JPH0882396A - Heat insulation support device - Google Patents

Heat insulation support device

Info

Publication number
JPH0882396A
JPH0882396A JP6218504A JP21850494A JPH0882396A JP H0882396 A JPH0882396 A JP H0882396A JP 6218504 A JP6218504 A JP 6218504A JP 21850494 A JP21850494 A JP 21850494A JP H0882396 A JPH0882396 A JP H0882396A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating support
support device
buckling
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6218504A
Other languages
Japanese (ja)
Inventor
Michihiko Koyama
充彦 小山
Hideki Nemoto
英樹 根本
Hideaki Saura
英明 佐浦
Hiroyuki Nakao
裕行 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6218504A priority Critical patent/JPH0882396A/en
Publication of JPH0882396A publication Critical patent/JPH0882396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/12Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE: To provide a heat insulation support device which is constituted to reinforce load resistance while excellent heat insulating property is maintained. CONSTITUTION: A helical winding 4 is axially applied on a thin cylinder part 3, and further a hoop winding 5 is applied on an innermost layer and an outermost layer. Further, the end part 1 and the central part 2 of the thin cylinder part 3 are increased in thickness by applying the hoop winding 5 thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐荷重性を強化した断熱
支持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adiabatic support device having enhanced load resistance.

【0002】[0002]

【従来の技術】超電導磁石を有する磁気浮上式列車にお
いて、超電導磁石は、列車の走行や停止などの運行を行
うモーターの役割をはたしている。このような超電導磁
石は極低温状態に維持するため真空容器に格納されてお
り、真空容器内では超電導磁石を支持するための荷重支
持構造が必要である。超電導磁石を極低温状態に保つた
めには、一般に液体ヘリウムが使用されるが、液体ヘリ
ウムの温度はおよそ4Kであり、外界の温度を300K
とすると296Kもの温度差が生じる。液体ヘリウム温
度下と常温下との間の熱伝導量が最も大きくなるのが、
この荷重支持構造部である。それ故に、いかに断熱を行
いながら超電導磁石を支持し、液体ヘリウムの使用量を
減らしていくかが超電導磁石実用上の重要なポイントと
なる。
2. Description of the Related Art In a magnetically levitated train having a superconducting magnet, the superconducting magnet serves as a motor for running and stopping the train. Such a superconducting magnet is stored in a vacuum container in order to keep it in a cryogenic state, and a load supporting structure for supporting the superconducting magnet is required in the vacuum container. Liquid helium is generally used to keep the superconducting magnet in a cryogenic state. The temperature of liquid helium is approximately 4K, and the temperature of the external environment is 300K.
Then, a temperature difference of 296K occurs. The maximum amount of heat transfer between liquid helium temperature and room temperature is
This is the load supporting structure. Therefore, how to support the superconducting magnet while insulating it and to reduce the amount of liquid helium used is an important point for practical use of the superconducting magnet.

【0003】荷重支持構造部は、一般に熱伝導率が低
く、比強度の高い繊維強化プラスチック(以下、FRP
という。)を用いた断熱支持材によって構成される。こ
の種のFRPを用いた超電導磁石用断熱支持材の従来例
を図5に示す。
The load-bearing structure generally has a fiber reinforced plastic (hereinafter, FRP) having low thermal conductivity and high specific strength.
Say. ) Is used as a heat insulating support material. A conventional example of a heat insulating support material for a superconducting magnet using this type of FRP is shown in FIG.

【0004】同図において、断熱支持材は、断熱性をよ
くするため薄肉中空円筒形状となっている。断熱支持材
にかかる力は軸方向のものがほとんであり、中でも圧縮
方向の力がかかる場合が問題となる。断熱支持材の一例
では、軸方向と垂直方向の曲げも考慮し、円筒部端部は
肉厚を増やして補強を行っており、円筒部はフィラメン
トワインディング製法によるヘリカル巻で巻かれてい
る。FRPの繊維にはガラス強化繊維、カーボン繊維等
を使用するものが主であるが、より比強度が高く、断熱
性の高いアルミナ繊維を使用することもある。アルミナ
繊維は、ガラス繊維やカーボン繊維と異なり、荷重方向
に繊維を組むクロス巻を施すと、製作段階で繊維が摩擦
により切れる恐れがあるため、機械的強度は落ちるがフ
ィラメントワインディングにてヘリカル巻きを行ってい
る。
In the same figure, the heat insulating support material has a thin hollow cylindrical shape in order to improve heat insulating properties. Most of the force applied to the heat insulating support member is in the axial direction, and the problem is that the force in the compression direction is applied. In an example of the heat insulating support material, in consideration of bending in the direction perpendicular to the axial direction, the end portion of the cylindrical portion is increased in thickness for reinforcement, and the cylindrical portion is wound by helical winding by a filament winding method. Although glass reinforcing fibers, carbon fibers, and the like are mainly used as FRP fibers, alumina fibers having higher specific strength and high heat insulation properties may be used in some cases. Unlike glass fiber and carbon fiber, alumina fiber has a risk of being cut by friction during the production process when the fiber is cross-wound in the loading direction, so the mechanical strength will decrease, but helical winding will be performed by filament winding. Is going.

【0005】一般に薄肉円筒形状のものに圧縮荷重を加
えた場合、材料本来のもつ圧縮強さよりも低い荷重レベ
ルで曲げによる座屈破断を起こすことが多い。このた
め、材料の降伏点だけでなく、材料の座屈強さを十分考
慮した断熱支持材を検討する必要がある。従来の断熱支
持材の座屈時の座屈モードは1であり、振動の腹にあた
る部分は薄肉円筒中央部である。従って、薄肉円筒断熱
支持材が圧縮により座屈する箇所は、最も曲げによる変
位が大きい円筒中央部である。
Generally, when a compressive load is applied to a thin-walled cylindrical shape, buckling rupture due to bending often occurs at a load level lower than the original compressive strength of the material. For this reason, it is necessary to consider an adiabatic support material that takes into consideration not only the yield point of the material but also the buckling strength of the material. The buckling mode during buckling of the conventional heat insulating support is 1, and the antinode of vibration is the central portion of the thin-walled cylinder. Therefore, the portion where the thin-walled cylindrical heat insulating support member buckles due to compression is the central portion of the cylinder where the displacement due to bending is the largest.

【0006】[0006]

【発明が解決しようとする課題】断熱性を考慮し、薄肉
化してある中空円筒断熱支持材の破壊は座屈モード1の
座屈破壊であり、円筒部中央でちょうど座屈する。薄肉
円筒の座屈強度は、肉厚の2乗に比例する。よって、断
熱性を維持するために円筒部の薄肉化を進めると、座屈
強度が著しく低下する。また、座屈荷重は断熱支持材の
高さの2乗に反比例し、半径に対して高さの割合が大き
い円筒に関しては、座屈強度の低下が生じる。本発明の
目的は、良好な断熱性を維持しながら耐荷重性を強化し
た断熱支持材を提供することにある。
In consideration of the heat insulating property, the hollow cylindrical heat insulating support material which is made thin has a buckling mode 1 buckling failure, and it just buckles at the center of the cylindrical portion. The buckling strength of a thin cylinder is proportional to the square of the wall thickness. Therefore, if the thickness of the cylindrical portion is reduced in order to maintain the heat insulating property, the buckling strength is significantly reduced. Further, the buckling load is inversely proportional to the square of the height of the heat insulating support material, and the buckling strength of the cylinder having a large ratio of the height to the radius is reduced. An object of the present invention is to provide a heat insulating support material having enhanced load resistance while maintaining good heat insulating properties.

【0007】[0007]

【課題を解決するための手段および作用】上記目的を達
成するために本発明は、超電導磁石が格納される容器
と、この容器の外部に設けられる真空容器と、中央部の
肉厚を厚くした中空円筒状に繊維強化プラスチックで形
成され真空容器内で容器を保持する断熱支持部とを備え
たので、耐荷重性を強化することができる。
In order to achieve the above object, the present invention has a container in which a superconducting magnet is housed, a vacuum container provided outside the container, and a thicker central portion. Since the hollow cylindrical shape is provided with the fiber-reinforced plastic and is provided with the heat insulating support portion that holds the container in the vacuum container, the load resistance can be enhanced.

【0008】[0008]

【実施例】以下、本案の一実施例を図面を参照して説明
する。図1は本発明の断熱支持材の一実施例を示し、ア
ルミナ強化繊維FRPを用い、フィラメントワインディ
ング法により薄肉円筒部3に軸方向に対して+20°、
−20°でヘリカル巻き4を施したものである。円筒の
最内層及び最外層についてはフーブ巻き5が施されてい
る。また、端部1及び中央部2にフーブ巻きを行い、肉
厚を増し機械加工で表面を仕上げたものであり、肉厚増
加による断熱支持材表面積の増加は3%程度である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the heat insulating support material of the present invention, which uses alumina reinforced fiber FRP and is + 20 ° with respect to the axial direction in the thin cylindrical portion 3 by the filament winding method.
A helical winding 4 is applied at -20 °. Hoove winding 5 is applied to the innermost layer and the outermost layer of the cylinder. In addition, the end portion 1 and the central portion 2 are subjected to hoof winding to increase the wall thickness and finish the surface by machining, and the increase in the surface area of the heat insulating support material due to the increase in the wall thickness is about 3%.

【0009】FRPの積層法としては、荷重負荷方向に
繊維を組むクロス巻きが有効であるが、アルミナ繊維は
ガラス繊維や炭素繊維に比べて比強度が高くて熱伝導率
は低いという特徴をもつ一方で、繊維をクロス憎み合わ
せると製造過程において繊維同士の摩擦で繊維が切れる
おそれがあるため、フィラメントワインディングによる
ヘリカル巻きを行っている。
A cross-winding method in which fibers are assembled in the direction of load application is effective as a method for laminating FRP, but alumina fibers are characterized by higher specific strength and lower thermal conductivity than glass fibers and carbon fibers. On the other hand, if the fibers are cross-hatched with each other, the fibers may be cut due to friction between the fibers in the manufacturing process. Therefore, helical winding is performed by filament winding.

【0010】図5で示した従来の断熱支持材はフーブ巻
が端部のみ施されたものであって、圧縮荷重が負荷され
たときにほぼ座屈モード1で断熱支持材中央部で座屈破
壊を起こす。一方、実施例においては、圧縮荷重が負荷
されても座屈モード1の腹にあたる断熱支持材中央部の
肉厚が増やされているため、ここでの座屈は起こりにく
く、断熱支持材は座屈モード2の腹にあたる部分で座屈
破壊を起こす。熱伝導量が断熱支持材の高さに反比例す
る一方で、座屈強度は肉厚の2乗に比例するので、座屈
強度の増加は肉厚を増やすことによる熱損失の割合に対
して十分に大きな値を示す。このことは、断熱支持材の
寸法を縮小し、支持材の表面積及び断面積を調整するこ
とにより、良好な断熱性を維持しつつ、座屈強度を向上
させることを可能にする。
The conventional heat insulating support member shown in FIG. 5 is provided with hoof winding only at the end portions thereof, and when a compressive load is applied, it is buckled substantially in buckling mode 1 at the center portion of the heat insulating support member. Cause destruction. On the other hand, in the embodiment, since the thickness of the central portion of the heat insulating support member, which is the antinode of the buckling mode 1, is increased even if a compressive load is applied, buckling here hardly occurs, and the heat insulating support member is Buckling failure occurs in the area corresponding to the belly of buckling mode 2. While the amount of heat conduction is inversely proportional to the height of the heat insulating support material, the buckling strength is proportional to the square of the wall thickness, so the increase in buckling strength is sufficient for the rate of heat loss due to increasing the wall thickness. Shows a large value. This makes it possible to improve the buckling strength while maintaining good heat insulation by reducing the dimensions of the heat insulating support and adjusting the surface area and cross-sectional area of the support.

【0011】ここで、図2従来の断熱支持材と本実施例
における中央部の肉厚を増やした断熱支持材の座屈評価
を行った結果を示す。図2(a)が従来のもの、(b)
が本実施例のものであり、断熱支持材破断位置は、同図
(b)をみてもわかるように、モード1の腹に当たる中
央部からモード2の腹にあたる高さの1/4位置で座屈
を生じた。また、座屈強度については、従来の断熱支持
材と比べて約40%以上の向上が確認された。
Here, FIG. 2 shows the results of buckling evaluation of the conventional heat insulating support material and the heat insulating support material in which the thickness of the central portion in this embodiment is increased. FIG. 2 (a) is a conventional one, (b)
In this embodiment, the heat insulating support rupture position is, as can be seen from FIG. 2B, a seat position ¼ of the height corresponding to the mode 2 antinode and the center of the mode 1 antinode. It gave me a bow. Further, it was confirmed that the buckling strength was improved by about 40% or more as compared with the conventional heat insulating support material.

【0012】以上のように本実施例品が、従来品と比較
して、断熱性を維持しながら座屈強度が強化されている
ことがわかる。また、図3は本発明の第2の実施例を示
したものであり、断熱支持材中央に節板を挟んだもので
ある。断熱支持材を上下二つにわけ、間に節板9を挟み
込み、接着した構造をとっている。この節板9により振
動の腹の部分を完全拘束し、その結果座屈モードが第2
モードに移行する。上記した実施例に比して、より大き
い座屈強度、曲げ強度の実現が可能となり、座屈破壊強
度が安定し、40〜50%の座屈強度向上となった。
As described above, it is understood that the product of this example has enhanced buckling strength while maintaining its heat insulating property as compared with the conventional product. FIG. 3 shows a second embodiment of the present invention in which a node plate is sandwiched in the center of the heat insulating support material. The heat insulating support material is divided into upper and lower parts, and the knot board 9 is sandwiched between the heat insulating support materials and bonded. The node plate 9 completely restrains the antinode portion of the vibration, and as a result, the buckling mode becomes the second
Switch to mode. As compared with the above-mentioned examples, it is possible to realize higher buckling strength and bending strength, the buckling fracture strength is stabilized, and the buckling strength is improved by 40 to 50%.

【0013】次に、図4は本発明の第3の実施例を示し
たものであり、断熱支持材中央の内側に紐を放射状に張
ったものである。断熱支持材の中央部が振幅により外側
へ膨らむのを紐の張力によって防ぎ、その結果、円筒外
側方向の円筒中央部外径を増加させることなく座屈位置
を座屈第2モード座屈による位置に移動させることがで
き、座屈強度を向上させることが可能である。
Next, FIG. 4 shows a third embodiment of the present invention, in which a cord is radially stretched inside the center of the heat insulating support material. The tension of the string prevents the center portion of the heat insulating support material from bulging outward due to the amplitude, and as a result, the buckling position is determined by the buckling second mode buckling without increasing the outer diameter of the cylinder central portion in the cylinder outer direction. It is possible to improve the buckling strength.

【0014】[0014]

【発明の効果】以上のように本発明によれば、超電導磁
石が格納される容器と、この容器の外部に設けられる真
空容器と、中央部の肉厚を厚くした中空円筒状に繊維強
化プラスチックで形成され真空容器内で容器を保持する
断熱支持部とを備えたので、良好な断熱性を維持しなが
ら耐荷重性を強化することができる。
As described above, according to the present invention, a container in which a superconducting magnet is stored, a vacuum container provided outside the container, and a hollow cylindrical fiber-reinforced plastic having a thick central portion are thickened. Since it is provided with a heat insulating support portion formed in the vacuum container for holding the container in the vacuum container, the load resistance can be enhanced while maintaining good heat insulating property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の断熱支持装置の第1の実施例を説明す
るための図であり、(a)は断面図、(b)は要部拡大
図。
1A and 1B are views for explaining a first embodiment of a heat insulating support device of the present invention, in which FIG. 1A is a sectional view and FIG.

【図2】[図1]の断熱支持装置と従来のものとの座屈
破壊状態の比較説明図。
FIG. 2 is a comparative explanatory view of a buckling failure state between the heat insulating support device of FIG. 1 and a conventional device.

【図3】本発明の断熱支持装置の第2の実施例を説明す
るための図であり、(a)は断面図、(b)は要部拡大
図。
3A and 3B are views for explaining a second embodiment of the heat insulating support device of the present invention, FIG. 3A is a sectional view, and FIG.

【図4】本発明の断熱支持装置の第3の実施例を説明す
るための図。
FIG. 4 is a diagram for explaining a third embodiment of the heat insulating support device of the present invention.

【図5】従来の断熱支持装置を説明するための図であ
り、(a)は正面図、(b)は断面図、(c)は要部拡
大図。
5A and 5B are views for explaining a conventional heat insulating support device, in which FIG. 5A is a front view, FIG. 5B is a sectional view, and FIG.

【符号の説明】[Explanation of symbols]

1…端部、2…中央部、3,12,13…薄肉円筒部、
9…節板、10…端部、11…接着面、14…紐
1 ... End part, 2 ... Central part, 3, 12, 13 ... Thin-walled cylindrical part,
9 ... Knot board, 10 ... Edge, 11 ... Adhesive surface, 14 ... String

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 裕行 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Nakao No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導磁石が格納される容器と、この容
器の外部に設けられる真空容器と、中央部の肉厚を厚く
した中空円筒状に繊維強化プラスチックで形成され前記
真空容器内で前記容器を保持する断熱支持部とを有する
断熱支持装置。
1. A container in which a superconducting magnet is stored, a vacuum container provided outside the container, and a hollow cylindrical fiber reinforced plastic having a thickened central portion formed of fiber-reinforced plastic. And a heat insulating support unit for holding the heat insulating support unit.
【請求項2】 前記断熱支持部は、中央部が荷重支持方
向に対して垂直面で二つの円筒に分割され、この分割さ
れた円筒の間に節板を挟持し接着するようにしたことを
特徴とする請求項1記載の断熱支持装置。
2. The adiabatic support part is divided into two cylinders with a central part being a plane perpendicular to the load support direction, and a nodal plate is sandwiched and adhered between the divided cylinders. The heat insulating support device according to claim 1, wherein the heat insulating support device is a heat insulating support device.
【請求項3】 前記断熱支持部は、内側に放射状に張り
巡らせた紐の張力により中央部を内側から固定したこと
を特徴とする請求項1記載の断熱支持装置。
3. The heat insulating support device according to claim 1, wherein the heat insulating support portion has a central portion fixed from the inner side by a tension of a string stretched radially inward.
【請求項4】 前記繊維強化プラスチックは、アルミナ
繊維で成ることを特徴とする請求項1〜請求項3のいず
れかに記載の断熱支持装置。
4. The heat insulating support device according to claim 1, wherein the fiber reinforced plastic is made of alumina fiber.
JP6218504A 1994-09-13 1994-09-13 Heat insulation support device Pending JPH0882396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218504A JPH0882396A (en) 1994-09-13 1994-09-13 Heat insulation support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218504A JPH0882396A (en) 1994-09-13 1994-09-13 Heat insulation support device

Publications (1)

Publication Number Publication Date
JPH0882396A true JPH0882396A (en) 1996-03-26

Family

ID=16720969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218504A Pending JPH0882396A (en) 1994-09-13 1994-09-13 Heat insulation support device

Country Status (1)

Country Link
JP (1) JPH0882396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054924A (en) * 2015-09-09 2017-03-16 株式会社有沢製作所 Load support material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054924A (en) * 2015-09-09 2017-03-16 株式会社有沢製作所 Load support material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5542230A (en) Connecting rods
US6367225B1 (en) Filament wound structural columns for light poles
JPH0319140U (en)
US5462791A (en) Fiber-reinforced plastic material comprising stacked woven fabrics of differential weave in a plastic matrix
JPH0882396A (en) Heat insulation support device
US5683059A (en) Bobbin for superconducting coils
US4182500A (en) Optical waveguide shipping spool
JP2020122543A (en) High-pressure tank and its manufacturing method
JP2001037378A (en) Fishing rod
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JPS6299138A (en) Insulating tube manufactured in filament-winding method
JP3582602B2 (en) Cryogenic container
JPH0653036A (en) Thermal insulant for low temperature
JPH09102414A (en) Superconducting coil
JPS5973683A (en) Structure of plastic pipe
JPH0314579Y2 (en)
JPH0917627A (en) Bobbin for superconducting coil
JP2001061374A (en) Fishing rod
JPH057023A (en) Integrally molded heat insulating retainer
JPH0733073B2 (en) Fiber-reinforced composite pipe structure and manufacturing method thereof
JPH053428U (en) Damping beam
JP2000189005A (en) Fishing rod
JPH01253427A (en) Fiber reinforced plastic supporting material
JPH06310767A (en) Thermal insulation supporting structure for cryogen container
JPH04107333A (en) Rubber bush