JPH0882413A - Condensation apparatus - Google Patents

Condensation apparatus

Info

Publication number
JPH0882413A
JPH0882413A JP6219148A JP21914894A JPH0882413A JP H0882413 A JPH0882413 A JP H0882413A JP 6219148 A JP6219148 A JP 6219148A JP 21914894 A JP21914894 A JP 21914894A JP H0882413 A JPH0882413 A JP H0882413A
Authority
JP
Japan
Prior art keywords
gas
heat
temperature
exhaust gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6219148A
Other languages
Japanese (ja)
Inventor
Keiji Murata
圭治 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6219148A priority Critical patent/JPH0882413A/en
Publication of JPH0882413A publication Critical patent/JPH0882413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE: To improve the recovery rate of latent heat by reheating gas to be processed after cooled by recovering condensable gas latent heat with the gas to be processed before the cooling. CONSTITUTION: Exhaust gas 2 discharged from an air preheating chamber 4 presents sensible heat to exhaust gas discharged from a condensation heat exchanger 16 in a gas-gas heat exchanger 15 and is hence lowered in its temperature. The exhaust gas lowered in its temperature is cooled with a heat medium 12 in the condensation heat exchanger 16 to provide water vapor latent heat and exhaust sensible heat to the heat medium 12, and is discharged from the condensation heat exchanger 16. The heat medium 12 raised in its temperature by recovering the water vapor latent heat and exhaust gas sensible heat through the condensation heat exchanger 16 supplies heat to a heat pump 13 and is lowered in its temperature and is again return to the condensation heat exchanger 16. The exhaust gas 12 discharged from the condensation heat exchanger 16 is heated in the gas-gas heat exchanger 15 with exhaust gas flowing in anew, and is again raised in its temperature and is discharged from a condensation apparatus. Accordingly, temperature of the exhaust gas in the condensation apparatus 5 is only slightly lowered. Hereby, a recovery rate of the latent heat is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電ボイラなどの
水蒸気を含有する排ガスから水蒸気の潜熱を回収する潜
熱回収用の凝縮装置、あるいはクローズドサイクルMH
D発電システムのシード回収など不凝縮性ガス中に含ま
れる凝縮性成分回収用の凝縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat recovery condenser for recovering the latent heat of steam from exhaust gas containing steam in a thermal power generation boiler or the like, or a closed cycle MH.
The present invention relates to a condensing device for recovering a condensable component contained in a non-condensable gas such as a seed recovery of a D power generation system.

【0002】[0002]

【従来の技術】従来から蒸気タービン発電プラントなど
では熱効率を高めるため、節炭器や空気予熱器などの顕
熱回収装置を設置し、ボイラ排ガスの顕熱を回収してい
る。燃料が液化天然ガス(LNG)のような高含水燃料
の場合、排ガス中には多量の水蒸気が含まれることか
ら、水蒸気の潜熱を回収して効率をさらに向上させるこ
とが提案されている。LNGは硫黄などの腐食成分を含
まない炭化水素が主成分のクリーンなエネルギ源である
ため、潜熱回収を行なっても硫酸などの腐食性物質が生
成されず、低温腐食を生じるおそれがない。このため、
LNGを燃料とする火力発電ボイラなどでは凝縮装置を
積極的に利用している。
2. Description of the Related Art Conventionally, in a steam turbine power plant or the like, a sensible heat recovery device such as a economizer or an air preheater is installed to recover the sensible heat of a boiler exhaust gas in order to improve thermal efficiency. When the fuel is a high water content fuel such as liquefied natural gas (LNG), since a large amount of water vapor is contained in the exhaust gas, it has been proposed to recover the latent heat of the water vapor to further improve the efficiency. Since LNG is a clean energy source whose main component is a hydrocarbon that does not contain a corrosive component such as sulfur, corrosive substances such as sulfuric acid are not generated even if latent heat is recovered, and there is no risk of low temperature corrosion. For this reason,
In LNG fueled thermal power generation boilers and the like, a condenser is actively used.

【0003】図2に示すように、蒸気タービン発電プラ
ントは蒸気系および排ガス系を有する。蒸気系において
は、ボイラ1でLNGを燃焼し、発生した水蒸気を蒸気
タービン8に送って発電機11を回転させた後に、復水
器9で凝縮する。凝縮した水はポンプ10で昇圧され、
節炭器3で予熱された後、ボイラ1に戻る。図中の一点
鎖線は蒸気サイクルを示している。また、図中の実線、
破線および点線は、それぞれ排ガス2、作動熱媒体12
(以降、熱媒体と略す)および燃焼用空気14の流れを
示している。
As shown in FIG. 2, a steam turbine power plant has a steam system and an exhaust gas system. In the steam system, LNG is combusted in the boiler 1, the generated steam is sent to the steam turbine 8 to rotate the generator 11, and then condensed in the condenser 9. The condensed water is pressurized by the pump 10,
After being preheated by the economizer 3, it returns to the boiler 1. The alternate long and short dash line in the figure indicates the vapor cycle. Also, the solid line in the figure,
The broken line and the dotted line represent the exhaust gas 2 and the working heat medium 12, respectively.
The flow of (hereinafter abbreviated as heat medium) and the combustion air 14 is shown.

【0004】一方、排ガス系においては、ボイラ1から
出た排ガス2は、節炭器3、空気予熱器4および潜熱回
収用の凝縮装置5を経由し、通風機6によって煙突7か
ら大気中に放出される。図中に記入した各温度は、凝縮
装置5の出入口における排ガス2および熱媒体12の温
度である。
On the other hand, in the exhaust gas system, the exhaust gas 2 emitted from the boiler 1 passes through the economizer 3, the air preheater 4 and the condensing device 5 for recovering the latent heat, and is blown from the chimney 7 to the atmosphere. Is released. Each temperature entered in the drawing is the temperature of the exhaust gas 2 and the heat medium 12 at the inlet and outlet of the condenser 5.

【0005】凝縮装置5は、排ガス2と熱媒体12が対
向流的に熱交換される凝縮用熱交換器であり、流入する
排ガス2の温度は110℃、水蒸気濃度は約17mol
%(露点温度約55℃)である。一方、熱媒体12の入
り口温度は35℃である。排ガス2は熱媒体12によっ
て露点温度以下に冷却されるので、含有水蒸気の凝縮が
生じる。この際、水蒸気潜熱だけでなく、排ガス顕熱も
奪われるので、排ガス温度は大きく低下し、出口温度は
50℃となる(すなわち、凝縮装置における温度低下は
60℃である)。一方、熱媒体12は水蒸気潜熱および
排ガス顕熱を回収して50℃まで温度上昇するが、付属
のヒートポンプ13に熱を供給して温度低下し、再び凝
縮装置5に戻る。凝縮装置5で凝縮した水はボイラ給水
などとして利用される。
The condenser 5 is a condensing heat exchanger in which the exhaust gas 2 and the heat medium 12 exchange heat in a countercurrent manner. The temperature of the inflowing exhaust gas 2 is 110 ° C. and the water vapor concentration is about 17 mol.
% (Dew point temperature about 55 ° C.). On the other hand, the inlet temperature of the heat medium 12 is 35 ° C. Since the exhaust gas 2 is cooled to below the dew point temperature by the heat medium 12, the contained water vapor is condensed. At this time, not only the latent heat of steam but also the sensible heat of the exhaust gas are taken away, so that the exhaust gas temperature greatly decreases and the outlet temperature becomes 50 ° C. (that is, the temperature decrease in the condenser is 60 ° C.). On the other hand, the heat medium 12 recovers the latent heat of steam and the sensible heat of the exhaust gas and rises in temperature to 50 ° C., but supplies heat to the attached heat pump 13 to lower the temperature and returns to the condenser 5 again. The water condensed by the condenser 5 is used as boiler feed water.

【0006】通常、煙突に送られる排ガスの密度は大気
の密度よりも低く、この密度差による浮力によって排ガ
スは煙突内を上昇し、さらに大気中に拡散していく。充
分な浮力を得るためには、煙突に流入する排ガスを所定
温度(100℃程度)以上に保つことが必要である。
Usually, the density of the exhaust gas sent to the chimney is lower than the density of the atmosphere, and the buoyancy due to this density difference causes the exhaust gas to rise in the chimney and diffuse into the atmosphere. In order to obtain sufficient buoyancy, it is necessary to keep the exhaust gas flowing into the chimney at a predetermined temperature (about 100 ° C.) or higher.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、排ガス
2は、凝縮装置5において潜熱回収される際に、同時に
顕熱も奪われるので、排ガス温度は充分な浮力を得るの
に必要な所定温度に比べかなり低下する。その結果、排
ガスの上昇速度が落ちるだけでなく、大気中への拡散速
度が低下し、公害問題に発展するおそれがある。これを
防止するためには通風機6を設け、煙突7を高くする等
の対策が必要になるが、設備コストが増大するとともに
通風機6の電力消費により発電効率が低下するという問
題点がある。
However, when the exhaust gas 2 recovers latent heat in the condenser 5, the sensible heat is also taken away at the same time, so that the exhaust gas temperature is lower than the predetermined temperature required to obtain sufficient buoyancy. Considerably lower. As a result, not only the rising speed of the exhaust gas decreases, but also the diffusion speed into the atmosphere decreases, which may lead to pollution problems. In order to prevent this, measures such as providing the ventilator 6 and raising the chimney 7 are required, but there is a problem that the facility cost increases and the power generation efficiency decreases due to the power consumption of the ventilator 6. .

【0008】また、凝縮装置5の出口における排ガス温
度をあまり低くできないので(せいぜい50℃程度)、
充分な潜熱回収ができず、かなりの熱量の水蒸気潜熱を
廃棄している。
Further, since the temperature of exhaust gas at the outlet of the condenser 5 cannot be lowered so much (about 50 ° C. at most),
The latent heat cannot be recovered sufficiently, and a considerable amount of latent heat of steam is discarded.

【0009】一方、クローズドサイクルMHD発電シス
テムのシード回収用凝縮装置などの被処理ガス中に微量
含まれる凝縮性ガス成分を凝縮させて回収する凝縮装置
においても、凝縮性ガス成分の回収率向上を図るため
に、被処理ガスをできるだけ低い温度まで冷却すること
が必要になる。しかし、これにより被処理ガス温度が大
きく低下してしまい、多大のエネルギー損失となる。こ
れとは逆にエネルギー損失を抑えるために被処理ガスの
冷却温度を高くすると、凝縮性ガス成分の回収率が低下
する。
On the other hand, in a condensing device for condensing and recovering a small amount of condensable gas components contained in the gas to be treated, such as a seed recovery condensing device of a closed cycle MHD power generation system, the recovery rate of the condensable gas components is improved. In order to achieve this, it is necessary to cool the gas to be processed to a temperature as low as possible. However, this causes a large decrease in the temperature of the gas to be treated, resulting in a large energy loss. On the contrary, if the cooling temperature of the gas to be treated is increased in order to suppress energy loss, the recovery rate of the condensable gas component decreases.

【0010】本発明は、こうした従来の問題を解決する
ためになされたものであって、被処理ガスの温度をほと
んど低下させることなく、凝縮性ガス成分および凝縮性
ガスの潜熱を回収することができる凝縮装置を提供する
ことを目的とする。
The present invention has been made in order to solve such a conventional problem, and can recover the condensable gas component and the latent heat of the condensable gas without substantially lowering the temperature of the gas to be treated. An object of the present invention is to provide a condensing device that can be used.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る凝縮装置は、凝縮性ガス及び不凝縮性ガ
スを含む被処理ガスを冷却し、被処理ガス中の凝縮性ガ
スを凝縮させて凝縮性ガス成分又は凝縮性ガスの潜熱を
回収することが可能な凝縮装置において、凝縮性ガス成
分又は凝縮性ガスの潜熱を回収した後の被処理ガスを、
凝縮性ガス成分又は凝縮性ガスの潜熱を回収する前の被
処理ガスによって再加熱することを特徴とする。
In order to achieve the above object, a condensing apparatus according to the present invention cools a gas to be treated containing a condensable gas and a non-condensable gas and removes the condensable gas in the gas to be treated. In a condenser capable of condensing and recovering the latent heat of the condensable gas component or the condensable gas, the gas to be treated after recovering the latent heat of the condensable gas component or the condensable gas,
It is characterized in that the condensable gas component or the latent heat of the condensable gas is reheated by the gas to be treated before being recovered.

【0012】また、本発明に係る凝縮装置は、凝縮性ガ
ス成分又は凝縮性ガスの潜熱を回収する前後の被処理ガ
ス間で互いに熱交換を行わせる第1の熱交換器と、被処
理ガス中の凝縮性ガス成分又は凝縮性ガスの潜熱を回収
する第2の熱交換器と、を有することを特徴とする。こ
の場合に、被処理ガスは凝縮性ガスとしての水蒸気を含
有する液化天然ガスの燃焼排ガス等である。
Further, the condensing device according to the present invention includes a first heat exchanger for exchanging heat between the gas to be treated and the gas to be treated before and after recovering the condensable gas component or the latent heat of the condensable gas, and the gas to be treated. A second heat exchanger for recovering the latent heat of the condensable gas component or the condensable gas therein. In this case, the gas to be treated is a combustion exhaust gas of liquefied natural gas containing water vapor as a condensable gas.

【0013】[0013]

【作用】本発明に係る凝縮装置においては、凝縮性ガス
およびその潜熱を回収して温度降下した被処理ガスを、
凝縮性ガスの潜熱を回収する前(すなわち、冷却する
前)の被処理ガスで再加熱するので、被処理ガスの温度
をほとんど低下させることなく、すなわち失われる被処
理ガスの顕熱量が少なく、凝縮性ガス成分およびその潜
熱が回収される。
In the condensing device according to the present invention, the condensable gas and the gas to be treated whose temperature is lowered by recovering the latent heat thereof are
Since the latent heat of the condensable gas is reheated with the gas to be treated before it is recovered (that is, before being cooled), the temperature of the gas to be treated is hardly lowered, that is, the sensible heat amount of the gas to be lost is small, The condensable gas component and its latent heat are recovered.

【0014】したがって、排ガス中の水蒸気潜熱回収用
凝縮装置においては、排ガスを大気中に放出するのに充
分な浮力が得られ、通風機などの設備およびその消費電
力を省くことができる。さらに、排ガス温度の低下を気
にせずに充分低い温度で排ガスを冷却できるので、ほぼ
完全な潜熱回収が可能となる。
Therefore, in the condenser for recovering latent heat of steam in exhaust gas, sufficient buoyancy is obtained to release the exhaust gas into the atmosphere, and equipment such as a ventilator and its power consumption can be omitted. Furthermore, since the exhaust gas can be cooled at a sufficiently low temperature without worrying about the decrease in the exhaust gas temperature, it is possible to recover the latent heat almost completely.

【0015】また、被処理ガス中の凝縮性成分回収用の
凝縮装置においては、不凝縮性ガスの温度低下を最小限
に抑えることが出来るので、エネルギー損失を小さくす
ることができる。さらに、不凝縮性ガスの温度低下を気
にせずに充分低い温度で不凝縮性ガスを冷却し、凝縮性
成分を回収できるので、回収率を大きく向上させること
ができる。
Further, in the condensing device for recovering the condensable component in the gas to be treated, the temperature decrease of the non-condensable gas can be suppressed to the minimum, so that the energy loss can be reduced. Further, since the non-condensable gas can be cooled at a sufficiently low temperature and the condensable component can be recovered without being concerned about the temperature decrease of the non-condensable gas, the recovery rate can be greatly improved.

【0016】[0016]

【実施例】以下、添付の図面を参照して本発明の実施例
について説明する。本実施例では、本発明の凝縮装置を
蒸気タービン発電プラントにおけるボイラ排ガスから水
蒸気潜熱を回収する潜熱回収装置として使用した場合に
ついて説明する。凝縮装置5は、図1において二点鎖線
で囲って示した。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In this embodiment, a case where the condenser of the present invention is used as a latent heat recovery device for recovering steam latent heat from boiler exhaust gas in a steam turbine power plant will be described. The condenser 5 is shown by being surrounded by a chain double-dashed line in FIG.

【0017】凝縮装置5は、第1の熱交換器としての対
向流型のガス・ガス熱交換器15と、第2の熱交換器と
しての対向流型の凝縮用熱交換器16とを備えている。
図中の実線、破線、点線は、排ガス2、熱媒体12およ
び燃焼用空気14のフローをそれぞれ示している。蒸気
サイクルは、本発明に特に関係しないので、図1では省
略してある。図中に記入した温度は、凝縮装置内および
凝縮装置の出入口における排ガス温度および熱媒体温度
の一例である。ここでは、ガス・ガス熱交換器15およ
び凝縮用熱交換器16における加熱流体と被加熱流体の
最小温度差を、それぞれ20℃、15℃とした。空気予
熱器4を出た排ガス2(温度は110℃、水蒸気濃度は
約17mol%、露点温度は約55℃)は、まずガス・
ガス熱交換器15で凝縮用熱交換器16を出た排ガスに
顕熱を与え、70℃まで温度低下する。温度低下した排
ガスは、凝縮用熱交換器16において熱媒体12で冷却
され、水蒸気潜熱および排ガス顕熱を熱媒体12に与
え、50℃で凝縮用熱交換器16を出る。凝縮用熱交換
器16で水蒸気潜熱および排ガス顕熱を回収して温度上
昇した熱媒体12は、ヒートポンプ13に熱を供給し、
温度低下して再び凝縮用熱交換器16に戻る。
The condensing device 5 comprises a counterflow type gas-gas heat exchanger 15 as a first heat exchanger and a counterflow type condensing heat exchanger 16 as a second heat exchanger. ing.
A solid line, a broken line, and a dotted line in the figure show the flows of the exhaust gas 2, the heat medium 12, and the combustion air 14, respectively. The steam cycle is omitted from FIG. 1 as it is not particularly relevant to the present invention. The temperatures entered in the figure are examples of the exhaust gas temperature and the heat medium temperature in the condenser and at the inlet and outlet of the condenser. Here, the minimum temperature difference between the heating fluid and the heated fluid in the gas / gas heat exchanger 15 and the condensation heat exchanger 16 is set to 20 ° C. and 15 ° C., respectively. Exhaust gas 2 (temperature is 110 ° C., water vapor concentration is about 17 mol%, dew point temperature is about 55 ° C.) that exits air preheater 4, is
The gas heat exchanger 15 gives sensible heat to the exhaust gas leaving the condensing heat exchanger 16 to lower the temperature to 70 ° C. The exhaust gas whose temperature has been lowered is cooled by the heat medium 12 in the condensing heat exchanger 16, and gives latent heat of steam and sensible heat of the exhaust gas to the heat medium 12, and exits the condensing heat exchanger 16 at 50 ° C. The heat medium 12 whose temperature has risen by collecting latent heat of steam and sensible heat of exhaust gas in the heat exchanger 16 for condensation supplies heat to the heat pump 13,
The temperature is lowered, and the flow returns to the condensation heat exchanger 16 again.

【0018】凝縮用熱交換器16を出る排ガス2(温度
50℃)は、凝縮装置5入口の排ガス(温度110℃)
に比べ大きく温度低下しているが、ガス・ガス熱交換器
15において、新たに流入する排ガス(温度110℃)
で加熱され、再び温度上昇して凝縮装置5から流出する
(出口温度90℃)。結果的に、凝縮装置5における排
ガスの温度低下はわずか20℃で、不凝縮性ガスの温度
をほとんど低下させることなく含有する水蒸気潜熱を回
収したことになる。ガス・ガス熱交換器の性能を向上さ
せ、加熱流体と被加熱流体の温度差をさらに小さくすれ
ば、凝縮装置5における排ガスの温度低下をもっと小さ
くすることができる。また、ヒートポンプ13から戻る
熱媒体12の温度をさらに低下させれば、より低い温度
で排ガスを冷却できるので、潜熱回収率をいっそう向上
させることができる。
The exhaust gas 2 (temperature 50 ° C.) exiting the heat exchanger 16 for condensation is the exhaust gas (temperature 110 ° C.) at the inlet of the condenser 5.
Although the temperature is much lower than that of, the newly introduced exhaust gas (temperature 110 ° C) in the gas / gas heat exchanger 15
The temperature rises again and flows out from the condenser 5 (outlet temperature 90 ° C.). As a result, the temperature drop of the exhaust gas in the condenser 5 was only 20 ° C., and the latent heat of steam contained was recovered with almost no decrease in the temperature of the non-condensable gas. If the performance of the gas-gas heat exchanger is improved and the temperature difference between the heated fluid and the heated fluid is further reduced, the temperature drop of the exhaust gas in the condenser 5 can be further reduced. Further, if the temperature of the heat medium 12 returning from the heat pump 13 is further lowered, the exhaust gas can be cooled at a lower temperature, so that the latent heat recovery rate can be further improved.

【0019】上記実施例では、本発明の凝縮装置をボイ
ラ排ガス中の水蒸気潜熱回収に用いた場合について説明
したが、このような凝縮装置をクローズドサイクルMH
D発電システムにおいて作動流体(ヘリウムガス等)中
に微量含まれるシード(カリウムなどのアルカリ金属)
を回収する装置としても用いることができる。
In the above embodiment, the case where the condenser of the present invention is used to recover latent heat of steam in boiler exhaust gas has been described. However, such a condenser is used in a closed cycle MH.
Seed (alkali metal such as potassium) contained in a small amount in the working fluid (helium gas, etc.) in the D power generation system
It can also be used as a device for recovering.

【0020】クローズドサイクルMHD発電システムに
おいて作動流体中に微量含まれるシードを凝縮させて回
収する場合に、シード回収率の向上のために作動流体を
できるだけ低い温度に冷却する必要がある。しかし、作
動流体を冷却してシードを回収する際に、同時に作動流
体の顕熱も奪われるので、作動流体の温度が大幅に降下
し、多大のエネルギー損失となる。一方、エネルギー損
失を抑えるために、冷却温度を上げるとシード回収率が
低下する。
In the closed cycle MHD power generation system, when a small amount of seed contained in the working fluid is condensed and collected, it is necessary to cool the working fluid to a temperature as low as possible in order to improve the seed recovery rate. However, when the working fluid is cooled and the seeds are collected, the sensible heat of the working fluid is also removed at the same time, so that the temperature of the working fluid is significantly lowered, resulting in a great energy loss. On the other hand, if the cooling temperature is increased in order to suppress energy loss, the seed recovery rate will decrease.

【0021】そこで、クローズドサイクルMHD発電シ
ステムのシード回収用凝縮装置においては、第1の熱交
換器(ガス・ガス熱交換器)によりシード回収後の作動
流体をシード回収前の作動流体で再加熱し、第2の熱交
換器(凝縮用熱交換器)によりヘリウムガスなどの作動
流体中に微量含まれるシードを凝縮させて回収する。こ
れによりシード回収率が高まり、作動流体の温度低下が
小さくなる。
Therefore, in the seed recovery condenser of the closed cycle MHD power generation system, the working fluid after seed recovery is reheated by the working fluid before seed recovery by the first heat exchanger (gas / gas heat exchanger). Then, the second heat exchanger (condensation heat exchanger) condenses and recovers a small amount of seed contained in the working fluid such as helium gas. This increases the seed recovery rate and reduces the temperature drop of the working fluid.

【0022】[0022]

【発明の効果】以上のように、本発明の凝縮装置によれ
ば、凝縮性ガス成分およびその潜熱を回収するために冷
却した後の被処理ガスを、冷却前の被処理ガスで再加熱
するので、被処理ガスの温度をほとんど低下させること
なく、凝縮性ガス成分およびその潜熱を効率よく回収す
ることができる。
As described above, according to the condenser of the present invention, the gas to be treated after being cooled in order to recover the condensable gas component and its latent heat is reheated by the gas to be treated before being cooled. Therefore, the condensable gas component and its latent heat can be efficiently recovered with almost no decrease in the temperature of the gas to be treated.

【0023】その結果として、排ガスの水蒸気潜熱回収
用の凝縮装置においては、排ガスを大気中に放出するの
に充分な浮力が得られるので、通風機などの付属設備が
不要になり、その上さらに消費電力を低減することがで
きる。
As a result, in the condenser for recovering the latent heat of steam of the exhaust gas, sufficient buoyancy is obtained to discharge the exhaust gas into the atmosphere, so that auxiliary equipment such as a ventilator becomes unnecessary, and further, Power consumption can be reduced.

【0024】さらに、最終的に廃棄される排ガス温度の
大幅な低下がなくなり、凝縮装置内で排ガスを充分低い
温度まで冷却することができるので、回収率を大きく向
上させることができ、ほぼ完全な潜熱回収が可能とな
る。
Furthermore, since the temperature of the exhaust gas to be finally discarded does not drop significantly and the exhaust gas can be cooled to a sufficiently low temperature in the condenser, the recovery rate can be greatly improved, and the exhaust gas can be almost completely removed. The latent heat can be recovered.

【0025】また、被処理ガス中の凝縮性成分回収用の
凝縮装置においては、被処理ガスの温度低下を最小限に
抑えることができるので、エネルギー損失を小さくする
ことができる。
Further, in the condensing device for recovering the condensable component in the gas to be treated, the temperature drop of the gas to be treated can be suppressed to a minimum, so that the energy loss can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る凝縮装置をボイラ排ガスに含まれ
る水蒸気の潜熱回収に適用した例を示すフローシートで
ある。
FIG. 1 is a flow sheet showing an example in which a condenser according to the present invention is applied to recover latent heat of steam contained in boiler exhaust gas.

【図2】従来の水蒸気潜熱回収用の凝縮装置を示すフロ
ーシートである。
FIG. 2 is a flow sheet showing a conventional condenser for recovering latent heat of steam.

【符号の説明】[Explanation of symbols]

2…排ガス 5…凝縮装置 12…熱媒体 15…ガス・ガス熱交換器(第1の熱交換器) 16…凝縮用熱交換器(第2の熱交換器) 2 ... Exhaust gas 5 ... Condensing device 12 ... Heat medium 15 ... Gas / gas heat exchanger (first heat exchanger) 16 ... Condensing heat exchanger (second heat exchanger)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 凝縮性ガス及び不凝縮性ガスを含む被処
理ガスを冷却し、被処理ガス中の凝縮性ガスを凝縮させ
て凝縮性ガス成分又は凝縮性ガスの潜熱を回収すること
が可能な凝縮装置において、 凝縮性ガス成分又は凝縮性ガスの潜熱を回収した後の被
処理ガスを、凝縮性ガス成分又は凝縮性ガスの潜熱を回
収する前の被処理ガスによって再加熱することを特徴と
する凝縮装置。
1. A process gas containing a condensable gas and a non-condensable gas can be cooled and the condensable gas in the process gas can be condensed to recover the condensable gas component or the latent heat of the condensable gas. In this condensing device, the gas to be treated after recovering the latent heat of the condensable gas component or the condensable gas is reheated by the gas to be treated before recovering the latent heat of the condensable gas component or the condensable gas. And a condenser.
【請求項2】 凝縮性ガス及び不凝縮性ガスを含む被処
理ガスを冷却し、被処理ガス中の凝縮性ガスを凝縮させ
て凝縮性ガス成分又は凝縮性ガスの潜熱を回収すること
が可能な凝縮装置において、 凝縮性ガス成分又は凝縮性ガスの潜熱を回収する前後の
被処理ガス間で互いに熱交換を行わせる第1の熱交換器
と、被処理ガス中の凝縮性ガス成分又は凝縮性ガスの潜
熱を回収する第2の熱交換器と、を有することを特徴と
する凝縮装置。
2. A process gas containing a condensable gas and a non-condensable gas can be cooled and the condensable gas in the process gas can be condensed to recover the condensable gas component or the latent heat of the condensable gas. First heat exchanger for performing heat exchange between the process gas before and after recovering the condensable gas component or the latent heat of the condensable gas, and the condensable gas component or condensation in the process gas A second heat exchanger that recovers latent heat of the volatile gas, and a condensing device.
【請求項3】 前記被処理ガスは、凝縮性ガスとしての
水蒸気を含有する液化天然ガスの燃焼排ガスであること
を特徴とする請求項1又は請求項2のいずれかに記載の
凝縮装置。
3. The condenser according to claim 1, wherein the gas to be treated is a combustion exhaust gas of liquefied natural gas containing water vapor as a condensable gas.
JP6219148A 1994-09-13 1994-09-13 Condensation apparatus Pending JPH0882413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219148A JPH0882413A (en) 1994-09-13 1994-09-13 Condensation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219148A JPH0882413A (en) 1994-09-13 1994-09-13 Condensation apparatus

Publications (1)

Publication Number Publication Date
JPH0882413A true JPH0882413A (en) 1996-03-26

Family

ID=16730969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219148A Pending JPH0882413A (en) 1994-09-13 1994-09-13 Condensation apparatus

Country Status (1)

Country Link
JP (1) JPH0882413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533964A (en) * 2007-04-12 2010-10-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for gas cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533964A (en) * 2007-04-12 2010-10-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for gas cooling

Similar Documents

Publication Publication Date Title
RU2237172C1 (en) Method of utilization of heat abstracted in process of reduction of carbon dioxide
KR20170102793A (en) Gas-steam combined cycle centralized heat supply device and heat supply method
BRPI1003490B1 (en) rankine cycle system and method
US4542621A (en) Method of and plant for combustion of water-vapor generating fuels
JP2014009877A (en) Flue gas treatment equipment and method
JP5636955B2 (en) Heat recovery system
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP2022023871A (en) Thermal power generation plant and exhaust heat recovery method
EP2657597B1 (en) Apparatus for waste heat recovery from exhaust gas
CN105371669B (en) Flue gas of glass melting furnace and annealing kiln waste gas residual heat combined recovery electricity generation system and method
JPS58123022A (en) Waste gas heat recovery system for pulp mill wastewater-burning boiler
US10221726B2 (en) Condensing heat recovery steam generator
JPH0882413A (en) Condensation apparatus
JPH0933004A (en) Waste heat recovery boiler
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
JP2004020140A (en) Air heating equipment and thermal power generation facility
RU2144994C1 (en) Combined-cycle plant
CN113483347A (en) Working method of white smoke eliminating device with cooperation of flue gas waste heat and moisture recovery
JPH0731834A (en) Regeneration of absorbing solution
CN205746785U (en) ORC economizer and system for power-plant flue gas UTILIZATION OF VESIDUAL HEAT IN
JPS62185810A (en) Device for recovering heat energy of blast furnace gas
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
CN108105784A (en) Burning power plant low temperature exhaust heat recovery system and method
EP3184757A1 (en) Condensing heat recovery steam generator
JP2001115855A (en) Gas turbine system