JPH0882259A - Intake manifold for multiple cylinder engine - Google Patents

Intake manifold for multiple cylinder engine

Info

Publication number
JPH0882259A
JPH0882259A JP21841494A JP21841494A JPH0882259A JP H0882259 A JPH0882259 A JP H0882259A JP 21841494 A JP21841494 A JP 21841494A JP 21841494 A JP21841494 A JP 21841494A JP H0882259 A JPH0882259 A JP H0882259A
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
branch pipe
distribution passage
cylinder engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21841494A
Other languages
Japanese (ja)
Other versions
JP3143687B2 (en
Inventor
Tamotsu Ohashi
保 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21841494A priority Critical patent/JP3143687B2/en
Publication of JPH0882259A publication Critical patent/JPH0882259A/en
Application granted granted Critical
Publication of JP3143687B2 publication Critical patent/JP3143687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To supply an intake air also to a combustion chamber on the deep side of a multiple cylinder engine at the same speed as an inlet-side combustion chamber. CONSTITUTION: In an intake manifold for multiple cylinder engine having a cylindrical intake air distributing passage 31 extended in the juxtaposing direction of a four cylinder engine, and four branched pipes 32a, 32b, 32c, 32d successively derived in the longitudinal direction of the cylindrical intake air distributing passage 31, since the cylindrical intake air distributing passage 31 is formed into a tapered conical form extending from at least the first branched pipe 23a arrangement position on the inlet side to the deepest branched pipe 32d arrangement position, the speed of the intake air flowing into a combustion chamber on the deep side of the multiple cylinder engine can be set to about the same degree as the inflow speed of an inlet-side combustion chamber, and the combustion in the deep-side combustion chamber can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスエンジン、ガソリン
エンジンなどに使用される吸気マニホールドに関し、よ
り詳しくは多気筒エンジンに使用される吸気マニホルド
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake manifold used in a gas engine, a gasoline engine and the like, and more particularly to an intake manifold used in a multi-cylinder engine.

【0002】[0002]

【従来の技術】吸気マニホールドはエアクリーナ、気化
器(あるいはミキサ)等を通過した混合気を多気筒エン
ジンの各シリンダに分配する枝管をもった吸気管であ
り、従来から各種形状のものが提案されている。吸気マ
ニホールドに要求される機能は、 エンジンの全回転範囲において混合気の充填効率が高
い。 各シリンダへ均一に混合気を分配する。 断面積の急変や急激な曲がりがない。 などであり、気化器からシリンダまでの長さ及び形状が
各枝管において同一であるほど、各シリンダに分配され
る混合気を均一なものにすることができる。したがっ
て、例えば4気筒のエンジンであると、エンジンの中央
部に気化器を配設し、左右2つの気筒にそれぞれ同じ吸
気管形状で混合気を供給する構成が理想的である。
2. Description of the Related Art An intake manifold is an intake pipe having a branch pipe for distributing an air-fuel mixture that has passed through an air cleaner, a carburetor (or a mixer), etc., to each cylinder of a multi-cylinder engine, and various shapes have been conventionally proposed. Has been done. The function required of the intake manifold is high filling efficiency of the air-fuel mixture in the entire engine rotation range. Distribute the air-fuel mixture evenly to each cylinder. There are no sudden changes in cross-sectional area or sharp bends. As the length and shape from the carburetor to the cylinder are the same in each branch pipe, the air-fuel mixture distributed to each cylinder can be made more uniform. Therefore, for example, in the case of a four-cylinder engine, it is ideal that the carburetor is arranged in the center of the engine and that the air-fuel mixture is supplied to the left and right two cylinders in the same intake pipe shape.

【0003】しかし、エンジンの中央部に気化器を配設
することが構成上難しい場合は、図6に示すように、4
気筒エンジン55の気筒並設方向(図において矢印51
で示す)に延びる混合気分配通路52を設け、その混合
気分配通路52から各シリンダヘッドの吸気ポートに連
通する枝管53,54,55,56を導出させた構成が
一般的に採用される。この場合、混合気分配通路52は
最大流量に応じた断面積を有する筒状の吸気通路であ
り、長手方向に等間隔で各吸気ポートへ連通する枝管5
3,54,55,56を分岐してある。また、混合気分
配通路52の内径は入口側最初の枝管53の配設位置か
ら一番奥の枝管56の配設位置まで一定に形成してあ
る。なお、図6において符号50は吸気マニホールドを
示し、符号55は排気マニホールドを示している。
However, when it is difficult to dispose the carburetor at the center of the engine because of the structure, as shown in FIG.
The direction in which the cylinders of the cylinder engine 55 are arranged side by side
(Shown in FIG. 4) is provided, and the branch pipes 53, 54, 55, 56 that communicate with the intake ports of the cylinder heads are led out from the mixture distribution passage 52. . In this case, the air-fuel mixture distribution passage 52 is a cylindrical intake passage having a cross-sectional area corresponding to the maximum flow rate, and the branch pipe 5 communicating with each intake port at equal intervals in the longitudinal direction.
3, 54, 55, 56 are branched. Further, the inner diameter of the air-fuel mixture distribution passage 52 is formed so as to be constant from the position where the first branch pipe 53 on the inlet side is arranged to the position where the innermost branch pipe 56 is arranged. In FIG. 6, reference numeral 50 indicates an intake manifold and reference numeral 55 indicates an exhaust manifold.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の構成であると、吸気マニホールド50の入口側に近
い気筒53,54への吸入に比べて、奥側の気筒55,
56への吸入は吸気通路が長くなるため、吸気抵抗が増
加して各気筒のシリンダへの流入速度が低下する。流速
が低下すると、燃焼室で混合気を均一に分布させること
が難しくなり、燃焼室内で混合気が偏在することが起こ
る。その結果として着火不良、NOxの増加を招いてし
まうという問題が発生する。
However, with the above-mentioned conventional configuration, the cylinders 55, 54 on the back side are compared to the cylinders 53, 54 closer to the inlet side of the intake manifold 50.
The intake passage for the intake to 56 becomes long, so the intake resistance increases and the inflow speed of each cylinder into the cylinder decreases. When the flow velocity decreases, it becomes difficult to evenly distribute the air-fuel mixture in the combustion chamber, and the air-fuel mixture is unevenly distributed in the combustion chamber. As a result, problems such as poor ignition and increased NOx occur.

【0005】[0005]

【発明の目的】本発明は上記の問題点に鑑みてなされた
ものであり、多気筒エンジンの奥側の燃焼室にも入口側
の燃焼室と同じ速度で吸気を供給できる多気筒エンジン
の吸気マニホールドを提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and intake air of a multi-cylinder engine capable of supplying intake air to a combustion chamber on the back side of the multi-cylinder engine at the same speed as the combustion chamber on the inlet side. Intended to provide a manifold.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1の吸気マニホルドは、例えば、図1乃至図
5に基づいて説明すれば、複数の気筒の並設方向に延び
る筒状吸気分配通路31を設け、その筒状吸気分配通路
31の長手方向に前記気筒数に対応した数の枝管32を
順次導出するとともに、枝管32を各シリンダヘッド4
の吸気ポート10に連通させた多気筒エンジンの吸気マ
ニホールドにおいて、筒状吸気分配通路31を、少なく
とも入口側最初の枝管32a配設位置から一番奥の枝管
32d配設位置にわたって、先細形状に形成したことを
特徴としている。なお、先細形状にする場合はなだらか
に連続して筒状吸気分配通路31の断面積を減らすよう
に構成することが好ましい。そのような筒状吸気分配通
路31の形状としては円錐状、略角錐状などが例示でき
る。
An intake manifold according to a first aspect of the present invention for achieving the above object is, for example, a tubular shape extending in a direction in which a plurality of cylinders are arranged in parallel, as described with reference to FIGS. 1 to 5. An intake air distribution passage 31 is provided, and a number of branch pipes 32 corresponding to the number of cylinders are sequentially led out in the longitudinal direction of the cylindrical intake distribution passage 31.
In the intake manifold of a multi-cylinder engine that communicates with the intake port 10, the cylindrical intake distribution passage 31 has a tapered shape from at least the first branch pipe 32a disposed position on the inlet side to the innermost branch pipe 32d disposed position. It is characterized by being formed in. In the case of the tapered shape, it is preferable that the cross-sectional area of the cylindrical intake distribution passage 31 is gradually reduced to be reduced. Examples of the shape of such a cylindrical intake distribution passage 31 include a conical shape and a substantially pyramidal shape.

【0007】なお、筒状吸気分配通路31に順次導出さ
れる枝管32の断面積も入口側最初の枝管32aから一
番奥の枝管32dにかけて、徐々に小さくすることもで
きる。さらに、筒状吸気分配通路31における各枝管3
2の導出部において、各枝管32が導出される位置での
筒状吸気分配通路31の断面積と各枝管32の断面積を
ほぼ同じ程度にするとともに、筒状吸気分配通路31で
の断面積の減少割合と、各枝管32での断面積の減少割
合とをほぼ同一割合で吸気ポート10まで連通させるこ
ともできる。
The cross-sectional area of the branch pipe 32 sequentially led out to the cylindrical intake distribution passage 31 can be gradually reduced from the first branch pipe 32a on the inlet side to the innermost branch pipe 32d. Further, each branch pipe 3 in the tubular intake distribution passage 31
In the lead-out part of No. 2, the cross-sectional area of the tubular intake distribution passage 31 and the cross-sectional area of each branch pipe 32 at the position where each branch pipe 32 is led out are made approximately the same, and The reduction rate of the cross-sectional area and the reduction rate of the cross-sectional area of each branch pipe 32 can be communicated to the intake port 10 at substantially the same rate.

【0008】[0008]

【作用】請求項1の吸気マニホルドであれば、奥側に行
くほど筒状吸気分配通路31が先細形状になっているた
めに、奥に導出された枝管32c,32dを流れる吸気
の速度が速くなり、その枝管32c,32dに対応する
燃焼室13に流入する吸気の速度が大きくなる。これに
より、奥側の気筒において、吸気通路が長くなることに
よる吸気抵抗の増加による速度の低下を相殺して、入口
側の気筒の流入速度とほぼ同一の流入速度を達成するこ
とができる。したがって、奥側の枝管32c,32dに
連通する燃焼室13においても入口側の枝管32a,3
2bに連通する燃焼室13と同じように、燃焼室内で吸
気を均一に分布させることができ、燃焼を安定化させる
ことができる。また、吸気がガソリン或いはガスと外気
との混合気である場合には、奥側の燃焼室13と入口側
の燃焼室13とにおいて、ガソリン或いはガスと外気と
の混合状態の差を小さくすることができ、従来の構成に
比べて奥側の気筒において点火プラグによる着火を確実
にでき、NOxを減少させることができる。
In the intake manifold according to the first aspect of the present invention, since the tubular intake distribution passage 31 is tapered toward the inner side, the velocity of the intake air flowing through the branch pipes 32c and 32d led out to the inner side is increased. The speed increases, and the speed of intake air flowing into the combustion chamber 13 corresponding to the branch pipes 32c and 32d increases. As a result, in the cylinder on the back side, a decrease in speed due to an increase in intake resistance due to a longer intake passage can be offset, and an inflow speed substantially equal to the inflow speed of the cylinder on the inlet side can be achieved. Therefore, even in the combustion chamber 13 communicating with the branch pipes 32c, 32d on the inner side, the branch pipes 32a, 3 on the inlet side are also provided.
Like the combustion chamber 13 communicating with 2b, intake air can be uniformly distributed in the combustion chamber, and combustion can be stabilized. Further, when the intake air is a mixture of gasoline or gas and the outside air, the difference between the mixture state of the gasoline or gas and the outside air in the combustion chamber 13 on the back side and the combustion chamber 13 on the inlet side should be reduced. As compared with the conventional configuration, ignition can be reliably performed by the spark plug in the cylinder on the back side, and NOx can be reduced.

【0009】さらに、ガソリンエンジンの場合はガソリ
ンは気化器だけで気化するわけではなく筒状吸気分配通
路31及び枝管32内でもガソリンの気化を助けている
ので、吸気ポート10への流入速度をほぼ均一化にする
ことによりガソリンの気化状態もほぼ均一化することが
でき、奥側の燃焼室13での燃焼を安定化させることが
できる。なお、なだらかに連続して筒状吸気分配通路3
1の断面積を減らすように構成することにより、筒状吸
気分配通路31内の吸気抵抗を減らし、乱流の発生を防
ぐことができる。
Further, in the case of a gasoline engine, gasoline is not vaporized only by the carburetor, and the vaporization of gasoline is also assisted in the cylindrical intake distribution passage 31 and the branch pipe 32, so that the inflow speed to the intake port 10 is increased. By making them substantially uniform, the vaporized state of gasoline can also be made substantially uniform, and the combustion in the combustion chamber 13 on the back side can be stabilized. It should be noted that the cylindrical intake distribution passage 3 is smoothly and continuously formed.
By configuring so as to reduce the cross-sectional area of 1, it is possible to reduce the intake resistance in the cylindrical intake distribution passage 31 and prevent the occurrence of turbulence.

【0010】また、筒状吸気分配通路31に順次、導出
される枝管32の断面積も入口側最初の枝管32aから
一番奥の枝管32dにかけて、徐々に小さくすることに
より、先細形の吸気管を実質的にシリンダヘッド4の吸
気ポート10近くにまで延ばすことができ、断面積の減
少割合を緩やかにすることができる。また、筒状吸気分
配通路31における各枝管32の導出部において、各枝
管32が導出される位置での筒状吸気分配通路31の断
面積と各枝管32の断面積をほぼ同じ程度にするととも
に、筒状吸気分配通路31での断面積の減少割合と、各
枝管32での断面積の減少割合とをほぼ同一割合で吸気
ポート10まで連通させることにより、断面積が局部的
に変わることをなくして吸気抵抗を低減させることがで
きる。
Further, the cross-sectional area of the branch pipe 32 that is sequentially drawn out into the cylindrical intake distribution passage 31 is gradually reduced from the first branch pipe 32a on the inlet side to the innermost branch pipe 32d, thereby forming a tapered shape. The intake pipe can be extended substantially to the vicinity of the intake port 10 of the cylinder head 4, and the reduction rate of the cross-sectional area can be moderated. Further, in the lead-out portion of each branch pipe 32 in the tubular intake distribution passage 31, the cross-sectional area of the tubular intake distribution passage 31 and the cross-sectional area of each branch pipe 32 at the position where each branch pipe 32 is led out are approximately the same. In addition, the reduction rate of the cross-sectional area in the tubular intake distribution passage 31 and the reduction rate of the cross-sectional area in each branch pipe 32 are communicated to the intake port 10 at substantially the same rate, so that the cross-sectional area is locally reduced. The intake resistance can be reduced without changing to.

【0011】[0011]

【実施例】以下、実施例を示す添付図面によって詳細に
説明する。図5はガスエンジンに本実施例の吸気マニホ
ールドを適用した場合の概略構成図である。図5におい
て、このガスエンジン1はクランクケース2の上方にシ
リンダブロック3を一体に形成するとともに、このシリ
ンダブロック3の上面にシリンダヘッド4及びヘッドカ
バー5を順に載置固定して、エンジン本体を形成してあ
る。シリンダブロック3内にはシリンダ6にピストン7
を摺動自在に挿嵌し、このピストン7をコンロッド8を
介してクランク軸9に連動連結して構成してある。シリ
ンダヘッド4には吸気ポート10と排気ポート11が形
成され、吸気ポート10には本実施例に係る吸気マニホ
ールド30の枝管32が連通してある。また、シリンダ
ヘッド4には吸気ポート10から供給された希薄混合気
が入る燃焼室13が洞設してある。なお、吸気マニホー
ルド30の吸気側入口には、エアクリーナ21によって
粉塵が除かれた吸気をガスと混合するミキサ22が吸気
管23を介して接続してある。
Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. FIG. 5 is a schematic configuration diagram when the intake manifold of this embodiment is applied to a gas engine. In FIG. 5, the gas engine 1 has a cylinder block 3 integrally formed above a crankcase 2, and a cylinder head 4 and a head cover 5 are sequentially mounted and fixed on the upper surface of the cylinder block 3 to form an engine body. I am doing it. Inside the cylinder block 3, there is a cylinder 6 and a piston 7.
Is slidably inserted and the piston 7 is interlockingly connected to a crankshaft 9 via a connecting rod 8. An intake port 10 and an exhaust port 11 are formed in the cylinder head 4, and a branch pipe 32 of an intake manifold 30 according to this embodiment is connected to the intake port 10. Further, the cylinder head 4 is provided with a combustion chamber 13 into which the lean air-fuel mixture supplied from the intake port 10 enters. A mixer 22 that mixes the intake air from which dust has been removed by the air cleaner 21 with the gas is connected to the intake side inlet of the intake manifold 30 via an intake pipe 23.

【0012】図1は本発明の吸気マニホールドの一実施
例を示す平面図、図2は図1のE−E線矢視図、図3
(a)(b)(c)はそれぞれ図1のA−A線,B−B
線,C−C線拡大断面図、図4は図1のD−D線拡大断
面図である。本実施例に係る吸気マニホールド30は、
図1から図4に示すように、吸気とガスの混合気が通過
する筒状吸気分配通路31を有しており、この筒状吸気
分配通路31は入口側33の内径が大きく、奥側に行く
にしたがって徐々に内径が小さくなる、先細形状(円錐
形)となっている。図3で説明すれば、D1>D2>D
3である。また、筒状吸気分配通路31には入口側から
一定の間隔で枝管32a,32b,32c,32dが導
出され、各枝管32はシリンダヘッド4の吸気ポート1
0と連通している。筒状吸気分配通路31は各エンジン
の吸気ポート10面に対して、入口側が距離が長く、奥
側が短いように傾いてエンジンに固定される。したがっ
て、筒状吸気分配通路31の入口側の枝管32aの長さ
は奥側の枝管32dよりも長くなっている。
FIG. 1 is a plan view showing an embodiment of the intake manifold of the present invention, FIG. 2 is a view taken along the line EE of FIG. 1, and FIG.
(A), (b) and (c) are lines AA and BB in FIG. 1, respectively.
Line, CC line enlarged sectional view, FIG. 4 is a DD line enlarged sectional view of FIG. The intake manifold 30 according to the present embodiment is
As shown in FIGS. 1 to 4, there is a cylindrical intake distribution passage 31 through which a mixture of intake air and gas passes, and this cylindrical intake distribution passage 31 has a large inner diameter on the inlet side 33 and a deep inner side. It has a tapered shape (conical shape) whose inner diameter gradually decreases as it goes. Referring to FIG. 3, D1>D2> D
It is 3. Further, branch pipes 32a, 32b, 32c, 32d are led out from the inlet side to the cylindrical intake distribution passage 31 at regular intervals, and each branch pipe 32 is connected to the intake port 1 of the cylinder head 4.
It communicates with 0. The cylindrical intake distribution passage 31 is inclined and fixed to the engine so that the inlet side has a long distance and the rear side has a short distance with respect to the surface of the intake port 10 of each engine. Therefore, the length of the branch pipe 32a on the inlet side of the cylindrical intake distribution passage 31 is longer than that of the branch pipe 32d on the inner side.

【0013】枝管32の断面形状は図4に示すように、
角が丸められた矩形状であり、その断面面積は図3に示
すように筒状吸気分配通路31の接続部から徐々に減少
するように構成し、図4に示すように各吸気ポート10
に接続する前の所定位置においては、入口側の枝管32
a、奥側の枝管32dに限らず、一定面積になるように
構成してある。また、筒状吸気分配通路31と各枝管3
2との接続部は吸気抵抗が大きくならないように十分に
滑らかに形成されている。なお、図1に示すように吸気
マニホールド30の入口側近くには、吸気マニホールド
取付用フランジ35が設けられているとともに、シリン
ダヘッド4の吸気ポート10に対応する各枝管32の取
付周辺部にも取付用フランジ36が設けられている。
The sectional shape of the branch pipe 32 is as shown in FIG.
It has a rectangular shape with rounded corners, and its cross-sectional area is configured to gradually decrease from the connecting portion of the cylindrical intake distribution passage 31 as shown in FIG. 3, and each intake port 10 as shown in FIG.
At a predetermined position before being connected to the branch pipe 32 on the inlet side
Not limited to the a and the branch pipes 32d on the back side, they are configured to have a constant area. In addition, the cylindrical intake distribution passage 31 and each branch pipe 3
The connection portion with 2 is formed sufficiently smooth so that the intake resistance does not increase. As shown in FIG. 1, an intake manifold mounting flange 35 is provided near the inlet side of the intake manifold 30, and at the mounting peripheral portion of each branch pipe 32 corresponding to the intake port 10 of the cylinder head 4. Is also provided with a mounting flange 36.

【0014】上記構成の吸気マニホールドの作用につい
て説明する。吸気ポート10の吸気弁(図5において図
示せず)が開かれ、ピストン7が下降することにより、
燃焼室13および吸気ポート10が負圧になり、筒状吸
気分配通路31の混合気が各枝管32および各吸気ポー
ト10を経て燃焼室13内に吸引される。ここで、筒状
吸気分配通路31の奥側の内径が入口側の内径より連続
的に徐々に小さくなっている先細形状となっているの
で、吸気通路が同じ長さであれば、奥側位置の筒状吸気
分配通路31の流速は入口側位置の流速に比べて速くな
る。しかし、奥側位置においては、吸気通路が長いこと
による吸気抵抗の増加分があるので、その抵抗の増加分
が速度の上昇を相殺して、奥側に対応する燃焼室におい
ても、入口側に対応する燃焼室の流入速度とほぼ同一の
流入速度を達成することができる。このように奥側の気
筒においても入口側の気筒と同一の流入速度を得ること
ができることにより、奥側の燃焼室において燃料の分布
が均一化され、希薄燃焼を実現することができるとも
に、着火ミスの防止、NOxの減少を達成することがで
きる。
The operation of the intake manifold having the above structure will be described. The intake valve (not shown in FIG. 5) of the intake port 10 is opened and the piston 7 is lowered,
The combustion chamber 13 and the intake port 10 have a negative pressure, and the air-fuel mixture in the cylindrical intake distribution passage 31 is sucked into the combustion chamber 13 through each branch pipe 32 and each intake port 10. Here, since the inner diameter of the cylindrical intake distribution passage 31 on the back side is tapered gradually smaller than the inner diameter on the inlet side, if the intake passages have the same length, the inner position The flow velocity in the cylindrical intake distribution passage 31 is faster than the flow velocity at the inlet side position. However, at the back position, there is an increase in the intake resistance due to the long intake passage, so the increase in the resistance offsets the increase in speed, and even in the combustion chamber corresponding to the back side, It is possible to achieve an inflow velocity that is approximately the same as the inflow velocity of the corresponding combustion chamber. Since the same inflow velocity can be obtained in the cylinder on the back side as in the cylinder on the inlet side, the fuel distribution is made uniform in the combustion chamber on the back side, lean combustion can be realized, and ignition is performed. It is possible to prevent mistakes and reduce NOx.

【0015】この発明は上記実施例に限定されるもので
はなく、この発明の要旨を変更しない範囲内において種
々の設計変更を施すことが可能である。以下、そのよう
な実施例を説明する。 (1)前記実施例ではガスエンジン1を一例に取った
が、ガスエンジン以外にもガソリンエンジンなどの混合
気を用いるエンジンにおいても同様に適用できる。ま
た、混合気を用いない吸気のみを行うディーゼルエンジ
ンにおいても各燃焼室に流入する吸気の速度を一定にす
ることは、燃料噴射ポンプから噴射される燃料の分布の
均一性を高める点において重要であるので、同様に適用
することにより奥側の気筒での燃焼を安定化する効果を
得ることができる。 (2)また、前記実施例では、筒状吸気分配通路31が
円錐形であるものを例示したが、その他にも略角錐形な
どを採用できる。さらに、筒状吸気分配通路31は直線
状のものに限定されず、曲がった曲線状のものでも採用
できる。
The present invention is not limited to the above embodiments, and various design changes can be made within the scope of the present invention. Hereinafter, such an embodiment will be described. (1) In the above-described embodiment, the gas engine 1 is taken as an example, but the present invention can be similarly applied to an engine using an air-fuel mixture such as a gasoline engine other than the gas engine. Even in a diesel engine that does not use air-fuel mixture, it is important to make the speed of the intake air flowing into each combustion chamber constant in order to improve the uniformity of the distribution of fuel injected from the fuel injection pump. Therefore, by applying the same method, it is possible to obtain the effect of stabilizing the combustion in the cylinder on the back side. (2) In the above embodiment, the cylindrical intake distribution passage 31 has a conical shape, but other shapes such as a substantially pyramidal shape can be adopted. Furthermore, the tubular intake air distribution passage 31 is not limited to a linear one, but a curved curved one can be adopted.

【0016】[0016]

【発明の効果】以上のように請求項1の発明によれば、
筒状吸気分配通路を少なくとも入口側最初の枝管配設位
置から一番奥の枝管配設位置にわたって先細形状にする
ことにより、多気筒エンジンの各シリンダに流入する吸
気の速度をほぼ一定にすることができ、奥側の燃焼室に
おいて燃焼を安定化することができるという特有の効果
を奏する。
As described above, according to the invention of claim 1,
By making the cylindrical intake distribution passage at least from the first branch pipe arranging position on the inlet side to the innermost branch pipe arranging position, the speed of the intake air flowing into each cylinder of the multi-cylinder engine is made substantially constant. Therefore, there is a unique effect that the combustion can be stabilized in the combustion chamber on the back side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸気マニホールドの一実施例を示す平
面図である。
FIG. 1 is a plan view showing an embodiment of an intake manifold of the present invention.

【図2】図1におけるE−E線矢視図である。FIG. 2 is a view taken along the line EE in FIG.

【図3】(a)(b)(c)はそれぞれ図1のA−A
線,B−B線,C−C線拡大断面図である。
3 (a), (b), and (c) are AA of FIG. 1, respectively.
It is a line, a BB line, and a CC line expanded sectional view.

【図4】図1のD−D線拡大断面図である。FIG. 4 is an enlarged cross-sectional view taken along line DD of FIG.

【図5】ガスエンジンに本実施例の吸気マニホールドを
適用した場合の概略構成図である。
FIG. 5 is a schematic configuration diagram when the intake manifold of the present embodiment is applied to a gas engine.

【図6】従来の吸気マニホールドの構成を示すエンジン
の概略図である。
FIG. 6 is a schematic diagram of an engine showing a configuration of a conventional intake manifold.

【符号の説明】[Explanation of symbols]

4…シリンダヘッド、10…吸気ポート、31…筒状吸
気分配通路、32a,32b,32c,32d…枝管。
4 ... Cylinder head, 10 ... Intake port, 31 ... Cylindrical intake distribution passage, 32a, 32b, 32c, 32d ... Branch pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の気筒の並設方向に延びる筒状吸気
分配通路(31)を設け、その筒状吸気分配通路(3
1)の長手方向に前記気筒数に対応した数の枝管(32
a,32b,32c,32d)を順次導出するととも
に、各枝管(32a,32b,32c,32d)を各シ
リンダヘッド(4)の吸気ポート(10)に連通させた
多気筒エンジンの吸気マニホールドにおいて、筒状吸気
分配通路(31)を、少なくとも入口側最初の枝管(3
2a)配設位置から一番奥の枝管(32d)配設位置に
わたって先細形状に形成したことを特徴とする多気筒エ
ンジンの吸気マニホールド。
1. A cylindrical intake distribution passage (31) extending in a direction in which a plurality of cylinders are arranged in parallel, and the cylindrical intake distribution passage (3).
1) In the longitudinal direction, the number of branch pipes (32
a, 32b, 32c, 32d) are sequentially derived, and each branch pipe (32a, 32b, 32c, 32d) is connected to the intake port (10) of each cylinder head (4) in an intake manifold of a multi-cylinder engine. , The tubular intake distribution passage (31) at least on the inlet side first branch pipe (3
2a) An intake manifold for a multi-cylinder engine, wherein the intake manifold is formed in a tapered shape from the disposition position to the disposition position of the innermost branch pipe (32d).
JP21841494A 1994-09-13 1994-09-13 Multi-cylinder engine intake manifold Expired - Fee Related JP3143687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21841494A JP3143687B2 (en) 1994-09-13 1994-09-13 Multi-cylinder engine intake manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21841494A JP3143687B2 (en) 1994-09-13 1994-09-13 Multi-cylinder engine intake manifold

Publications (2)

Publication Number Publication Date
JPH0882259A true JPH0882259A (en) 1996-03-26
JP3143687B2 JP3143687B2 (en) 2001-03-07

Family

ID=16719545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21841494A Expired - Fee Related JP3143687B2 (en) 1994-09-13 1994-09-13 Multi-cylinder engine intake manifold

Country Status (1)

Country Link
JP (1) JP3143687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198510A1 (en) * 2017-04-25 2018-11-01 アイシン精機株式会社 Air intake device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198510A1 (en) * 2017-04-25 2018-11-01 アイシン精機株式会社 Air intake device
US11053897B2 (en) 2017-04-25 2021-07-06 Aisin Seiki Kabushiki Kaisha Air intake apparatus

Also Published As

Publication number Publication date
JP3143687B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US7296563B2 (en) Internal combustion engine intake device
JPH04128567A (en) Intake device for engine
JPS6215490Y2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JP3143687B2 (en) Multi-cylinder engine intake manifold
EP1031714A2 (en) Distribution reservoir for an internal combustion engine
JP2001132549A (en) Fuel mixing device for gas engine
JPH022934Y2 (en)
GB2087479A (en) Ic engine mixture intake system
JP2861496B2 (en) Intake device for double intake valve type internal combustion engine
JPH03260367A (en) Intake device of engine
JPS5813084Y2 (en) Intake system for multi-cylinder internal combustion engine
KR200152915Y1 (en) Intake device structure for a car
JP2510100Y2 (en) Internal combustion engine intake system
JPH10252577A (en) Egr distributing device of internal combustion engine
JPH0130607Y2 (en)
KR100365112B1 (en) Independent surge tank for each of cylinders of engine
JPH11182353A (en) Fuel supply structure of fuel injection type internal combustion engine
JPH0861190A (en) Fuel injection type engine
JP2516004Y2 (en) Intake distribution device for internal combustion engine
JPS595770B2 (en) internal combustion engine
JPS60135663A (en) Engine equipped with electronic fuel injection device
JP2019143518A (en) Intake structure
JPS6145046B2 (en)
JP2001182643A (en) Intake passage structure of multicylinder engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130105

LAPS Cancellation because of no payment of annual fees