sputtering WSi film / polycrystalline Si film. Then, a multilayer film is formed by growing a film having a high etching rate, and a normal dry etching is performed. Then, since the CVD WSi film on the upper portion has a high etching rate, a gate electrode having an obtuse angle between the upper surface and the side surface (hereinafter referred to as side surface forward taper) can be formed. A single layer film of an aluminum-based alloy is usually used as the electrode wiring other than the gate electrode and is not general. Moreover, since a multilayer film is formed, the process becomes complicated.

【0005】[0005]

【発明が解決しようとする課題】このように従来の電極
配線の形成方法では、電極配線の側面が逆テーパ状もし
くは垂直状となるため、パッシベーション膜を形成した
場合、段差被覆性が悪くパッシベーション膜がオーバー
ハング状となり、電極配線の側壁や底部でのパッシベー
ション膜がうすくなる。このため、水分が入りやすくな
り、配線材料を腐食させる等の信頼性上の問題がある。
また、ゲート電極を側面順テーパ状に形成する特開昭6
3−177559号公報に開始されている手法は一般性
がなくゲート電極以外の電極配線の形成に適用すること
ができない。
As described above, in the conventional method for forming the electrode wiring, since the side surface of the electrode wiring has an inverse tapered shape or a vertical shape, when the passivation film is formed, the step coverage is poor and the passivation film is formed. Becomes an overhang, and the passivation film on the side wall and bottom of the electrode wiring becomes thin. Therefore, there is a problem in reliability that moisture easily enters and the wiring material is corroded.
Further, the gate electrode is formed so as to have a sideward tapered shape.
The method started in JP-A-3-177559 is not general and cannot be applied to the formation of electrode wiring other than the gate electrode.

【0006】本発明の目的は、側面順テーパ状の電極配
線を形成できる半導体装置の製造方法を提供することに
ある。
An object of the present invention is to provide a method of manufacturing a semiconductor device capable of forming a side surface forward tapered electrode wiring.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体基板上
の所定の絶縁膜を被覆する導電膜を堆積し、前記導電膜
を選択的に被覆するレジスト膜を形成し、前記レジスト
膜をマスクとして前記導電膜を異方性の反応性イオンエ
ッチングにより除去することにより電極配線を形成する
工程を含む半導体装置の製造方法において、前記反応性
イオンエッチングを前記絶縁膜の表面が露出した後にも
続行して上面と側面が鈍角の電極配線を形成するという
ものである。この場合、前記絶縁膜の表面が露出した段
階で側面がほぼ垂直な断面台形状にパターニングするよ
うエッチング条件を定める。
According to the present invention, a conductive film that covers a predetermined insulating film on a semiconductor substrate is deposited, a resist film that selectively covers the conductive film is formed, and the resist film is masked. As a method for manufacturing a semiconductor device, including the step of forming electrode wiring by removing the conductive film by anisotropic reactive ion etching, the reactive ion etching is continued even after the surface of the insulating film is exposed. Then, the electrode wiring having an obtuse angle between the upper surface and the side surface is formed. In this case, the etching conditions are determined so that the side surface is patterned into a trapezoidal cross section when the surface of the insulating film is exposed.

【0008】[0008]

【作用】エッチングの進行とともにレジスト膜が側面順
テーパ状(上面と側面が鈍角)となりそのレジスト膜の
形状が電極配線の形状に転写される。
With the progress of etching, the resist film becomes a side surface forward taper (the upper surface and the side surface are obtuse angles) and the shape of the resist film is transferred to the shape of the electrode wiring.

【0009】[0009]

【実施例】次に本発明に関して、図面を参照して説明す
る。図1(a)〜(f)は本発明の一実施例の説明のた
めの工程順断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described with reference to the drawings. 1A to 1F are process cross-sectional views for explaining an embodiment of the present invention.

【0010】まず、図1(a)に示すように、例えばP
型のシリコン基板11上の厚さ0.2μmの酸化シリコ
ン膜12を被覆して厚さ0.8μmのAl−Si−Cu
合金膜13(Siを1%、Cuを0.5%含有)を形成
する。ここでシリコン基板11の表面部には図示しない
N型拡散層などが設けられているものとし、酸化シリコ
ン膜12は、図示しないゲート酸化膜やフィールド酸化
膜あるいは層間絶縁膜などの代表として図示した。
First, as shown in FIG. 1A, for example, P
Al-Si-Cu having a thickness of 0.8 μm by covering a silicon oxide film 12 having a thickness of 0.2 μm on the silicon substrate 11 of the mold.
An alloy film 13 (containing 1% of Si and 0.5% of Cu) is formed. Here, it is assumed that an N-type diffusion layer (not shown) or the like is provided on the surface of the silicon substrate 11, and the silicon oxide film 12 is shown as a representative of a gate oxide film, a field oxide film, an interlayer insulating film, or the like (not shown). .

【0011】次に通常のフォトリソグラフィー技術を用
いて、図1(b)に示すように、所望の配線パターンを
形成するためのノボラック系のホトレジスト膜14(厚
さ1μm、幅0.8μm)を形成する。次に、マグネト
ロン放電プラズマエッチング装置中でBCl3 ガスとC
2 ガスとを2:3の割合で混合した混合ガス(圧力
0.1Pa)を使用しホトレジスト膜14をマスクとし
て異方性の反応性イオンエッチングを行ない、図1
(c)に示すように、側面がほぼ垂直なパターンにAl
−Si−Cu膜13aを形成する。このときのエッチン
グ時間は約90秒で、酸化シリコン膜12の表面が露出
するまで行なう。従来の電極配線の形成ではこの段階で
エッチングを終了する。この段階ではホトレジスト膜1
4aの形状で図示のようにやや側面順テーパ状になって
いる。それは、ホトレジスト膜の上端エッジ部がエッチ
ングされ易いためである。更に同一条件でエッチングを
続行するとホトレジスト膜はますます側面順テーパ状化
が進行するとともに、Al−Si−Cu合金膜13aの
周辺表面が露出しそこからAl−Si−Cu合金膜のエ
ッチングが進行して、図1(d)に示すように、側面順
テーパ状(断面台形状)の電極配線13bが形成され
る。このオーバエッチングは60秒行なった。
Next, as shown in FIG. 1B, a novolac photoresist film 14 (thickness 1 μm, width 0.8 μm) for forming a desired wiring pattern is formed by using a normal photolithography technique. Form. Next, in a magnetron discharge plasma etching apparatus, BCl 3 gas and C
Anisotropic reactive ion etching was carried out using a mixed gas (pressure 0.1 Pa) in which an L 2 gas was mixed at a ratio of 2: 3, and using the photoresist film 14 as a mask.
As shown in (c), Al is formed in a pattern in which the side surfaces are almost vertical.
-Si-Cu film 13a is formed. The etching time at this time is about 90 seconds, and the etching is performed until the surface of the silicon oxide film 12 is exposed. In the conventional formation of electrode wiring, etching is completed at this stage. At this stage, the photoresist film 1
The shape of 4a is slightly tapered toward the side surface as shown in the figure. This is because the upper edge portion of the photoresist film is easily etched. When the etching is further continued under the same conditions, the photoresist film is gradually tapered toward the side surface, and the peripheral surface of the Al-Si-Cu alloy film 13a is exposed, and the etching of the Al-Si-Cu alloy film proceeds from there. Then, as shown in FIG. 1D, the side surface forward taper (trapezoidal cross section) electrode wiring 13b is formed. This over-etching was performed for 60 seconds.

【0012】次に、図1(e)に示すように、ホトレジ
スト膜を除去した後、図1(f)に示すように、厚さ
1.2μmのプラズマ窒化膜15をパッシベーション膜
として形成する。電極配線13bが側面順テーパ状にな
るのでプラズマ窒化膜15の段差被覆性が良好となる。
Next, as shown in FIG. 1 (e), after removing the photoresist film, a plasma nitride film 15 having a thickness of 1.2 μm is formed as a passivation film as shown in FIG. 1 (f). Since the electrode wiring 13b is tapered toward the side surface, the step coverage of the plasma nitride film 15 is improved.

【0013】このように、オーバエッチングにより側面
順テーパ状の電極配線を形成するので断面長方形状のも
のに比べると断面積が小さくなり、配線抵抗が高くなる
が、予めホトレジスト膜の幅を大きく設定しておくこと
により配線抵抗の増大は回避できる。
As described above, since the side-surface forward tapered electrode wiring is formed by over-etching, the sectional area is smaller and the wiring resistance is higher than that of the rectangular sectional shape, but the width of the photoresist film is set to a large value in advance. By doing so, an increase in wiring resistance can be avoided.

【0014】以上、導電膜としてAl−Si−Cu合金
膜を例にあげて説明したが、その他半導体装置に使用さ
れる配線材料の単層膜もしくは反応性イオンエッチング
に対してエッチング速度に実質上差のない多層膜なら何
でもよいことは以上の説明から明らかである。
Although the Al-Si-Cu alloy film has been described as an example of the conductive film, the etching rate is substantially higher than that of a single-layer film of a wiring material used for other semiconductor devices or reactive ion etching. From the above description, it is clear that any multi-layer film having no difference may be used.

【0015】[0015]

【発明の効果】以上説明したように本発明は、配線材料
の導電膜を異方性の反応性インオンエッチングによりパ
ターニングする際に下地の絶縁膜が露出した後にもエッ
チングを続行することにより側面順テーパ状の電極配線
を形成できるのでパッシベーション膜の被覆性を向上さ
せ、半導体装置の信頼性を向上させることができる効果
がある。
As described above, according to the present invention, when the conductive film of the wiring material is patterned by anisotropic reactive in-on etching, the etching is continued even after the underlying insulating film is exposed. Since the forward tapered electrode wiring can be formed, the coverage of the passivation film can be improved, and the reliability of the semiconductor device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明のための(a)〜
(f)に分図して示す工程順断面図である。
FIG. 1A is a view for explaining an embodiment of the present invention.
It is a process order sectional view divided and shown in (f).

【図2】従来例の説明のための(a)〜(d)に分図し
て示す工程順断面図である。
2A to 2D are sectional views in order of the processes, which are divided into (a) to (d) for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1,11 シリコン基板 2,12 酸化シリコン膜 3,13,13a Al−Si−Cu合金膜 3a,13b,4,14,14a,14b ホトレジ
スト膜 5,15 プラズマ窒化膜
1,11 Silicon substrate 2,12 Silicon oxide film 3,13,13a Al-Si-Cu alloy film 3a, 13b, 4,14, 14a, 14b Photoresist film 5,15 Plasma nitride film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の所定の絶縁膜を被覆する
導電膜を堆積し、前記導電膜を選択的に被覆するレジス
ト膜を形成し、前記レジスト膜をマスクとして前記導電
膜を異方性の反応性イオンエッチングにより除去するこ
とにより電極配線を形成する工程を含む半導体装置の製
造方法において、前記反応性イオンエッチングを前記絶
縁膜の表面が露出した後にも続行して上面と側面が鈍角
の電極配線を形成することを特徴とする半導体装置の製
造方法。
1. A conductive film that covers a predetermined insulating film on a semiconductor substrate is deposited, a resist film that selectively covers the conductive film is formed, and the conductive film is anisotropy using the resist film as a mask. In the method for manufacturing a semiconductor device, including the step of forming an electrode wiring by removing by reactive ion etching, the reactive ion etching is continued even after the surface of the insulating film is exposed to form an obtuse angle between the upper surface and the side surface. A method of manufacturing a semiconductor device, which comprises forming electrode wiring.
【請求項2】 導電膜がAl−Si−Cu合金膜、レジ
スト膜がノボラック系樹脂膜、反応性イオンエッチング
用のガスがBCl3 ガスとCl2 ガスとの混合ガスであ
る請求項1記載の半導体装置の製造方法。
2. The conductive film is an Al—Si—Cu alloy film, the resist film is a novolac resin film, and the reactive ion etching gas is a mixed gas of BCl 3 gas and Cl 2 gas. Manufacturing method of semiconductor device.
JP14141494A 1994-06-23 1994-06-23 Manufacture of semiconductor device Pending JPH088261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14141494A JPH088261A (en) 1994-06-23 1994-06-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14141494A JPH088261A (en) 1994-06-23 1994-06-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH088261A true JPH088261A (en) 1996-01-12

Family

ID=15291454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14141494A Pending JPH088261A (en) 1994-06-23 1994-06-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH088261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070079A (en) * 2003-12-11 2013-04-18 Intellectual Venturesii Llc Method of forming inorganic micro-lens of image sensor
KR20230036793A (en) * 2021-09-08 2023-03-15 주식회사 키파운드리 Semiconductor device including digital isolator capacitor and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661195A (en) * 1992-08-06 1994-03-04 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661195A (en) * 1992-08-06 1994-03-04 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070079A (en) * 2003-12-11 2013-04-18 Intellectual Venturesii Llc Method of forming inorganic micro-lens of image sensor
KR20230036793A (en) * 2021-09-08 2023-03-15 주식회사 키파운드리 Semiconductor device including digital isolator capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6716761B2 (en) Method of forming fine patterns
US5726100A (en) Method of forming contact vias and interconnect channels in a dielectric layer stack with a single mask
JPH079934B2 (en) Method for manufacturing semiconductor device
JPH06283525A (en) Formation of metal wiring
JP3252780B2 (en) Silicon layer etching method
JPH04290232A (en) Formation method of groove-buried interconnection
JP3571784B2 (en) Semiconductor device wiring forming method
US6268287B1 (en) Polymerless metal hard mask etching
JPH0682759B2 (en) Method of forming conductive stud
JP2830658B2 (en) Fine metal wiring forming method
US6211557B1 (en) Contact structure using taper contact etching and polycide step
JPH088261A (en) Manufacture of semiconductor device
JPH1041389A (en) Manufacture of semiconductor device
JP2650313B2 (en) Dry etching method
JPH08279488A (en) Fabrication of semiconductor device
JPS63150941A (en) Manufacture of semiconductor device
US5633207A (en) Method of forming a wiring layer for a semiconductor device
JPH09120954A (en) Manufacture of semiconductor device
JP3097338B2 (en) Method of forming contact hole
US6103633A (en) Method for cleaning metal precipitates in semiconductor processes
US6548413B1 (en) Method to reduce microloading in metal etching
JP3353524B2 (en) Method for manufacturing semiconductor device including step of forming connection hole
JPH0653334A (en) Manufacturing for semiconductor device
JP3317279B2 (en) Method for manufacturing semiconductor device
US7205243B2 (en) Process for producing a mask on a substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970121