JP2001182643A - Intake passage structure of multicylinder engine - Google Patents

Intake passage structure of multicylinder engine

Info

Publication number
JP2001182643A
JP2001182643A JP36447399A JP36447399A JP2001182643A JP 2001182643 A JP2001182643 A JP 2001182643A JP 36447399 A JP36447399 A JP 36447399A JP 36447399 A JP36447399 A JP 36447399A JP 2001182643 A JP2001182643 A JP 2001182643A
Authority
JP
Japan
Prior art keywords
intake passage
intake
fuel
cylinder
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36447399A
Other languages
Japanese (ja)
Inventor
Takanobu Ichihara
隆信 市原
Masami Nagano
正美 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36447399A priority Critical patent/JP2001182643A/en
Publication of JP2001182643A publication Critical patent/JP2001182643A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an instake air passage structure capable of almost uniformly distributing fuel to respective cylinder and capable of preventing a difference in the air-fuel ratio with every cylinder. SOLUTION: A single fuel injection valve 5 capable of injecting fuel in at least three or more directions branches off on the downstream side of an installed intake air gathering part to be respectively connected to at least three or more cylinders with every cylinder, and in intake air passages 1 to 3 for supplying an air-fuel mixture of intake air and the fuel to the respective cylinders, communicating tubes 4 capable of mutually flowing the air-fuel mixture are arranged between the intake air passages 1, 3 arranged in a position where the other intake air passages do not exist on both next sides and the other intake air passage exists on one side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多気筒内燃機関の
吸気通路構造に係り、特に内燃機関の各気筒に向けて、
一本の燃料噴射弁から燃料を供給する燃料供給装置を備
えた内燃機関の吸気通路構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake passage structure for a multi-cylinder internal combustion engine, and more particularly, to each cylinder of the internal combustion engine.
The present invention relates to an intake passage structure of an internal combustion engine provided with a fuel supply device that supplies fuel from one fuel injection valve.

【0002】[0002]

【従来の技術】多気筒内燃機関の燃料噴射方式として
は、各気筒の吸気通路下流に、各気筒毎に設けられた燃
料噴射弁により燃料を供給する方式と、吸気通路の集合
部に設けられた一本の燃料噴射弁より各気筒の吸気通路
に燃料を供給する方式が有り、このうち一本の燃料噴射
弁により燃料を供給する方式は安価に燃料を供給する方
式として採用されている。
2. Description of the Related Art A fuel injection system for a multi-cylinder internal combustion engine includes a system in which fuel is supplied downstream of an intake passage of each cylinder by a fuel injection valve provided for each cylinder, and a system in which a fuel injection valve is provided in an aggregate portion of the intake passage. There is a method of supplying fuel from a single fuel injection valve to the intake passage of each cylinder. Of these, a method of supplying fuel with one fuel injection valve is adopted as a method of supplying fuel at low cost.

【0003】これらにおける吸気通路の構造としては、
例えば特開平10−274136号公報に開示されてい
るように、各気筒に接続される吸気通路が一列に隣接す
るように配置される場合が一般的である。
[0003] In these, the structure of the intake passage is as follows.
For example, as disclosed in Japanese Patent Application Laid-Open No. 10-274136, it is general that the intake passages connected to the cylinders are arranged so as to be adjacent to each other in a line.

【0004】[0004]

【発明が解決しようとする課題】一本の燃料噴射弁より
各気筒に燃料を噴射する方式において、各気筒の吸気通
路に噴射された燃料のうち、全てが直ちに吸気ポートに
達するのでなく、微細な燃料粒子が吸気通路内に浮遊し
ている。
In a system in which fuel is injected into each cylinder from a single fuel injection valve, not all of the fuel injected into the intake passage of each cylinder reaches the intake port immediately, Fuel particles are floating in the intake passage.

【0005】燃料噴射弁の下流で分岐した吸気通路内に
存在する浮遊燃料のうち分岐部付近にあるものは、隣接
する吸気通路の圧力が気筒の吸気動作により低下したと
きに生ずる空気流により、噴射された吸気通路から、上
記隣接した吸気通路に向かって移動することになる。
[0005] Of the floating fuel present in the intake passage branched downstream of the fuel injection valve, those in the vicinity of the branch portion are caused by the air flow generated when the pressure of the adjacent intake passage is reduced by the intake operation of the cylinder. The air moves from the injected intake passage toward the adjacent intake passage.

【0006】従来の吸気通路構造では、例えば3気筒の
4サイクル内燃機関においては、集合部より分岐した3
つの吸気通路が、図11に示すように隣接している場
合、外側に位置する吸気通路1、3については、それに
接続される気筒が吸気行程となった時、吸気通路圧力の
低下に伴う空気流の発生により隣接する中央の吸気通路
2から外側の吸気通路に向かって浮遊燃料が移動する。
In a conventional intake passage structure, for example, in a three-cylinder four-cycle internal combustion engine, a three-cylinder branched from a collecting portion
When the two intake passages are adjacent to each other as shown in FIG. 11, when the cylinders connected to the intake passages 1 and 3 located outside are in the intake stroke, the air accompanying the decrease in the intake passage pressure is reduced. The generation of the flow causes the floating fuel to move from the adjacent central intake passage 2 to the outer intake passage.

【0007】これに対して中央に位置する吸気通路2に
ついては、これに接続される気筒が吸気行程となったと
き、隣接する両外側の吸気通路1、3から中央の吸気通
路に向かって浮遊燃料が移動することになる。
On the other hand, with respect to the intake passage 2 located at the center, when the cylinder connected to the intake passage 2 is in the intake stroke, the intake passage 2 floats from the adjacent intake passages 1, 3 on both outer sides toward the central intake passage. The fuel will move.

【0008】図12は、従来の吸気通路構造における浮
遊燃料の1サイクルの移動状態を示す。1サイクル中の
各気筒の行程と吸気通路の圧力との関係を示し、また気
筒間の浮遊燃料の移動方向を矢印で示している。外側吸
気通路に接続される1気筒が吸気行程となった時、圧力
低下による空気流により隣接した2気筒の吸気通路より
浮遊燃料が1気筒に向かって流入する。ここで、距離の
離れた3気筒からの浮遊燃料の移動量は非常に小さいの
でここでは無視する。同様に外側吸気通路に接続される
3気筒が吸気行程となった時、隣接した2気筒の吸気通
路より浮遊燃料が3気筒に向かって流入する。
FIG. 12 shows a state of movement of floating fuel in one cycle in a conventional intake passage structure. The relationship between the stroke of each cylinder and the pressure in the intake passage during one cycle is shown, and the direction of movement of the floating fuel between the cylinders is indicated by an arrow. When one cylinder connected to the outside intake passage enters the intake stroke, floating fuel flows into the one cylinder from the intake passage of the adjacent two cylinders due to the air flow due to the pressure drop. Here, the amount of movement of the floating fuel from the three cylinders that are far apart is very small and is ignored here. Similarly, when the three cylinders connected to the outer intake passage are in the intake stroke, floating fuel flows from the adjacent two cylinder intake passages toward the three cylinders.

【0009】その後、中央に位置する吸気通路に接続さ
れる2気筒が吸気行程となると隣接した1気筒および3
気筒の吸気通路から2気筒に向かって浮遊燃料が流入す
る。ここで、外側の吸気通路と中央の吸気通路では隣接
する吸気通路の数が異なるので、中央の吸気通路に両外
側の吸気通路から流入する浮遊燃料の量と、外側の吸気
通路に中央の吸気通路から流入する浮遊燃料の量とは一
致しない。
Thereafter, when the two cylinders connected to the centrally located intake passage are in the intake stroke, the adjacent one cylinder and three cylinders are connected.
Floating fuel flows from the intake passage of the cylinder toward the two cylinders. Here, since the number of adjacent intake passages is different between the outer intake passage and the central intake passage, the amount of floating fuel flowing into the central intake passage from both outer intake passages and the central intake passage It does not match the amount of suspended fuel flowing from the passage.

【0010】これにより、図13に示すように、中央に
位置する吸気通路に接続される気筒の空燃比と、外側に
位置する吸気通路に接続される気筒の空燃比とはずれを
生じる。このような空燃比の気筒間差は、排出ガス物質
を増大させることになる。
As a result, as shown in FIG. 13, the air-fuel ratio of the cylinder connected to the intake passage located at the center is different from the air-fuel ratio of the cylinder connected to the intake passage located outside. Such an air-fuel ratio difference between the cylinders results in an increase in exhaust gas substances.

【0011】このように、従来の吸気通路構造では、各
気筒に入る燃料量は均一とならず気筒毎に空燃比のずれ
を生じ、排出ガス物質が増大してしまうという問題があ
った。
As described above, the conventional intake passage structure has a problem that the amount of fuel entering each cylinder is not uniform, the air-fuel ratio is shifted for each cylinder, and the amount of exhaust gas increases.

【0012】本発明の目的は、各気筒にほぼ均等に燃料
が分配でき、気筒毎の空燃比のずれを防止することがで
きる吸気通路構造を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an intake passage structure capable of distributing fuel substantially evenly to each cylinder and preventing a deviation of an air-fuel ratio for each cylinder.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明における多気筒エンジンの吸気通路構造の特
徴とするところは、吸入空気と前記燃料との混合気を各
気筒に供給する吸気通路の中で、両隣りに他の吸気通路
がなく片側に他の吸気通路がある位置に配置される吸気
通路間に互いに前記混合気の流通が可能な連通管を設け
ることにある。
In order to achieve the above object, a characteristic of an intake passage structure of a multi-cylinder engine according to the present invention is that an intake air for supplying a mixture of intake air and the fuel to each cylinder is provided. It is an object of the present invention to provide a communication pipe through which the air-fuel mixture can flow between intake passages arranged at positions where there is no other intake passage on both sides of the passage and there is another intake passage on one side.

【0014】また、各吸気通路の形状を、各吸気通路の
分岐する位置での吸気通路断面積が、各吸気通路の吸気
ポート位置での吸気通路断面積より大きくなるように構
成することにある。
It is another object of the present invention to configure each intake passage so that the sectional area of the intake passage at the position where each intake passage branches is larger than the sectional area of the intake passage at the position of the intake port of each intake passage. .

【0015】具体的には本発明は次に掲げる吸気通路構
造を提供する。本発明は、少なくとも3方向以上に燃料
を噴射可能な一本の燃料噴射弁が装着された吸気集合部
より下流で分岐し、少なくとも3以上の気筒にそれぞれ
気筒毎に接続し、吸入空気と前記燃料との混合気を前記
各気筒に供給する構成の多気筒エンジンの吸気通路構造
において、前記各気筒に接続される吸気通路の中で、両
隣りに他の吸気通路がなく片側に他の吸気通路がある位
置に配置される吸気通路間に互いに前記混合気の流通が
可能な連通管を設けることを特徴とする多気筒エンジン
の吸気通路構造を提供する。
Specifically, the present invention provides the following intake passage structure. The present invention branches downstream from an intake manifold in which one fuel injection valve capable of injecting fuel in at least three directions is mounted, and is connected to at least three or more cylinders for each cylinder. In an intake passage structure of a multi-cylinder engine configured to supply a mixture of fuel and fuel to each of the cylinders, in the intake passage connected to each of the cylinders, there is no other intake passage on both sides and another intake passage on one side. There is provided an intake passage structure for a multi-cylinder engine, characterized in that a communication pipe through which the air-fuel mixture can flow is provided between intake passages arranged at positions where the passages are located.

【0016】また、本発明は、少なくとも3方向以上に
燃料を噴射可能な一本の燃料噴射弁が装着された吸気集
合部より下流で分岐し、少なくとも3以上の気筒にそれ
ぞれ気筒毎に接続し、吸入空気と前記燃料との混合気を
前記各気筒に供給する構成の多気筒エンジンの吸気通路
構造において、前記各吸気通路の形状を、前記各吸気通
路の前記分岐する位置での吸気通路断面積が、前記各吸
気通路の吸気ポート位置での吸気通路断面積より大きく
なるように構成することを特徴とする多気筒エンジンの
吸気通路構造を提供する。
Further, according to the present invention, the fuel supply device is branched downstream from an intake manifold provided with one fuel injection valve capable of injecting fuel in at least three directions and connected to at least three or more cylinders for each cylinder. In the intake passage structure of a multi-cylinder engine configured to supply a mixture of intake air and the fuel to each of the cylinders, the shape of each of the intake passages is changed by disconnecting the intake passage at the branch position of each of the intake passages. An intake passage structure for a multi-cylinder engine, wherein an area is configured to be larger than an intake passage sectional area at an intake port position of each intake passage.

【0017】好ましくは、前記分岐する位置での吸気通
路断面積が、前記吸気ポート位置での吸気通路断面積に
対し1.5倍以上となるように構成する。
Preferably, the cross-sectional area of the intake passage at the branching position is 1.5 times or more the cross-sectional area of the intake passage at the position of the intake port.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態例に係
わる吸気通路構造を、図を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An intake passage structure according to an embodiment of the present invention will be described below with reference to the drawings.

【0019】図1は、本発明の第1の実施の形態例に係
わる吸気通路構造を示す。1〜3は、各気筒に接続され
る吸気通路であり、燃料噴射弁5の下流に位置する吸気
集合部より分岐した3つの吸気通路が隣接して設置され
ている。4は、両外側に位置する吸気通路1,3との間
に設置される連通管であり、互いに吸入空気の流通が可
能となるようにしている。
FIG. 1 shows an intake passage structure according to a first embodiment of the present invention. Reference numerals 1 to 3 denote intake passages connected to the respective cylinders, and three intake passages branched from an intake collecting portion located downstream of the fuel injection valve 5 are provided adjacently. Reference numeral 4 denotes a communication pipe provided between the intake passages 1 and 3 located on both outer sides, so that intake air can flow through each other.

【0020】図2に、本吸気通路構造における浮遊燃料
の1サイクルの移動状態を示す。連通管を通して1気筒
から3気筒に移動する、或いは3気筒から1気筒に移動
する浮遊燃料を、1気筒、3気筒の行程図と共に示し
た。外側吸気通路1に接続される1気筒が吸気行程とな
った時、隣接した2気筒の吸気通路、および3気筒の吸
気通路と接続される連通管4より浮遊燃料が1気筒に向
かって流入する。
FIG. 2 shows the state of movement of floating fuel in one cycle in the present intake passage structure. The floating fuel moving from one cylinder to three cylinders or from three cylinders to one cylinder through the communication pipe is shown together with the stroke diagram of one cylinder and three cylinders. When one cylinder connected to the outer intake passage 1 enters the intake stroke, floating fuel flows into the one cylinder from the communication pipe 4 connected to the adjacent two-cylinder intake passage and the three-cylinder intake passage. .

【0021】同様に外側吸気通路3に接続される3気筒
が吸気行程となった時、隣接した2気筒の吸気通路、お
よび1気筒の吸気通路と接続される連通管より浮遊燃料
が3気筒に向かって流入する。その後、中央に位置する
吸気通路2に接続される2気筒が吸気行程となると隣接
した1気筒および3気筒の吸気通路から2気筒に向かっ
て浮遊燃料が流入する。
Similarly, when the three cylinders connected to the outer intake passage 3 are in the intake stroke, floating fuel is transferred to the three cylinders from the communication pipes connected to the adjacent two cylinder intake passages and the one cylinder intake passage. Inflow toward. Thereafter, when the two cylinders connected to the intake passage 2 located at the center enter the intake stroke, the floating fuel flows into the two cylinders from the intake passages of the adjacent one cylinder and three cylinders.

【0022】ここで、隣接する吸気通路から流入する浮
遊燃料の量と、連通管4を通して流入する浮遊燃料の量
を等しくすれば、各気筒で浮遊燃料の流入量を均一にす
ることができ、空燃比の気筒間差を低減することが可能
となる。
Here, if the amount of the floating fuel flowing from the adjacent intake passage and the amount of the floating fuel flowing through the communication pipe 4 are made equal, the amount of the floating fuel flowing in each cylinder can be made uniform. It is possible to reduce the difference in air-fuel ratio between cylinders.

【0023】ここで、連通管4の長さは、隣接する吸気
通路との距離よりも長くなり、よって連通管4の通気抵
抗は、隣接する吸気通路との通気抵抗に対し大きくなる
が、隣接する吸気通路から流入する浮遊燃料の量と、連
通管4を通して流入する浮遊燃料の量とを等しくするこ
とができる。以下、その理由を、図3を用いて説明す
る。
Here, the length of the communication pipe 4 is longer than the distance to the adjacent intake passage, so that the ventilation resistance of the communication pipe 4 is larger than that of the adjacent intake passage. The amount of floating fuel flowing from the intake passage and the amount of floating fuel flowing through the communication pipe 4 can be made equal. Hereinafter, the reason will be described with reference to FIG.

【0024】図3に吸気通路の圧力分布を示す。吸気行
程でない吸気通路ではほぼ一定の圧力となるが、吸気行
程となったときの吸気通路圧力は吸気ポートに近くなる
にしたがって低下する。吸気通路の分岐部では吸気行程
となった吸気通路の圧力と吸気行程でない吸気通路の圧
力差ΔP1により空気流が生じ、隣接した吸気管から吸
気行程となった吸気管に向かって浮遊燃料が流入する。
FIG. 3 shows the pressure distribution in the intake passage. In the intake passage that is not in the intake stroke, the pressure becomes substantially constant, but the intake passage pressure at the time of the intake stroke decreases as it approaches the intake port. At the branch of the intake passage, an air flow is generated due to the pressure difference ΔP1 between the intake passage in the intake stroke and the intake passage not in the intake stroke, and the floating fuel flows from the adjacent intake pipe toward the intake pipe in the intake stroke. I do.

【0025】これに対し、連通管4は分岐部の下流位置
に設けられるので、連通管4の位置においては吸気行程
となった吸気通路の圧力と吸気行程でない吸気通路の圧
力差(連通管4の入口と出口の圧力差)ΔP2は、分岐部
の圧力差ΔP1に対し大きくなる。
On the other hand, since the communication pipe 4 is provided at a position downstream of the branch portion, at the position of the communication pipe 4, the pressure difference between the pressure of the intake passage in the intake stroke and the pressure of the intake passage not in the intake stroke (communication pipe 4 The pressure difference ΔP2 between the inlet and the outlet) is larger than the pressure difference ΔP1 at the branch.

【0026】これにより、連通管の通気抵抗が、隣接す
る吸気通路の通気抵抗に対し大きくなっても、連通管4
には隣接する吸気通路から流入する空気流と等しい量の
空気流を発生させることができ、したがって連通管を通
して流入する浮遊燃料の量を、隣接する吸気通路から流
入する浮遊燃料の量と等しくすることが可能となる。
Thus, even if the ventilation resistance of the communication pipe becomes larger than the ventilation resistance of the adjacent intake passage, the communication pipe 4
Can generate the same amount of airflow as the airflow flowing from the adjacent intake passage, so that the amount of the floating fuel flowing through the communication pipe is equal to the amount of the floating fuel flowing from the adjacent intake passage. It becomes possible.

【0027】このように、本吸気通路構造では、隣接し
ていない両外側吸気通路の間でも浮遊燃料の移動が可能
となるので、全ての気筒について、吸気行程で他の気筒
の吸気通路から流入する浮遊燃料の量を等しくすること
ができる。よって、連通管4の最適位置を決める場合に
は、連通管4の位置を分岐部から徐々に下流側にずらし
てき、空燃比の気筒間差が最小となる位置とすればよ
い。
As described above, in the present intake passage structure, the floating fuel can be moved between both outer intake passages that are not adjacent to each other. Therefore, all the cylinders flow from the intake passages of the other cylinders in the intake stroke. The amount of floating fuel to be used can be equalized. Therefore, when determining the optimum position of the communication pipe 4, the position of the communication pipe 4 may be gradually shifted downstream from the branch portion so that the air-fuel ratio between cylinders is minimized.

【0028】図4に、本吸気通路構造による空燃比の気
筒間差測定結果を示す。連通管の無い場合に比べて、空
燃比の気筒間差を低減することができる。
FIG. 4 shows the measurement results of the air-fuel ratio between cylinders according to the intake passage structure. The difference in air-fuel ratio between cylinders can be reduced as compared with the case where there is no communication pipe.

【0029】図5は、本吸気通路構造を4気筒の内燃機
関に適用した例である。4つの隣接した吸気通路のう
ち、両外側の吸気通路の間に連通管4を設ける。
FIG. 5 shows an example in which the present intake passage structure is applied to a four-cylinder internal combustion engine. The communication pipe 4 is provided between the intake passages on both outer sides of the four adjacent intake passages.

【0030】また、図6に、4気筒の内燃機関の吸気通
路に連通管を設けた場合の浮遊燃料の移動状態を示す。
ここで、隣接する吸気通路から流入する浮遊燃料の量
と、連通管を通して流入する浮遊燃料の量を等しくすれ
ば、3気筒の例と同様に各気筒で浮遊燃料の流入量を均
一にすることができ、空燃比の気筒間差を低減すること
が可能となる。
FIG. 6 shows the state of movement of the floating fuel when a communication pipe is provided in the intake passage of a four-cylinder internal combustion engine.
Here, if the amount of the floating fuel flowing from the adjacent intake passage is equal to the amount of the floating fuel flowing through the communication pipe, the amount of the floating fuel flowing in each cylinder is made uniform as in the case of the three cylinders. It is possible to reduce the difference in air-fuel ratio between cylinders.

【0031】図7は、図6の比較例として、両外側の吸
気通路の間に連通管を設けない4気筒の内燃機関につい
て浮遊燃料の移動状態を示したものである。内側に位置
する2、3気筒の吸気通路が吸気行程となったときは両
隣の2つの吸気通路から浮遊燃料が流入する。これに対
し、両外側に位置する1、4気筒の吸気通路が吸気行程
となったときは、連通管が設けられていないため、隣接
する1つの吸気通路からのみ浮遊燃料が流入する。
FIG. 7 shows, as a comparative example of FIG. 6, the state of movement of floating fuel in a four-cylinder internal combustion engine in which no communication pipe is provided between the intake passages on both outer sides. When the intake passages of the two or three cylinders located inside are in the intake stroke, floating fuel flows in from the two intake passages on both sides. On the other hand, when the intake passages of the one and four cylinders located on both outer sides are in the intake stroke, since the communication pipe is not provided, the floating fuel flows only from one adjacent intake passage.

【0032】したがって、外側の吸気通路と内側の吸気
通路では隣接する吸気通路の数が異なるので、内側に位
置する吸気通路に流入する浮遊燃料の量は、外側に位置
する吸気通路に流入する浮遊燃料の量とは一致せず、空
燃比の気筒間差を生じる。
Therefore, since the number of adjacent intake passages is different between the outer intake passage and the inner intake passage, the amount of floating fuel flowing into the inner intake passage is reduced by the amount of floating fuel flowing into the outer intake passage. It does not match the amount of fuel, resulting in an air-fuel ratio difference between cylinders.

【0033】図8は、本発明の第2の実施の形態例に係
わる吸気通路構造を示す。図8に示すように、吸気通路
6の分岐位置における吸気通路断面積を、内燃機関の吸
気ポート位置における吸気通路断面積に対し大きくする
ように構成する。本吸気通路構造における、浮遊燃料の
状態について、図9を用いて説明する。
FIG. 8 shows an intake passage structure according to a second embodiment of the present invention. As shown in FIG. 8, the intake passage 6 at the branch position of the intake passage 6 is configured to be larger than the intake passage sectional area at the intake port position of the internal combustion engine. The state of the floating fuel in the intake passage structure will be described with reference to FIG.

【0034】図9は、本吸気通路の側面図であり、従来
の吸気通路形状と併せて示している。浮遊燃料は噴射方
向の中心軸に沿って多く存在し、中心軸から離れるにし
たがって減少する。よって、従来の吸気通路に対し、分
岐部の通路断面積を拡大した本第2の実施の形態例の吸
気通路では分岐部付近の浮遊燃料の平均濃度を小さくす
ることができる。
FIG. 9 is a side view of the present intake passage, which is shown together with a conventional intake passage shape. Floating fuel exists along the central axis of the injection direction, and decreases as the distance from the central axis increases. Therefore, in the intake passage of the second embodiment in which the passage cross-sectional area of the branch portion is enlarged as compared with the conventional intake passage, the average concentration of floating fuel near the branch portion can be reduced.

【0035】一方、吸気行程となった吸気通路に、隣接
する吸気通路から流入する空気の体積は、従来の吸気通
路とほぼ同一である。よって、分岐部の浮遊燃料濃度が
減少した分、吸気行程となった吸気通路に、隣接する吸
気通路から流入する浮遊燃料の量を、従来の吸気通路に
対し少なくすることができる。
On the other hand, the volume of air flowing from the intake passage adjacent to the intake passage in the intake stroke is substantially the same as that of the conventional intake passage. Therefore, the amount of the floating fuel flowing from the intake passage adjacent to the intake passage in the intake stroke can be made smaller than that of the conventional intake passage by the decrease in the concentration of the floating fuel in the branch portion.

【0036】これにより、図10に示すように、通路面
積比(分岐位置における吸気通路断面積/吸気ポート位
置における吸気通路断面積)Rを大きくするにしたがっ
て空燃比の気筒間差を低減することができる。供試エン
ジンの例では、通路面積比Rが1.5倍以上で空燃比の
気筒間差を低減することができる。
Thus, as shown in FIG. 10, the cylinder-to-cylinder difference of the air-fuel ratio is reduced as the passage area ratio (intake passage sectional area at branch position / intake passage sectional area at intake port position) R is increased. Can be. In the example of the test engine, when the passage area ratio R is 1.5 times or more, the inter-cylinder difference in the air-fuel ratio can be reduced.

【0037】[0037]

【発明の効果】本発明によれば、両外側吸気通路との間
に互いに吸入空気の流通が可能な連通管を設けることに
より、各気筒について、他の吸気通路から流入する浮遊
燃料の量をほぼ等しくできるので、空燃比の気筒間差を
低減でき、排出ガス物質を低減することができる。
According to the present invention, by providing a communication pipe between both outer intake passages through which intake air can flow, the amount of floating fuel flowing from another intake passage for each cylinder can be reduced. Since they can be made substantially equal, the difference in air-fuel ratio between cylinders can be reduced, and the amount of exhaust gas substances can be reduced.

【0038】また、分岐位置の各吸気通路断面積を、吸
気ポート位置の各吸気通路断面積より大きくなるように
構成することにより、各気筒について、他の吸気通路か
ら流入する浮遊燃料の量を少なくすることができるの
で、空燃比の気筒間差を低減することができ、排出ガス
物質を低減することができる。
By configuring each intake passage sectional area at the branch position to be larger than each intake passage sectional area at the intake port position, the amount of floating fuel flowing from another intake passage for each cylinder is reduced. Since the air-fuel ratio can be reduced, a difference in air-fuel ratio between cylinders can be reduced, and exhaust gas substances can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態例に係わる吸気通路
構造を示す図である。
FIG. 1 is a diagram showing an intake passage structure according to a first embodiment of the present invention.

【図2】図1の吸気通路構造における浮遊燃料の移動状
態を示す図である。
FIG. 2 is a view showing a moving state of floating fuel in the intake passage structure of FIG.

【図3】図1の吸気通路の圧力分布を示す図である。FIG. 3 is a diagram showing a pressure distribution in an intake passage of FIG. 1;

【図4】図1の吸気通路構造による空燃比の気筒間差測
定結果を示す図である。
FIG. 4 is a diagram showing a measurement result of an air-fuel ratio between cylinders in the intake passage structure of FIG. 1;

【図5】図1の吸気通路構造を4気筒の内燃機関に適用
した例を示す図である。
FIG. 5 is a diagram showing an example in which the intake passage structure of FIG. 1 is applied to a four-cylinder internal combustion engine.

【図6】図5の吸気通路構造吸気通路における浮遊燃料
の移動状態を示す図である。
6 is a diagram showing a state of movement of floating fuel in an intake passage of the intake passage structure shown in FIG. 5;

【図7】図6との比較例を示す図である。FIG. 7 is a diagram showing a comparative example with FIG. 6;

【図8】本発明の第2の実施の形態例に係わる吸気通路
構造を示す図である。
FIG. 8 is a diagram showing an intake passage structure according to a second embodiment of the present invention.

【図9】図8の吸気通路構造における浮遊燃料の分布を
示す図である。
9 is a diagram showing a distribution of floating fuel in the intake passage structure of FIG.

【図10】図8の吸気通路構造による空燃比の気筒間差
測定結果を示す図である。
FIG. 10 is a diagram showing a measurement result of an inter-cylinder difference of an air-fuel ratio by the intake passage structure of FIG. 8;

【図11】従来の吸気通路構造を示す図である。FIG. 11 is a view showing a conventional intake passage structure.

【図12】従来の吸気通路構造における浮遊燃料の移動
状態を示す図である。
FIG. 12 is a diagram showing a moving state of floating fuel in a conventional intake passage structure.

【図13】従来の吸気通路構造における空燃比の気筒間
差を示す図である。
FIG. 13 is a diagram showing a difference between cylinders of an air-fuel ratio in a conventional intake passage structure.

【符号の説明】[Explanation of symbols]

1…吸気通路(外側)、2…吸気通路(中央)、3…吸
気通路(外側)、4…連通管、5…燃料噴射弁、6…吸
気通路
DESCRIPTION OF SYMBOLS 1 ... intake passage (outside), 2 ... intake passage (center), 3 ... intake passage (outside), 4 ... communication pipe, 5 ... fuel injection valve, 6 ... intake passage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも3方向以上に燃料を噴射可能な
一本の燃料噴射弁が装着された吸気集合部より下流で分
岐し、少なくとも3以上の気筒にそれぞれ気筒毎に接続
し、吸入空気と前記燃料との混合気を前記各気筒に供給
する構成の多気筒エンジンの吸気通路構造において、 前記各気筒に接続される吸気通路の中で、両隣りに他の
吸気通路がなく片側に他の吸気通路がある位置に配置さ
れる吸気通路間に互いに前記混合気の流通が可能な連通
管を設けることを特徴とする多気筒エンジンの吸気通路
構造。
The present invention is characterized in that it branches downstream from an intake manifold provided with one fuel injection valve capable of injecting fuel in at least three directions and is connected to at least three or more cylinders for each cylinder. In the intake passage structure of the multi-cylinder engine configured to supply the mixture with the fuel to each of the cylinders, in the intake passage connected to each of the cylinders, there is no other intake passage on both sides and another on one side. An intake passage structure for a multi-cylinder engine, wherein a communication pipe through which the air-fuel mixture can flow is provided between intake passages arranged at a position where the intake passage is located.
【請求項2】少なくとも3方向以上に燃料を噴射可能な
一本の燃料噴射弁が装着された吸気集合部より下流で分
岐し、少なくとも3以上の気筒にそれぞれ気筒毎に接続
し、吸入空気と前記燃料との混合気を前記各気筒に供給
する構成の多気筒エンジンの吸気通路構造において、 前記各吸気通路の形状を、前記各吸気通路の前記分岐す
る位置での吸気通路断面積が、前記各吸気通路の吸気ポ
ート位置での吸気通路断面積より大きくなるように構成
することを特徴とする多気筒エンジンの吸気通路構造。
2. A fuel supply system comprising a fuel injection valve which is capable of injecting fuel in at least three directions. The fuel injection valve is branched downstream from an intake manifold and connected to at least three or more cylinders for each cylinder. In the intake passage structure of the multi-cylinder engine configured to supply the mixture with the fuel to each of the cylinders, the shape of each of the intake passages is such that the intake passage cross-sectional area at the branching position of each of the intake passages is An intake passage structure for a multi-cylinder engine, wherein the intake passage structure is configured to be larger than an intake passage cross-sectional area at an intake port position of each intake passage.
【請求項3】請求項2において、前記分岐する位置での
吸気通路断面積が、前記吸気ポート位置での吸気通路断
面積に対し1.5倍以上となるように構成することを特
徴とする多気筒エンジンの吸気通路構造。
3. The intake passage according to claim 2, wherein the sectional area of the intake passage at the branching position is 1.5 times or more the sectional area of the intake passage at the position of the intake port. The intake passage structure of a multi-cylinder engine.
JP36447399A 1999-12-22 1999-12-22 Intake passage structure of multicylinder engine Pending JP2001182643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36447399A JP2001182643A (en) 1999-12-22 1999-12-22 Intake passage structure of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36447399A JP2001182643A (en) 1999-12-22 1999-12-22 Intake passage structure of multicylinder engine

Publications (1)

Publication Number Publication Date
JP2001182643A true JP2001182643A (en) 2001-07-06

Family

ID=18481903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36447399A Pending JP2001182643A (en) 1999-12-22 1999-12-22 Intake passage structure of multicylinder engine

Country Status (1)

Country Link
JP (1) JP2001182643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064039A (en) * 2006-09-07 2008-03-21 Keihin Corp Fuel supplying device of multi-cylinder engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064039A (en) * 2006-09-07 2008-03-21 Keihin Corp Fuel supplying device of multi-cylinder engine
JP4700581B2 (en) * 2006-09-07 2011-06-15 株式会社ケーヒン Multi-cylinder engine fuel supply system

Similar Documents

Publication Publication Date Title
US8935917B2 (en) Partially integrated exhaust manifold
EP0196100A2 (en) Fuel injection supply system for multi-cylinder internal combustion engine
JP2001140713A (en) Intake device in multicylinder internal combustion engine
JP2001182643A (en) Intake passage structure of multicylinder engine
JP4244082B2 (en) Intake manifold structure
JP4099868B2 (en) Engine exhaust gas recirculation system
JPS60228758A (en) Intake device of multi-cylinder engine
JPH0523823Y2 (en)
US6622687B2 (en) Intake apparatus of multi-cylinder internal combustion engine
JPH05223040A (en) Intake device for engine
JP2001295712A (en) Intake system structure of internal combustion engine with egr device
JP3143687B2 (en) Multi-cylinder engine intake manifold
JPS60224965A (en) Intake unit for multi-cylinder engine
JPS5834276Y2 (en) Intake pipe structure of engine with cylinder number control
JP7296272B2 (en) internal combustion engine
JPH10252577A (en) Egr distributing device of internal combustion engine
JPH0942069A (en) Exhaust gas recirculating device
JP2001140710A (en) Intake device for multicylinder engine
JP3799973B2 (en) Engine intake structure
JP2001082255A (en) Air supply pipe structure for multi-cylinder gas engine
Hayman et al. Partially integrated exhaust manifold
JP2019127825A (en) Intake manifold, and fuel injection structure of internal combustion engine with the intake manifold
JPH11247728A (en) Structure of inertia supercharging intake manifold in multiple cylinder internal combustion engine
JPH0861190A (en) Fuel injection type engine
JPH06147040A (en) Intake system in multicylinder internal combustion engine