JPH0288772A - Method for controlling film thickness in sputtering device - Google Patents

Method for controlling film thickness in sputtering device

Info

Publication number
JPH0288772A
JPH0288772A JP23828088A JP23828088A JPH0288772A JP H0288772 A JPH0288772 A JP H0288772A JP 23828088 A JP23828088 A JP 23828088A JP 23828088 A JP23828088 A JP 23828088A JP H0288772 A JPH0288772 A JP H0288772A
Authority
JP
Japan
Prior art keywords
film thickness
sputtering
target
film
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23828088A
Other languages
Japanese (ja)
Inventor
Tetsuo Mikuriya
徹雄 御厨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23828088A priority Critical patent/JPH0288772A/en
Publication of JPH0288772A publication Critical patent/JPH0288772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily and precisely control the film thickness in a sputtering device by using a relational expression between the film forming rate obtained by data mean values and the measured film thicknesses and the variable factors, and integrating the formed film thicknesses from the variable factors in sputtering. CONSTITUTION:The data such as the power impressed on a target, the reflected- wave power of a power line, the temps. of the substrate and target, the cumulative target operating time, and the gas flow rate in a vacuum vessel are collected during sputtering. The mean value of the data and the measured film thickness are subjected to multivariate analysis. The relational expression between the obtained film forming rate and the data as the variable factors is registered in a controller. The variable factors are then inputted for each fixed sampling time in sputtering, and the film forming rate changing momentarily is obtained using the relational expression. The film thickness expressed by the product of the film forming rate and sampling time is cumulated to estimate the film thickness for each sampling time. When the estimated film thickness reaches a desired set value, the sputtering power source is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属、半導体、絶縁物などの材料から良質の薄
膜を生成するスパッタ装置の膜厚の制御方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method for controlling film thickness in a sputtering apparatus that produces high-quality thin films from materials such as metals, semiconductors, and insulators.

〔従来の技術〕[Conventional technology]

スパッタ装置においては、成膜速度はターゲツト材側の
電極である陰極への投入電力に比較的比例することは公
知の事実である。特開昭62−294171には、陰極
への投入電力を一定にする方法として、放電電圧と放電
電流を一定にするスパッタ制御方法が記載されている。
It is a well-known fact that in a sputtering apparatus, the film formation rate is relatively proportional to the power applied to the cathode, which is the electrode on the target material side. Japanese Patent Laid-Open No. 62-294171 describes a sputter control method for keeping the discharge voltage and discharge current constant as a method for keeping the power input to the cathode constant.

このようなターゲットへの投入電力を一定にする制御方
法を用いて実際に薄膜を生成する際には、過去の経験的
なデータから成膜速度を推定し、目標とする膜厚と推定
した成膜速度からスパッタ時間を計算して、スパッタ開
始時にこのスパッタ時間をスパッタ装置に設定するのが
従来の膜厚制御方法である。
When actually producing a thin film using such a control method that keeps the power input to the target constant, the film formation rate is estimated from past empirical data, and the target film thickness and estimated film formation are A conventional film thickness control method is to calculate the sputtering time from the film speed and set this sputtering time in the sputtering apparatus at the start of sputtering.

また、他の方法としてはスパッタ中にインラインで膜厚
を計測し、それを演算処理して膜厚を制御する方法が特
開昭62−24102に記載されている。
Another method is described in JP-A-62-24102, in which the film thickness is measured in-line during sputtering and the film thickness is controlled by arithmetic processing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、投入電力を一定にする方法を用いてスパ
ッタを行っても1割から2割という比較的大きな目標膜
厚との誤差が生じる。その原因としては、ターゲット側
の電極である陰極への投入電力を仮に一定にできても電
送線路の損失となる反射波電力を一定にすることは困難
であること、ターゲットや基板の温度変化や、真空容器
中の真空度、ガスの流れ方などは成膜速度に大きく影響
するが、高真空という厳しい環境の中でこれらを一定に
制御することは困難であり、実現したとしても装置が大
がかりになってしまうという問題点がある。
However, even when sputtering is performed using a method of keeping input power constant, a relatively large error from the target film thickness of 10 to 20% occurs. The reasons for this are that even if the power input to the cathode, which is the electrode on the target side, can be kept constant, it is difficult to keep the reflected wave power constant, which causes loss in the transmission line, and temperature changes of the target and substrate. , the degree of vacuum in the vacuum container, the flow of gas, etc. greatly affect the deposition rate, but it is difficult to control these constants in the harsh environment of high vacuum, and even if it were possible, the equipment would be large. The problem is that it becomes.

また、スパッタ中に間接的に膜厚を計測し、そのデータ
をフィードハックする方法では、直接膜厚を計測せずに
、水晶発振法や反射干渉法などの方法のように他の物理
量から膜厚を換算するために膜厚測定誤差が大きいこと
、真空容器中に測定のためのプローブを入れることにな
り、装置が大がかりになると同時に均一な電解密度を作
ることが困難となり、生成する膜厚が不均一になるとい
った問題点がある。
In addition, methods that indirectly measure the film thickness during sputtering and feed-hack the data do not directly measure the film thickness, but instead use methods such as crystal oscillation and reflection interferometry to measure the film thickness from other physical quantities. There is a large film thickness measurement error when converting the thickness, and the measurement probe is placed in a vacuum container, which makes the device large-scale and makes it difficult to create a uniform electrolyte density. There is a problem that it becomes uneven.

本発明の目的は、大がかりな付帯装置を伴わない、高精
度なスパッタ装置の膜厚制御方法を提供することにある
An object of the present invention is to provide a highly accurate film thickness control method for a sputtering device that does not involve large-scale auxiliary equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、先ずスパッタ中の成膜速度の変動要因である
ターゲットへの投入電力、電送線路の電力損失となる反
射波電力、ターゲット形状と強い相関関係にあるターゲ
ットの累積使用時間、ターゲット温度、基板温度、真空
度、真空容器中へのガス流量などをスパッタ中に一定の
サンプリング時間で計測し、スパッタ終了後、実際に成
膜した膜厚を計測する。次に集めたデータのバッチごと
の平均値と実測した膜厚をもとに多変量解析の手法を用
いて成膜速度と上記変動要因との関係を求め、関係式を
制御装置に登録する。そしてスパッタ中ば第3図のアル
ゴリズムを用いて以下に述べるような膜厚制御を行なう
。スパッタ開始前に目標膜厚を制御装置に登録し、スパ
ッタ中は一定のサンプリング時間ごとに上記膜厚速度の
変動要因を制御装置に取り込み、記憶しである関係式を
もとに、その時点での成膜速度を推定し、同時に成膜速
度とサンプリング時間の積を累積した値を推定膜厚とす
る。一定のサンプリング時間ごとに推定した膜厚がスパ
ッタ開始前に制御装置に登録した目標膜厚に達するまで
繰返し、推定膜厚が目標膜厚に達したら電力投入を中止
してスパッタを終了する、といったスパッタ装置の膜厚
制御方法である。
The present invention first focuses on the power input to the target, which is a variable factor in the film formation rate during sputtering, the reflected wave power, which causes power loss in the transmission line, the cumulative usage time of the target, which has a strong correlation with the target shape, the target temperature, The substrate temperature, degree of vacuum, gas flow rate into the vacuum container, etc. are measured at fixed sampling times during sputtering, and after sputtering is completed, the actual film thickness is measured. Next, based on the average value for each batch of collected data and the actually measured film thickness, a multivariate analysis method is used to determine the relationship between the film formation rate and the above fluctuation factors, and the relational expression is registered in the control device. During sputtering, the algorithm shown in FIG. 3 is used to control the film thickness as described below. Before starting sputtering, the target film thickness is registered in the control device, and during sputtering, the fluctuation factors of the film thickness speed are taken into the control device at regular sampling times, and the factors are stored and calculated at that point based on the relational expression. At the same time, the estimated film thickness is the cumulative product of the film formation speed and the sampling time. This process is repeated until the estimated film thickness reaches the target film thickness registered in the control device before sputtering starts at a certain sampling time, and when the estimated film thickness reaches the target film thickness, the power is turned off and sputtering is ended. This is a film thickness control method for a sputtering device.

〔実施例〕〔Example〕

第1図から第4図は本発明の一実施例に基づく、高周波
スパッタ装置を用いてSiO□の薄膜を生成する際の膜
厚制御方法を示す図面である。スパッタを引き起こすガ
スはアルゴンで、反応性ガスは酸素である。第1図にス
パッタのデータ収集段階の概念図を示す。同図のスパッ
タ装置1は投入電力2 (相当する電力の値をIT X
 I ITとする。以下の文中にて記号に対応する電力
の値を()にて示す。)、反射波電力3 (X2) 、
基板温度4 (X3)、ターゲット温度5(X4)、真
空度6 (X5)、アルゴンガス流量7(X6)、酸素
ガス流量8 (X7)を制御して成る高周波スパッタ装
置である。このスパッタ装置1の出力端子20から投入
電力2を取り出し、アナログ・ディジタル変換回路9a
を通じてコンピュータ10に取り込む。
1 to 4 are drawings showing a method for controlling the film thickness when producing a thin film of SiO□ using a high frequency sputtering apparatus, based on an embodiment of the present invention. The gas that causes sputtering is argon, and the reactive gas is oxygen. FIG. 1 shows a conceptual diagram of the sputtering data collection stage. The sputtering device 1 in the same figure has an input power of 2 (the corresponding power value is IT
I IT. In the text below, the power value corresponding to the symbol is shown in parentheses. ), reflected wave power 3 (X2),
This is a high frequency sputtering apparatus that controls the substrate temperature 4 (X3), the target temperature 5 (X4), the degree of vacuum 6 (X5), the argon gas flow rate 7 (X6), and the oxygen gas flow rate 8 (X7). The input power 2 is taken out from the output terminal 20 of this sputtering device 1, and the analog/digital conversion circuit 9a is
The data is imported into the computer 10 through the computer 10.

同様にして反射波電力3、基板温度4、ターゲット温度
5、真空度6、アルゴンガス流量7、酸素ガス流量8も
コンピュータ10に取り込む。また正確なサンプリング
時間を得るための時計11と、ターゲットの累積使用時
間12(X8)を登録するための端末I3を備えるもの
とする。ターゲットの累積使用時間12とは、ターゲッ
トを交換してから、そのターゲットを使用してスパッタ
を行った累積時間のことである。コンピュータ10を用
いてこれらのデータを整理してフロッピーディスクやハ
ードディスクなどの外部記憶装置14に格納する。これ
らの装置を用いてスパッタ時間中のデータを一定のサン
プリング時間(例えば10秒)ごとに計測、収集し、ス
パッタ終了後にこれらのデータのハツチごとの平均値を
それぞれ求め、また実際の膜厚を成膜した場所と成膜し
ていない場所との段差を接触式の計器を用いる方法で計
測する。
Similarly, reflected wave power 3, substrate temperature 4, target temperature 5, degree of vacuum 6, argon gas flow rate 7, and oxygen gas flow rate 8 are also input into the computer 10. It also includes a clock 11 for obtaining accurate sampling time and a terminal I3 for registering the cumulative usage time 12 (X8) of the target. The cumulative usage time 12 of the target is the cumulative time of sputtering using the target after replacing the target. These data are organized using the computer 10 and stored in an external storage device 14 such as a floppy disk or a hard disk. Using these devices, data during the sputtering time is measured and collected at regular sampling intervals (for example, 10 seconds), and after the sputtering is complete, the average value of this data for each hatch is calculated, and the actual film thickness is calculated. The difference in level between the film-formed area and the non-film-formed area is measured using a contact-type meter.

次に、成膜速度を推定する式を求めるために、収集した
データのバッチごとの平均値と膜厚の実測値を用いて多
変量解析する。用いるデータは最低でも60バッチ分あ
ることが望ましい。多変量解析の手法を用いることによ
り成膜速度と種々の変動要因の関係を求め以下のような
式を作成する。
Next, in order to find a formula for estimating the film formation rate, a multivariate analysis is performed using the average value of the collected data for each batch and the measured film thickness. It is desirable that the data used be for at least 60 batches. By using a multivariate analysis method, the relationship between the deposition rate and various fluctuation factors is determined, and the following formula is created.

Y=a・X1+b−X2+c−X3+d−X4十e−X
5+f−X6+g−X7+h−X8・・・(1)式 ここで用いたYは成膜速度であり、a、b、c。
Y=a・X1+b-X2+c-X3+d-X40e-X
5+f-X6+g-X7+h-X8...Equation (1) where Y used here is the film formation rate, and a, b, c.

d、e、f、g、hは多変量解析の結果求めることので
きる係数である。
d, e, f, g, and h are coefficients that can be obtained as a result of multivariate analysis.

第2図にスパッタ膜厚制御の概念図を、第3図にスパッ
タ膜厚制御アルゴルズムを示す。第2図に示すような装
置で膜厚の制御を行なう。端末13から膜厚目標値15
、および先に求めた成膜速度とその変動要因の関係式(
1)を入力して制御装置16に登録する。スパック装置
から投入電力2を取り出し、アナログ・ディジタル変換
回路9aを通じて制御装置16に取り込み、同様に反射
波電力3、基板温度4、ターゲット温度5、真空度6、
アルゴンガス流量7、酸素ガス流量8も制御装置16に
取り込むことが可能なものとする。
FIG. 2 shows a conceptual diagram of sputter film thickness control, and FIG. 3 shows a sputter film thickness control algorithm. The film thickness is controlled using a device as shown in FIG. Film thickness target value 15 from terminal 13
, and the relational expression between the film formation rate and its variation factors obtained earlier (
1) and register it in the control device 16. The input power 2 is taken out from the spackle device and inputted into the control device 16 through the analog-to-digital conversion circuit 9a, and similarly reflected wave power 3, substrate temperature 4, target temperature 5, degree of vacuum 6,
It is assumed that the argon gas flow rate 7 and the oxygen gas flow rate 8 can also be taken into the control device 16.

また、端末13からターゲラ1−の累積使用時間12を
登録する。第3図のアルゴルズムに示すように、制御装
置16内部では、一定のサンプリング時間(例えば10
秒)ごとに投入電力2、反射波電力3、基板温度4、タ
ーゲット温度5、真空度6、アルゴンガス流量7、酸素
ガス流量8の計測値を収集し、スパッタ中の成膜速度を
先に登録した式(1)を用いて推定し、成膜速度とサン
プリング時間の積をそのサンプリング時間に生成した膜
厚と考え、スパッタ開始から、成膜速度とサンプリング
時間の積を累積した値をその時点での推定膜厚とする。
Further, the cumulative usage time 12 of Targetera 1- is registered from the terminal 13. As shown in the algorithm of FIG.
The measured values of input power 2, reflected wave power 3, substrate temperature 4, target temperature 5, degree of vacuum 6, argon gas flow rate 7, and oxygen gas flow rate 8 are collected every second), and the film formation rate during sputtering is determined first. Estimate using the registered formula (1), consider the product of the film deposition rate and sampling time as the film thickness generated at that sampling time, and calculate the cumulative value of the product of the film deposition rate and sampling time from the start of sputtering. This is the estimated film thickness at the time.

第4図は、成膜速度、時間と推定膜厚の関係を示す図で
ある。同図におけるグラフの面積が推定膜厚となり、一
定のサンプリング時間17ごとにこの推定膜厚を加算す
ることになる。以上の操作を推定膜厚が目標膜厚に達す
るまで繰返す。そして、推定膜厚が目標膜厚に達したら
スパック電源18に対して電源停止の信号を出力してス
パックを終了するといった制御方法である。
FIG. 4 is a diagram showing the relationship between film formation rate, time, and estimated film thickness. The area of the graph in the figure becomes the estimated film thickness, and this estimated film thickness is added at every fixed sampling time 17. The above operations are repeated until the estimated film thickness reaches the target film thickness. Then, when the estimated film thickness reaches the target film thickness, the control method outputs a power stop signal to the spuck power supply 18 and ends the spuck.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スパッタ装置で成膜する場合に、スパ
ッタ装置の大幅な改造を伴わずに、従来困難であった高
精度の膜厚制御が可能になる。
According to the present invention, when forming a film using a sputtering device, it becomes possible to control the film thickness with high precision, which has been difficult in the past, without major modification of the sputtering device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るスパッタのデータ収集段階の概念
図を、第2図は本発明に係るスパッタ膜厚制御の概念図
を、第3図は本発明に係るスパッタ膜厚制御アルゴリズ
ムを、第4図は本発明に係る成膜速度とサンプリング時
間と膜厚の関係を示す図である。 1ニスバツタ装置、2:投入電力、3:反射波電力、4
:基板温度、5:ターゲット温度、6:真空度、7:ア
ルゴンガス流量、10:コンピュウータ、16:制御装
置。 第 図
FIG. 1 is a conceptual diagram of the sputter data collection stage according to the present invention, FIG. 2 is a conceptual diagram of sputter film thickness control according to the present invention, and FIG. 3 is a conceptual diagram of the sputter film thickness control algorithm according to the present invention. FIG. 4 is a diagram showing the relationship between film forming speed, sampling time, and film thickness according to the present invention. 1 Varnish batta device, 2: Input power, 3: Reflected wave power, 4
: substrate temperature, 5: target temperature, 6: degree of vacuum, 7: argon gas flow rate, 10: computer, 16: control device. Diagram

Claims (1)

【特許請求の範囲】[Claims] スパッタ装置において、予め成膜速度の変動要因である
ターゲットに印加する投入電力、電送線路における電力
損失となる反射波電力、基板とターゲットの温度、ター
ゲットの累積使用時間、真空容器内のガス流量などのデ
ータをスパッタ中に収集し、スパッタ終了後、上記デー
タ平均値と膜厚実測値を多変量解析して成膜速度とその
変動要因である上記データとの関係式を制御装置に登録
し、次にスパッタを行う前に目標とする膜厚を制御装置
に設定し、一定のサンプリング時間ごとにスパッタ中の
上記変動要因を入力し、先に制御装置に登録した関係式
を用いて刻々と変動する成膜速度を求め、その成膜速度
とサンプリング時間との積で表すことができる膜厚を累
積し、サンプリング時間ごとの膜厚を推定することを繰
返して、設定した膜厚に達したらスパッタ電源を停止す
ることを特徴とするスパッタ装置の膜厚制御方法。
In sputtering equipment, factors such as the power applied to the target, which is a variable factor in the film formation rate, the reflected wave power, which causes power loss in the transmission line, the temperature of the substrate and target, the cumulative usage time of the target, the gas flow rate in the vacuum chamber, etc. data is collected during sputtering, and after sputtering is completed, the average value of the data and the actual measured film thickness are analyzed multivariately, and the relational expression between the film formation rate and the data that is a factor of its variation is registered in the control device. Next, before sputtering, set the target film thickness in the control device, input the above fluctuation factors during sputtering at fixed sampling times, and change the film thickness every moment using the relational expression registered in the control device. Find the film deposition rate, accumulate the film thickness that can be expressed as the product of the film deposition rate and the sampling time, and repeat the process of estimating the film thickness for each sampling time. When the set film thickness is reached, sputtering is performed. A method for controlling film thickness in a sputtering apparatus, characterized by stopping a power supply.
JP23828088A 1988-09-22 1988-09-22 Method for controlling film thickness in sputtering device Pending JPH0288772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23828088A JPH0288772A (en) 1988-09-22 1988-09-22 Method for controlling film thickness in sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23828088A JPH0288772A (en) 1988-09-22 1988-09-22 Method for controlling film thickness in sputtering device

Publications (1)

Publication Number Publication Date
JPH0288772A true JPH0288772A (en) 1990-03-28

Family

ID=17027842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23828088A Pending JPH0288772A (en) 1988-09-22 1988-09-22 Method for controlling film thickness in sputtering device

Country Status (1)

Country Link
JP (1) JPH0288772A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126028A (en) * 1989-04-17 1992-06-30 Materials Research Corporation Sputter coating process control method and apparatus
US5733099A (en) * 1994-09-19 1998-03-31 Ferag Ag Process and apparatus for stacking sheet-like products, in particular printed products
JP2008223141A (en) * 2007-03-13 2008-09-25 Jds Uniphase Corp Method and control system for depositing layer
KR20160027022A (en) * 2013-07-03 2016-03-09 오엘리콘 썰피스 솔루션즈 아게, 츠르바크 Target age compensation method for performing stable reactive sputtering processes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126028A (en) * 1989-04-17 1992-06-30 Materials Research Corporation Sputter coating process control method and apparatus
US5733099A (en) * 1994-09-19 1998-03-31 Ferag Ag Process and apparatus for stacking sheet-like products, in particular printed products
JP2008223141A (en) * 2007-03-13 2008-09-25 Jds Uniphase Corp Method and control system for depositing layer
KR20160027022A (en) * 2013-07-03 2016-03-09 오엘리콘 썰피스 솔루션즈 아게, 츠르바크 Target age compensation method for performing stable reactive sputtering processes
JP2016526604A (en) * 2013-07-03 2016-09-05 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン Compensation method for target age for stable reactive sputtering process

Similar Documents

Publication Publication Date Title
JP5140678B2 (en) Thin film forming equipment, film thickness measuring method, film thickness sensor
TWI538051B (en) Plasma processing device
CN103469172B (en) Quartz crystal coated method for controlling thickness and quartz crystal coated device
JPS63244739A (en) Detection of cleaning end point in semiconductor manufacturing equipment
JP2015222244A (en) Film thickness control method by crystal oscillation type film thickness monitor
JPH0288772A (en) Method for controlling film thickness in sputtering device
JP6775972B2 (en) Film formation equipment and film formation method
JP2000064037A (en) Control of distribution of film thickness in sputtering device and device therefor
JPH0772307A (en) Method and device for forming thin film
Mozetič et al. Recombination of neutral hydrogen atoms on AISI 304 stainless steel surface
CN106471152B (en) Film thickness monitoring device, film thickness monitoring method and film formation device
CN110426451A (en) The method for measurement of etch-rate measuring equipment and lateral etch rate
JP2676095B2 (en) Method for determining cleaning time of chamber for semiconductor manufacturing equipment
JPH0882517A (en) Film thickness monitoring control method
RU2549223C1 (en) Method to measure variation of temperature of object relative to specified temperature
CN116592804A (en) Method for detecting thickness of coating film of quartz crystal oscillator
JPS58141381A (en) Thin film forming device
JPS6129657B2 (en)
KR100217816B1 (en) Measuring method and its apparatus of end point of dry etching
JPH09118600A (en) Film forming device
Kalinkina et al. Development design parameters for the metallization of quartz samples
JPH02274875A (en) Formation of film by sputtering
JPH02263983A (en) Formation of film by sputtering
JP2000107587A (en) Method and apparatus for calibrating gas pressure in bell jar (vacuum film forming chamber or container)
SU911562A1 (en) Device for solving differential equations