JPH0882517A - Film thickness monitoring control method - Google Patents

Film thickness monitoring control method

Info

Publication number
JPH0882517A
JPH0882517A JP21752494A JP21752494A JPH0882517A JP H0882517 A JPH0882517 A JP H0882517A JP 21752494 A JP21752494 A JP 21752494A JP 21752494 A JP21752494 A JP 21752494A JP H0882517 A JPH0882517 A JP H0882517A
Authority
JP
Japan
Prior art keywords
film
film thickness
frequency
substrate
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21752494A
Other languages
Japanese (ja)
Other versions
JP3393934B2 (en
Inventor
Atsushi Ito
敦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP21752494A priority Critical patent/JP3393934B2/en
Publication of JPH0882517A publication Critical patent/JPH0882517A/en
Application granted granted Critical
Publication of JP3393934B2 publication Critical patent/JP3393934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To determine a parameter accurately while reducing time and labor in the determining of the parameter by preserving the frequency of a piezo-electric crystal at the starting point into a film monitoring device at each formation of a film. CONSTITUTION: An evaporation source 2, a substrate 3 desired to form a film, a microbalance sensor 4 comprising a piezo-electric crystal and a film thickness inspection instrument 5 are arranged in a vacuum chamber 1. The evaporation source 2 is connected to a heating power source 6. A film thickness monitoring device 7 preserves the frequency of the piezo-electric crystal of the sensor 4 at the starting point and the frequency of the piezo-electric crystal at the ending point at each formation of a film. On the other hand, an identification number is attached at each formation of a film to measure a film thickness on the substrate 3 actually with the device 5 at a plurality of time points while the frequency of the piezo-electric crystal shifts to a low position from a high position as the formation of films are repeated and actually measured values thereof are inputted into the device 7 corresponding to the film identification number. The device 7 determines an acoustic impedance ratio in the optimum shearing mode and a correction factor in the geometrical position of a quartz crystal and the substrate by the least square.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成膜チャンバ内に設置
された圧電結晶上への膜の推積を測定することにより基
板上における膜厚及び成膜速度を制御できるようにした
膜厚監視制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness on a substrate and a film deposition rate that can be controlled by measuring the deposition of the film on a piezoelectric crystal installed in a film deposition chamber. The present invention relates to a supervisory control method.

【0002】[0002]

【従来の技術】真空蒸着やスパッタリングにおいて成膜
される膜の膜厚及び成膜速度を測定するために、石英マ
イクロバランスという技術が広く用いられている。これ
は、蒸着またはスパッタリングにおいてチャンバ内に配
置されている石英結晶の表面に蒸着物が推積すると、結
晶の質量が増加し逆にその応答周波数が減少することを
利用しており、この時の膜厚tfと応答周波数fcとの関係
は次式で表される。
2. Description of the Related Art A technique called quartz microbalance is widely used to measure the film thickness and the film formation rate of a film formed by vacuum evaporation or sputtering. This utilizes the fact that when a deposit is deposited on the surface of a quartz crystal placed in a chamber during vapor deposition or sputtering, the mass of the crystal increases and, conversely, its response frequency decreases. The relationship between the film thickness tf and the response frequency fc is expressed by the following equation.

【0003】膜厚監視装置に基板位置での膜厚を表示さ
せるためには、成膜する膜の密度ρfと音響インピーダ
ンス比zと石英結晶と基板の幾何学的位置の補正係数to
olingとの三つのパラメータが必要であり、生産を始め
る前の条件出しの段階でこれら三つのパラメータを決め
ておく必要がある。従来これらパラメータの決定は次の
手順により行っていた。すなわち、 1) 成膜する膜のバルクの密度ρfと音響インピーダ
ンス比zがわかっている 場合にはその値を入力し、音
響インピーダンス比zがわかっていない場合には z=
1を入力する。 2) 次にtooling を1に設定し、何度か成膜を行い膜
厚監視装置の表示と基板についた膜厚を他の膜厚検査装
置、例えば触針式膜厚計などで実測しtooling(=実測
膜厚/表示膜厚)を計算する。複数のtooling を計算
し、それらの平均のtooling 値を膜厚監視装置に入力す
る。 3) 生産時にときどき表示膜厚と実測膜厚とを比較
し、ずれるようであればtooling の値を修正する。 ところが、この方法では、成膜条件により膜の音響イン
ピーダンス比zがバルク音響インピーダンス比zと若干
異なるため周波数が低くなるにしたがってずれが大きく
なる場合があった。
In order to display the film thickness at the substrate position on the film thickness monitoring device, the density ρf of the film to be formed, the acoustic impedance ratio z, the correction coefficient to the geometric position of the quartz crystal and the substrate to
oling and three parameters are required, and these three parameters must be determined at the stage of condition setting before starting production. Conventionally, the determination of these parameters has been performed by the following procedure. That is, 1) If the bulk density ρf of the film to be formed and the acoustic impedance ratio z are known, enter the values, and if the acoustic impedance ratio z is unknown, z =
Enter 1. 2) Next, set the tooling to 1, perform film formation several times, and measure the film thickness monitor display and the film thickness on the substrate with another film thickness inspection device, such as a stylus type film thickness meter. Calculate (= measured film thickness / display film thickness). Calculate multiple toolings and enter their average tooling values into the film thickness monitor. 3) At the time of production, the displayed film thickness is sometimes compared with the measured film thickness, and if there is a deviation, the tooling value is corrected. However, in this method, since the acoustic impedance ratio z of the film is slightly different from the bulk acoustic impedance ratio z depending on the film forming conditions, the deviation may increase as the frequency becomes lower.

【0004】さらに、膜の音響インピーダンス比zを補
正するために周波数が低くなってずれが大きくなったと
ころで、膜厚監視装置のzの値を変え、表示値と実測値
が一致するようにする方法が提案されているが、この方
法は、補正するzにtoolingの誤差が含まれ、手間もか
かるため実際にはあまり行われていない。
Further, in order to correct the acoustic impedance ratio z of the film, when the frequency becomes low and the deviation becomes large, the value of z of the film thickness monitoring device is changed so that the displayed value and the actually measured value match. Although a method has been proposed, this method has not been practiced so much because it includes a tooling error in z to be corrected and is laborious.

【0005】[0005]

【発明が解決しようとする課題】このように従来提案さ
れてきた方法は、手間がかかりかつ十分な精度が得られ
ないという問題点があった。そこで、本発明は、パラメ
ータを決める手間を軽減できかつ精度よくパラメータを
決定できるようにした成膜監視制御装置を提供すること
を目的としている。
As described above, the methods conventionally proposed have problems that it takes time and labor and sufficient accuracy cannot be obtained. Therefore, an object of the present invention is to provide a film formation monitoring control apparatus capable of reducing the trouble of determining parameters and enabling accurate parameter determination.

【0005】[0005]

【課題を解決するための手段】上記の目的を解決するた
めに、成膜チャンバ内に設置された圧電結晶上への膜の
推積を測定することにより基板上における膜厚及び成膜
速度を制御できるようにした本発明による膜厚監視制御
方法は、各成膜毎に開始時の圧電結晶の周波数と終了時
の圧電結晶の周波数を成膜監視装置に保存し、各成膜毎
にその開始から終了間での幾つかの時点において基板の
膜厚を測定し、測定した複数の膜厚の値を成膜監視装置
に入力して最小2乗法により最適な剪断モードの音響イ
ンピーダンス比z及び石英結晶と基板の幾何学的位置の
補正係数tooling を決定することを特徴としている。
In order to solve the above-mentioned problems, by measuring the deposition of a film on a piezoelectric crystal installed in a film forming chamber, the film thickness on the substrate and the film forming rate can be determined. The film thickness monitoring control method according to the present invention that can be controlled stores the frequency of the piezoelectric crystal at the start and the frequency of the piezoelectric crystal at the end of each film formation in the film formation monitoring device, The film thickness of the substrate is measured at several points from the start to the end, and the measured values of the plurality of film thicknesses are input to the film formation monitoring apparatus, and the optimum acoustic impedance ratio z and shear mode in the shear mode are calculated by the least square method. It is characterized by determining the correction coefficient tooling of the geometrical positions of the quartz crystal and the substrate.

【0006】[0006]

【作用】このように構成した本発明による膜厚監視制御
方法においては、各成膜毎の開始周波数と終了周波数と
それぞれの成膜を識別するためのRUN NO.が成膜監視装
置に表示されると共に内部に保存され、その後いくつか
のRUN NO.に対応した基板の実測膜厚値をRUN NO.に対
応させて入力することにより最適な剪断モードの音響イ
ンピーダンス比z及び石英結晶と基板の幾何学的位置の
補正係数toolingの値が計算され、以後その値を用いる
ことにより、膜厚を正確に計算できるようになる。本発
明による膜厚監視制御方法によれば、従来tooling を求
めるために行っていた作業で最適なtooling とzを一度
に求めることができる。これにより剪断モードの音響イ
ンピーダンス比z及び石英結晶と基板の幾何学的位置の
補正係数tooling のパラメータをばらばらに求める手間
が省けしかも一つのパラメータのもつ誤差が他のパラメ
ータに与える影響を最小限に押さえることができるよう
になる。
In the film thickness monitoring control method according to the present invention having the above-described structure, the start frequency and the end frequency for each film formation and the RUN NO. Is displayed on the film formation monitoring device and stored internally, and some RUN NO. Measured film thickness value of the substrate corresponding to RUN NO. By inputting the values corresponding to, the optimum acoustic impedance ratio z of the shear mode and the correction coefficient tooling of the geometrical position of the quartz crystal and the substrate are calculated. You will be able to calculate. According to the film thickness monitoring control method of the present invention, it is possible to obtain the optimum tooling and z at the same time by the work that was conventionally performed to obtain the tooling. This eliminates the need to separately obtain the parameters of the acoustic impedance ratio z of the shear mode and the correction coefficient tooling of the geometrical position of the quartz crystal and the substrate, and minimizes the influence of the error of one parameter on other parameters. You will be able to hold it down.

【0007】[0007]

【実施例】以下、添付図面を参照して本発明の実施例に
ついて説明する。図1には本発明の成膜監視制御方法を
実施している装置の一例をブロック線図で示し、1は真
空チャンバ、この真空チャンバ1内には蒸発源2、成膜
すべき基板3、圧電結晶から成るマイクロバランスセン
サ4及び例えば触針式膜厚計のような膜厚検査装置5が
配置されている。蒸発源2は加熱用電源6に接続されて
いる。また7は膜厚監視装置であり、マイクロバランス
センサ4からの周波数信号を受ける入力、膜厚検査装置
5からの基板3上の膜厚情報を受ける別の入力及び加熱
用電源6へ制御信号を供給する出力を備えている。すな
わち、膜厚監視装置7は、各成膜時にその開始時点での
マイクロバランスセンサ4における圧電結晶の周波数及
びその終了時点での圧電結晶の周波数を保存し、一方そ
れぞれの成膜毎に識別番号(すなわちRUN NO.)を付
け、成膜を重ねに従って圧電結晶の周波数が高い状態か
ら低い状態になる間の複数の時点において膜厚検査装置
5によって基板3上の膜厚を実測し、それらの実測値を
成膜の識別番号に対応させて膜厚監視装置7に入力す
る。さらに具体的に説明すると、膜厚監視装置7におい
ては成膜時の開始と終了及びそのRUN NO.を保存し、次
のようなテーブルをもたせ、 周波数が高いところから低いところまで成膜し、その間
の複数の時点で膜厚の実測値を入力し最小2乗で最適な
tooling とzを計算する。その計算方法は式(1)をf(z,t
ool,fc)とおき、TOOLi=実測成膜/( f( z,1,fe)- f
( z,1,fs)) 、zの値を0.001 〜10の間で振り、 となるz及びTOOLを求める。ここでfs、fe は、それぞ
れ開始時の周波数、終了時の周波数である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an example of an apparatus for carrying out the film formation monitoring and controlling method of the present invention. Reference numeral 1 denotes a vacuum chamber, inside this vacuum chamber 1, an evaporation source 2, a substrate 3 on which a film is to be formed, A microbalance sensor 4 made of a piezoelectric crystal and a film thickness inspection device 5 such as a stylus film thickness meter are arranged. The evaporation source 2 is connected to a heating power source 6. Reference numeral 7 denotes a film thickness monitor, which inputs a frequency signal from the microbalance sensor 4, another input from the film thickness inspection device 5 which receives film thickness information on the substrate 3, and a control signal to the heating power source 6. It has an output to supply. That is, the film thickness monitoring device 7 stores the frequency of the piezoelectric crystal in the microbalance sensor 4 at the start of each film formation and the frequency of the piezoelectric crystal at the end of each film formation, and the identification number for each film formation. (That is, RUN NO.), The film thickness on the substrate 3 is actually measured by the film thickness inspection device 5 at a plurality of time points during which the frequency of the piezoelectric crystal changes from the high state to the low state as the film formation is repeated. The measured value is input to the film thickness monitoring device 7 in association with the film formation identification number. More specifically, in the film thickness monitoring device 7, the start and end of film formation and the RUN NO. Save and have the following table, Films are formed from a high frequency to a low frequency, and measured values of the film thickness are input at a plurality of points in the meantime, and the least squares is optimal.
Calculate tooling and z. The calculation method is f (z, t
ooli, fc), TOOLi = measured film formation / (f (z, 1, fe)-f
(z, 1, fs)), swing the value of z between 0.001 and 10, Z and TOOL are calculated. Here, fs and fe are the frequency at the start and the frequency at the end, respectively.

【0008】実際の例として蒸着でアルミニウムを成膜
した場合とスパッタでSi O2 を成膜した場合について
従来による方法と本発明による方法について比較例を以
下に例示する。 1)蒸着でアルミニウムを成膜した場合:センサーには
6MHzタイプを使用した。RUN NO. は1〜7までとし、
新しいクリスタルを約4.7MHzまで使用し、密度は、アル
ミニウムのバルクの値2.7 を用い、TOOLING は0.587 を
設定(数バッチの蒸着より従来の方式で求めた値)した
場合の膜厚監視装置の膜厚で各バッチごと約6ミクロン
で蒸着を止めた。実測膜厚は、そのときの基板に付いた
膜厚を基板を取り出し触針式で実測したものである。
As an actual example, comparative examples of the conventional method and the method according to the present invention in the case of depositing aluminum by vapor deposition and the case of depositing SiO 2 by sputtering will be illustrated below. 1) When aluminum film was formed by vapor deposition: A 6 MHz type sensor was used. RUN NO. Should be from 1 to 7,
Film thickness monitor film when new crystal is used up to about 4.7MHz, density is 2.7 bulk aluminum and TOOLING is 0.587 (conventional method from several batches of deposition). The deposition was stopped at about 6 microns thick for each batch. The actually-measured film thickness is a film thickness of the film attached to the substrate at that time, which is actually measured by a stylus method.

【0009】表1の従来のものでは、膜厚監視装置の表
示膜厚がほぼ5.8 ミクロンを示しているにもかかわら
ず、実測膜厚は、6.2 ミクロンから5.5 ミクロンに減少
しており、エラーは+5.4 〜 -5.6 %と大きく、全域で
エラーを最小にするには、平均のTOOLING だけでは無理
なことがわかる。これに対して、表2に示す本発明の方
法によれば、最適なZ-RATIO =1.26、またTOOLING =0.
620 となり、全域でのエラーは+2.5〜ー1.9%と従来の場
合の半分以下になることがわかる。また、クリスタルに
よるばらつきは殆どないため次に新しいクリスタルに交
換し蒸着を行ってもこのエラーの差は殆どなく実際に求
まったZ-RATIO とTOOLING の値で蒸着を行いエラーはほ
ぼ同程度であった。
In the conventional device shown in Table 1, although the display film thickness of the film thickness monitor shows approximately 5.8 microns, the measured film thickness is reduced from 6.2 microns to 5.5 microns, and the error is It is as large as +5.4 to -5.6%, and it can be seen that the average TOOLING is not enough to minimize the error over the entire area. On the other hand, according to the method of the present invention shown in Table 2, optimum Z-RATIO = 1.26 and TOOLING = 0.
The error is 620, which is +2.5 to -1.9%, which is less than half of the conventional case. Also, since there is almost no variation due to the crystal, there is almost no difference in this error even if the crystal is replaced with a new crystal and vapor deposition is performed next time. It was

【0010】2)スパッタでSi O2 を成膜した場合:
センサーは5MHzタイプを使用し、実験方法は例1)の
場合と同様に行った。
2) When the SiO 2 film is formed by sputtering:
The sensor used was a 5 MHz type, and the experimental method was the same as in Example 1).

【0011】表3及び表4から認められるように、従来
方式でZ-RATIO は、Si O2 のバルクの値1.07、TOOLIN
G は0.239 で、エラーは+5.8 〜 -9.9 %であるが、本
発明による方法ではZ-RATIO が0.432 、TOOLING は0.22
7 が最適の値と求まり、この結果エラーは、+1.4 〜 -
1.8 %と格段に良くなっている。実際このZ-RATIO とTO
OLING の値を用い新しいクリスタルで蒸着すると、エラ
ーはほぼ同じ値となった。以上の具体的実験例から蒸着
でアルミニウムを成膜した場合及びスパッタでSi O2
を成膜した場合には、ともに従来例ではそれぞれバルク
値z=1.08、z=1.07を使用すると、周波数が低くなる
に従いtooling の値がずれていくが、本発明の方法によ
ればz=1.258 、TOOL=0.620 、z=0.432 、TOOL=0.
227 がそれぞれ最適な値になりtooling の値がほぼ一定
になることが認められた。
As can be seen from Tables 3 and 4, Z-RATIO in the conventional method has a bulk value of SiO 2 of 1.07, TOOLIN
G is 0.239 and the error is +5.8 to -9.9%, but with the method according to the invention Z-RATIO is 0.432 and TOOLING is 0.22.
7 is found to be the optimum value, and as a result, the error is +1.4 to-
It's improved by 1.8%. Actually this Z-RATIO and TO
After depositing a new crystal using the OLING value, the error was about the same. From the above specific experimental examples, when forming aluminum by vapor deposition and by sputtering SiO 2
When the bulk values z = 1.08 and z = 1.07 are used in the conventional example, the tooling values deviate as the frequency becomes lower. However, according to the method of the present invention, z = 1.258. , TOOL = 0.620, z = 0.432, TOOL = 0.
It was confirmed that 227 was the optimum value and the tooling value was almost constant.

【0012】[0012]

【発明の効果】以上説明してきたように、本発明によれ
ば各成膜毎に開始時の圧電結晶の周波数と終了時の圧電
結晶の周波数を成膜監視装置に保存し、各成膜毎に識別
番号をつけ、圧電結晶の周波数が高い状態から低い状態
へ変化する間に複数の時点において基板の膜厚を測定
し、測定した複数の膜厚の値を成膜監視装置に入力して
最小2乗法により最適な剪断モードの音響インピーダン
ス比z及び石英結晶と基板の幾何学的位置の補正係数to
oling を決定するように構成しているので、従来のtool
ing を求めるのに行っていた操作でtooling およびzを
求めることができ、測定制度を向上させることができ
る。またzがわからない物質についても同様の操作でto
oling およびzを求めることができるようになる。
As described above, according to the present invention, the frequency of the piezoelectric crystal at the start and the frequency of the piezoelectric crystal at the end are stored in the film formation monitoring device for each film formation, An identification number on the substrate, measure the film thickness of the substrate at multiple times while the piezoelectric crystal frequency changes from high to low, and input the measured multiple film thickness values to the film formation monitoring device. By the least-squares method, the optimum acoustic impedance ratio z of the shear mode and the correction factor to the geometrical position of the quartz crystal and the substrate to
It's configured to determine oling, so traditional tool
The tooling and z can be obtained by the same operation as used to obtain ing, and the measurement accuracy can be improved. In addition, the same operation is performed for substances for which z is unknown.
It becomes possible to obtain oling and z.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法を実施している装置の一例の構
成を示す概略ブロツク線図。
FIG. 1 is a schematic block diagram showing the configuration of an example of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1:真空チャンバ、 2:蒸発源、 3:成膜すべき基板、 4:圧電結晶から成るマイクロバランスセンサ、 5:触針式膜厚計のような膜厚検査装置、 6:加熱用電源、 7:膜厚監視装置。 1: Vacuum chamber, 2: Evaporation source, 3: Substrate on which film is to be formed, 4: Microbalance sensor made of piezoelectric crystal, 5: Film thickness inspection device such as a stylus type film thickness meter, 6: Power supply for heating, 7: Film thickness monitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成膜チャンバ内に設置された圧電結晶上
への膜の推積を測定することにより基板上における膜厚
及び成膜速度を制御できるようにした膜厚監視制御方法
において、各成膜毎に開始時の圧電結晶の周波数と終了
時の圧電結晶の周波数を成膜監視装置に保存し、各成膜
毎に識別番号をつけ、圧電結晶の周波数が高い状態から
低い状態へ変化する間に複数の時点において基板の膜厚
を測定し、測定した複数の膜厚の値を成膜監視装置に入
力して最小2乗法により最適な剪断モードの音響インピ
ーダンス比z及び石英結晶と基板の幾何学的位置の補正
係数tooling を決定することを特徴とする膜厚監視制御
方法。
1. A method for monitoring and controlling a film thickness, wherein a film thickness on a substrate and a film forming rate can be controlled by measuring a film deposition on a piezoelectric crystal installed in a film forming chamber. The frequency of the piezoelectric crystal at the start and the frequency of the piezoelectric crystal at the end of each film formation are stored in the film formation monitoring device, and an identification number is assigned to each film formation to change the state of the piezoelectric crystal from high to low. During this time, the film thickness of the substrate is measured at a plurality of time points, and the measured values of the plurality of film thicknesses are input to the film formation monitoring apparatus, and the acoustic impedance ratio z in the optimum shear mode and the quartz crystal and the substrate are measured by the least square method. A film thickness monitoring control method characterized by determining a correction coefficient tooling of the geometrical position of.
JP21752494A 1994-09-12 1994-09-12 Film thickness monitoring control method Expired - Lifetime JP3393934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21752494A JP3393934B2 (en) 1994-09-12 1994-09-12 Film thickness monitoring control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21752494A JP3393934B2 (en) 1994-09-12 1994-09-12 Film thickness monitoring control method

Publications (2)

Publication Number Publication Date
JPH0882517A true JPH0882517A (en) 1996-03-26
JP3393934B2 JP3393934B2 (en) 2003-04-07

Family

ID=16705598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21752494A Expired - Lifetime JP3393934B2 (en) 1994-09-12 1994-09-12 Film thickness monitoring control method

Country Status (1)

Country Link
JP (1) JP3393934B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122200A (en) * 2006-11-10 2008-05-29 Ulvac Japan Ltd Film thickness measuring method
CN105088171A (en) * 2014-05-23 2015-11-25 佳能特机株式会社 Film thickness control method based on quartz oscillatory type film thickness monitor
CN116590683A (en) * 2023-05-05 2023-08-15 北京创思镀膜有限公司 Optical film, preparation method thereof and optical film element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122200A (en) * 2006-11-10 2008-05-29 Ulvac Japan Ltd Film thickness measuring method
CN105088171A (en) * 2014-05-23 2015-11-25 佳能特机株式会社 Film thickness control method based on quartz oscillatory type film thickness monitor
KR20150135082A (en) 2014-05-23 2015-12-02 캐논 톡키 가부시키가이샤 Method for controlling film thickness by crystal oscillation type film thickness monitor
JP2015222244A (en) * 2014-05-23 2015-12-10 キヤノントッキ株式会社 Film thickness control method by crystal oscillation type film thickness monitor
CN116590683A (en) * 2023-05-05 2023-08-15 北京创思镀膜有限公司 Optical film, preparation method thereof and optical film element
CN116590683B (en) * 2023-05-05 2023-12-26 北京创思镀膜有限公司 Optical film, preparation method thereof and optical film element

Also Published As

Publication number Publication date
JP3393934B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
TWI465597B (en) Thin film forming device, method for measuring film thickness and film thickness sensor
JP4818073B2 (en) Film thickness measurement method
JP2974253B2 (en) Control method of material deposition rate
CN103469172B (en) Quartz crystal coated method for controlling thickness and quartz crystal coated device
KR20150135082A (en) Method for controlling film thickness by crystal oscillation type film thickness monitor
US8438924B2 (en) Method of determining multilayer thin film deposition on a piezoelectric crystal
JP2012112037A (en) Film forming device and film forming method using the same
JP3393934B2 (en) Film thickness monitoring control method
EP3454470B1 (en) Method of manufacture of a surface acoustic wave device and surface acoustic wave device
CN110426451A (en) The method for measurement of etch-rate measuring equipment and lateral etch rate
JP2023520750A (en) Systems and methods for monitoring semiconductor processes
JPH08288258A (en) Judging method of etching termination, and method and apparatus of dry-etching
JPH0288772A (en) Method for controlling film thickness in sputtering device
Mishin et al. Thickness control by ion beam milling in acoustic resonator devices
US7227292B2 (en) Methods of depositing piezoelectric films
JP2001199799A (en) Method for producing langasite-based single crystal substrate, langasite-based single crystal substrate and piezoelectric device
RU2702702C1 (en) Method of determining sensitivity of quartz microbalance
JP2000017436A (en) Deposition apparatus
SU1446481A1 (en) Method of calibrating a quartz transducer in the measurement head of automatic system for monitoring the thickness of thin layers
GB2400490A (en) Depositing piezoelectric films for resonators
JPS5946024A (en) Vacuum deposition method
CN116592804A (en) Method for detecting thickness of coating film of quartz crystal oscillator
JPH02305962A (en) Film forming method
JPH0444245A (en) Evaluation method of silicon wafer oxide film withstand voltage test
JPH01117018A (en) Plasma processing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term