JPH0881778A - Method for continuously forming film by radical cvd under high pressure and device therefor - Google Patents

Method for continuously forming film by radical cvd under high pressure and device therefor

Info

Publication number
JPH0881778A
JPH0881778A JP22146694A JP22146694A JPH0881778A JP H0881778 A JPH0881778 A JP H0881778A JP 22146694 A JP22146694 A JP 22146694A JP 22146694 A JP22146694 A JP 22146694A JP H0881778 A JPH0881778 A JP H0881778A
Authority
JP
Japan
Prior art keywords
gas
radical
reaction gas
substrate
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22146694A
Other languages
Japanese (ja)
Other versions
JP3632999B2 (en
Inventor
Yuzo Mori
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUHA MIKAKUTOU SEIMITSU KOGAK
YUUHA MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK
Original Assignee
YUUHA MIKAKUTOU SEIMITSU KOGAK
YUUHA MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUHA MIKAKUTOU SEIMITSU KOGAK, YUUHA MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK filed Critical YUUHA MIKAKUTOU SEIMITSU KOGAK
Priority to JP22146694A priority Critical patent/JP3632999B2/en
Publication of JPH0881778A publication Critical patent/JPH0881778A/en
Application granted granted Critical
Publication of JP3632999B2 publication Critical patent/JP3632999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To deposit the formed radical of a film forming element on a substrate and to obtain a thin film excellent in electrical and optical characteristics by forming a thin laminar flow of a reacting gas close to the substrate surface and joining a high-density neutral radical gas to the laminar flow to decompose the reacting gas. CONSTITUTION: A partition plate 4 is provided in the gas passage 1 of a continuous film forming device at a minute distance from the surface 2 of a substrate. A reacting gas passage 5 is formed by partition plate 2 and the substrate surface 2, and a radical gas passage 6 is formed by the partition plate 4 and the wall surface on the other side. A laminar flow of the reacting gas is formed along the substrate surface 2 and joined to a radical gas current contg. the high- density neutral plasma formed in the high-pressure plasma at a confluence 7. The reacting gas is decomposed by the neutral radical diffused into the reacting gas, and the generated film forming element is deposited on the substrate surface 2 to continuously form a thin film. Consequently, a thin film with the internal defect and surface ruggedness reduced and excellent in electrical and optical characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧力下でのラジカル
CVD法による連続成膜方法及びその装置に係わり、更
に詳しくは荷電粒子による基板の損傷及び基板の加熱に
よる熱的損傷がないとともに、内部に欠陥や表面に凹凸
が少なく電気的・光学的特性の優れた薄膜を形成するた
めの連続成膜方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous film forming method by a radical CVD method under high pressure and an apparatus therefor, and more particularly, there is no damage to a substrate due to charged particles or thermal damage due to heating of the substrate. The present invention relates to a continuous film forming method and an apparatus for forming a thin film having few defects and unevenness on the surface and excellent electrical and optical characteristics.

【0002】[0002]

【従来の技術】従来、基板上に薄膜を作製する技術に
は、大別して物理的手法(Physical vapor deposition
:PVD)と化学的手法(Chemical vapor deposition
:CVD)があるが、電子工学の分野ではこの中でも
化学的手法であるプラズマCVD法が特に注目されてい
る。プラズマCVD法では、プラズマ中で反応種であ
る中性ラジカルやイオンを作るため基板の温度を自由に
制御できること、プラズマの高エネルギー状態を利用
するため、通常困難な反応などに応用できること、等の
利点がある。プラズマの励起、維持手段としては、直流
電界、50/60Hz商用周波数からR.F.電界、マ
イクロ波、ミリ波、光等が用いられている。現在のプラ
ズマCVDは、1Torr以下の低圧力下で行われるのが一
般的である。特に、最近では、ECR(electron cycro
tron resonance)プラズマを利用した高真空中(10-3
10-5Torr)でのプラズマCVDが行われている。
2. Description of the Related Art Conventionally, techniques for forming a thin film on a substrate are roughly classified into physical methods (Physical vapor deposition).
: PVD and chemical vapor deposition
: CVD), but in the field of electronic engineering, the plasma CVD method, which is a chemical method, is particularly drawing attention. In the plasma CVD method, it is possible to freely control the temperature of the substrate to generate neutral radicals and ions that are reactive species in plasma, and to use the high energy state of plasma, so that it can be applied to reactions that are usually difficult. There are advantages. As a means for exciting and maintaining the plasma, a DC electric field, a commercial frequency of 50/60 Hz, and R. F. Electric fields, microwaves, millimeter waves, light, etc. are used. Present plasma CVD is generally performed under a low pressure of 1 Torr or less. In particular, recently, ECR (electron cycro
tron resonance) in high vacuum using plasma (10 -3 ~
Plasma CVD at 10 −5 Torr) is performed.

【0003】しかし、このような低圧プラズマ状態で
は、非平衡プラズマと呼ばれる電子温度のみが極めて高
いプラズマができるが、プラズマ中に発生するイオン,
電子のエネルギーも高くなり、電界によって高い運動エ
ネルギーをもって直接基板に衝突することが考えられ
る。また、低圧であるために成膜速度は遅いといった問
題を有する。
However, in such a low-pressure plasma state, a plasma called nonequilibrium plasma having only an extremely high electron temperature can be generated, but ions generated in the plasma,
It is considered that the energy of electrons also becomes high and the electrons directly collide with the substrate with high kinetic energy. Further, there is a problem that the film forming speed is slow because of the low pressure.

【0004】また、従来のプラズマCVDでは、例えば
多結晶シリコン(Si)薄膜を作製するために一般的に
採用されている熱CVDにおいては1000〜1200
℃の加熱が必要で、このような高温に曝していると基板
と薄膜を構成する元素の相互拡散が生じ、基板と薄膜を
構成する元素が相違する場合、基板に微量元素が含まれ
ている場合には、薄膜に不純物が導入されるといった問
題も有する。また、比較的低温の処理で多結晶シリコン
薄膜を作製するには、先ずアモルファスシリコン薄膜を
作製した後、基板を600〜700℃に加熱処理してそ
の結晶化を促進させていた。
Further, in the conventional plasma CVD, for example, 1000 to 1200 in the thermal CVD which is generally adopted for producing a polycrystalline silicon (Si) thin film.
Heating at ℃ is required, and when exposed to such high temperatures, mutual diffusion of the elements that make up the substrate and thin film occurs, and if the elements that make up the substrate and thin film differ, the substrate contains trace elements. In this case, there is a problem that impurities are introduced into the thin film. Further, in order to produce a polycrystalline silicon thin film by a relatively low temperature treatment, an amorphous silicon thin film was first produced, and then the substrate was heat-treated at 600 to 700 ° C. to promote its crystallization.

【0005】このように、従来は基板上に作製した薄膜
の結晶構造を制御するために、最低約600℃以上に基
板を加熱する必要があった。そのため、基板として低融
点の素材は使用できないばかりでなく、基板に熱的損傷
を与える可能性がある。また、反応ガスを直接励起して
プラズマ状態とするため高電界を必要とし、それにより
得られる荷電粒子は高い運動エネルギーを持ち、これら
が基板に入射されて薄膜中若しくは基板に欠陥を生じさ
せるといった問題も有する。
As described above, conventionally, in order to control the crystal structure of the thin film formed on the substrate, it was necessary to heat the substrate to at least about 600 ° C. or higher. Therefore, not only a low melting point material cannot be used as the substrate, but also the substrate may be thermally damaged. In addition, a high electric field is required to directly excite the reaction gas into a plasma state, and the resulting charged particles have high kinetic energy, and these are incident on the substrate to cause defects in the thin film or the substrate. I also have problems.

【0006】そこで、本出願人は、特開平4−3370
76号公報にて開示される如く、数Torr〜数気圧の高圧
力下で発生及び維持の容易な不活性ガスからなるキャリ
アガスのプラズマを発生させ、それにより反応ガス分子
を気相中若しくは基板上で分解、活性化して高密度の中
性ラジカルを生成し、基板上に薄膜を成長させることに
より、高速成膜を可能とするとともに、多くの素材で熱
的損傷が生じない300℃程度以下の温度に基板を加熱
するだけで薄膜の多結晶化若しくは結晶化を可能にする
プラズマ及びラジカルCVD法による高速成膜方法を既
に提供している。つまり、この成膜方法は、プラズマ中
で生成された不活性ガスの中性ラジカルや水素原子ラジ
カルを、そのラジカル生成ガスの流れによってプラズマ
外の成膜部に輸送し、膜形成元素を含む反応ガスと混合
することにより、反応ガスを気相中で分解し、低温基板
上に目的とする薄膜を高速成膜するのである。
[0006] Therefore, the applicant of the present invention has filed Japanese Patent Application Laid-Open No. 4-3370.
As disclosed in Japanese Patent Laid-Open No. 76-76, plasma of a carrier gas composed of an inert gas, which is easy to generate and maintain under high pressure of several Torr to several atmospheres, is generated, whereby reactive gas molecules are generated in a gas phase or on a substrate. By decomposing and activating above to generate high density neutral radicals and growing a thin film on the substrate, high-speed film formation is possible, and thermal damage does not occur in many materials. We have already provided a high-speed film formation method by plasma and radical CVD that enables polycrystallization or crystallization of a thin film only by heating the substrate to the temperature. In other words, this film formation method transports neutral radicals and hydrogen atom radicals of an inert gas generated in plasma to the film formation part outside the plasma by the flow of the radical generation gas, and reacts with a film formation element. By mixing with the gas, the reaction gas is decomposed in the gas phase and a target thin film is formed at high speed on the low temperature substrate.

【0007】[0007]

【発明が解決しようとする課題】ところが、ガスの流れ
に乱れがあると、反応ガスが分解されて生成したラジカ
ル種同士が気相中で凝集してクラスタあるいは粉にな
る。そのようなクラスタや粉が基板上に堆積すると、薄
膜の内部に多数の欠陥が取り込まれ、また表面形状も凹
凸の激しいものとなり、その結果、形成した薄膜の電気
的・光学的特性が悪くなる。
However, if the gas flow is disturbed, the radical species generated by the decomposition of the reaction gas aggregate in the gas phase to form clusters or powders. When such clusters and powders are deposited on the substrate, many defects are introduced inside the thin film, and the surface shape becomes rough, resulting in poor electrical and optical characteristics of the formed thin film. .

【0008】そこで、本発明は前述の状況に鑑み、解決
しようとするところは、プラズマ領域と成膜領域とを分
離するといった基本的な技術的思想は前述の公報記載の
成膜方法を採用しつつ、反応ガスが分解されて生成した
ラジカル種同士が気相中で凝集することを抑制し、薄膜
の電気的・光学的特性に優れ且つ高速成膜をすることが
可能な高圧力下でのラジカルCVD法による連続成膜方
法及びその装置を提供する。
In view of the above situation, the present invention is to solve the problem by adopting the film forming method described in the above publication for the basic technical idea of separating the plasma region and the film forming region. At the same time, it is possible to suppress the radical species generated by the decomposition of the reaction gas from aggregating in the gas phase, and to have excellent electrical and optical characteristics of the thin film and to form a film at high speed under high pressure. Provided are a continuous film forming method by a radical CVD method and an apparatus thereof.

【0009】[0009]

【課題を解決するための手段】本発明は、前述の課題解
決のために、基板表面のみに膜形成元素を含む反応ガス
を供給し、基板表面の近傍に厚さ及び密度が均一且つ厚
さの薄い反応ガスの層流を形成するとともに、数Torr〜
数気圧の高圧力プラズマ中で生成した高密度の中性ラジ
カルを含むラジカルガスを反応ガス層流の上層にその流
れを乱さないように供給し、反応ガス中に拡散してきた
中性ラジカルによって反応ガスを分解し、膜形成元素を
基板表面に堆積させて薄膜を連続的に形成してなる高圧
力下でのラジカルCVD法による連続成膜方法を提供す
る。
In order to solve the above-mentioned problems, the present invention supplies a reaction gas containing a film-forming element only to the surface of a substrate, and has a uniform thickness and density near the surface of the substrate. Forming a thin reaction gas laminar flow of several Torr ~
A radical gas containing high-density neutral radicals generated in high-pressure plasma of several atmospheres is supplied to the upper layer of the reaction gas laminar flow without disturbing the flow, and reacted by the neutral radicals diffused in the reaction gas. Provided is a continuous film formation method by a radical CVD method under high pressure, which is formed by decomposing gas and depositing a film forming element on a substrate surface to continuously form a thin film.

【0010】この場合、前記反応ガス層流とラジカルガ
ス流を平行又は鋭角に合流させてなること、また前記反
応ガスを不活性ガスで希釈して供給してなることがより
好ましい実施例である。更に、前記基板を反応ガスの流
れ方向に対して順方向又は逆方向へ相対的に移動させる
ことが実用的である。
In this case, it is a more preferred embodiment that the reaction gas laminar flow and the radical gas flow are merged in parallel or at an acute angle, and that the reaction gas is diluted with an inert gas and supplied. . Furthermore, it is practical to move the substrate relatively in the forward or reverse direction with respect to the flow direction of the reaction gas.

【0011】また、連続成膜装置については、ガス流路
の少なくとも一側壁面を基板表面で形成するとともに、
ガス流路内であって基板表面に対して微小間隔を隔てて
仕切板を配設し、該仕切板と基板表面とで反応ガス流路
を形成し且つ該仕切板と基板表面と対面するガス流路の
他側壁面とで若しくは一対の仕切板間でラジカルガス流
路を形成し、前記仕切板の下流側端部を反応ガス流路と
ラジカルガス流路の合流部となし、反応ガス流路の上流
側に膜形成元素を含む反応ガスの供給手段を設け、一方
ラジカルガス流路の上流側に数Torr〜数気圧の高圧力プ
ラズマを発生させる高周波高電界領域を形成するととも
に、該領域に不活性ガス等のラジカル生成ガスの供給手
段を設けてなり、高圧力の反応ガス及びラジカル生成ガ
スをガス供給手段からそれぞれ供給し、基板表面に沿っ
て反応ガスの層流を形成するとともに、高圧力プラズマ
中で生成した高密度の中性ラジカルを含むラジカルガス
流を前記合流部で反応ガス層流に合流させ、反応ガス中
に拡散してきた中性ラジカルによって反応ガスを分解
し、膜形成元素を基板表面に堆積させて薄膜を連続的に
形成してなる高圧力下でのラジカルCVD法による連続
成膜装置を構成した。
Further, in the continuous film forming apparatus, at least one side wall surface of the gas flow path is formed on the substrate surface, and
A gas is formed in the gas flow path with a minute gap from the substrate surface, and a reaction gas flow path is formed between the partition plate and the substrate surface, and the partition plate faces the substrate surface. A radical gas flow channel is formed with the other side wall surface of the flow channel or between a pair of partition plates, and the downstream end of the partition plate serves as a confluence of the reaction gas flow channel and the radical gas flow channel, and the reaction gas flow is formed. A supply means for supplying a reaction gas containing a film-forming element is provided on the upstream side of the channel, while a high frequency high electric field region for generating high pressure plasma of several Torr to several atmospheres is formed on the upstream side of the radical gas channel, and the region is formed. Is provided with a means for supplying a radical-producing gas such as an inert gas, and a high-pressure reaction gas and a radical-producing gas are respectively supplied from the gas supply means to form a laminar flow of the reaction gas along the substrate surface, High density produced in high pressure plasma A radical gas flow containing neutral radicals is merged into the reaction gas laminar flow at the confluence portion, the reaction gas is decomposed by the neutral radicals diffused in the reaction gas, and the film-forming element is deposited on the substrate surface to form a thin film. A continuous film forming apparatus by a radical CVD method under high pressure is formed by continuously forming

【0012】ここで、前記仕切板を平行平板となして基
板表面に対して平行に配設してなること、又は前記仕切
板の一面を基板表面に対して平行に配設し、他面を基板
表面に対して鋭角を有する傾斜面となしたこと、そして
前記仕切板がプラズマ発生用の電極を兼ねてなること、
更に前記基板をガス流路に対して流れ方向に対して順方
向又は逆方向へ相対的に平行移動させてなることが好ま
しい実施例である。
Here, the partition plate is a parallel plate and is arranged parallel to the substrate surface, or one surface of the partition plate is arranged parallel to the substrate surface and the other surface is Being an inclined surface having an acute angle with respect to the substrate surface, and the partition plate also serves as an electrode for plasma generation,
Further, it is a preferred embodiment that the substrate is moved in parallel with respect to the gas flow path in the forward direction or the reverse direction relative to the flow direction.

【0013】[0013]

【作用】以上の如き内容からなる本発明の高圧力下での
ラジカルCVD法による連続成膜方法及びその装置は、
プラズマ発生領域、即ちラジカル生成領域と、成膜領域
とを分離し、基板表面のみに膜形成元素を含む反応ガス
(原料ガス)を供給し、基板表面の近傍に厚さ及び密度
が均一且つ厚さの薄い反応ガスの層流を形成した状態
で、プラズマ発生領域で発生された数Torr〜数気圧の高
圧力プラズマ中で生成した高密度の中性ラジカルを含む
ラジカルガスを、前記反応ガスの層流の上層に反応ガス
の流れを乱さないように平行又は鋭角に合流させて、ラ
ジカルガス中の中性ラジカルによって反応ガスを分解
し、その結果生成された膜形成元素のラジカル種を基板
表面に堆積させて成膜するのである。この場合に、基板
を反応ガスの流れ方向に対して順方向又は逆方向へ相対
的に移動させることによって、広面積又は連続的な成膜
が可能となる。
The continuous film formation method and apparatus using the radical CVD method under high pressure according to the present invention having the above-mentioned contents are as follows:
The plasma generation region, that is, the radical generation region and the film formation region are separated, and the reaction gas (raw material gas) containing the film forming element is supplied only to the substrate surface, and the thickness and density are uniform and thick near the substrate surface. In the state in which a thin laminar flow of the reaction gas is formed, a radical gas containing high-density neutral radicals generated in high-pressure plasma of several Torr to several atmospheres generated in the plasma generation region The reaction gas is merged in parallel or at an acute angle so as not to disturb the flow of the reaction gas in the upper layer of the laminar flow, and the reaction gas is decomposed by the neutral radicals in the radical gas, and the resulting radical species of the film-forming element are generated on the substrate surface. It is deposited on and formed into a film. In this case, by relatively moving the substrate in the forward direction or the reverse direction with respect to the flow direction of the reaction gas, it is possible to form a large area or continuously.

【0014】ここで、反応ガスを不活性ガスで希釈して
基板表面に供給することが重要である。その希釈作用を
以下に説明する。 大気圧におけるガス分子の平均自由行程は数100n
mであるため、反応ガスの濃度が濃い場合、それらが分
解されて生成したラジカル種同士が気相中で凝集してク
ラスタあるいは粉になる。そのようなクラスタや粉が基
板上に堆積すると、薄膜の内部に多数の欠陥が取り囲ま
れ、また表面形状も凹凸の激しいものとなり、その結
果、電気的・光学的特性の悪い膜しか得られない。従っ
て、反応ガスを予め不活性ガスで希釈し、反応ガスの平
均自由行程を十分長くすれば、気相中でのラジカル種の
凝集を抑制することが可能となる。 反応ガスの濃度が濃い場合、プラズマ発生領域から輸
送されてきた中性ラジカルの数に対して、反応ガス分子
の数の方が多くなり、その結果、供給した反応ガスの一
部しか分解されないため、高価な反応ガスの利用効率が
低くなる。従って、反応ガスを予め不活性ガスで希釈す
ることによって、反応ガスの利用効率を向上させること
が可能となる。
Here, it is important to dilute the reaction gas with an inert gas and supply it to the surface of the substrate. The diluting action will be described below. The mean free path of gas molecules at atmospheric pressure is several 100n
Therefore, when the concentration of the reaction gas is high, the radical species generated by their decomposition are aggregated in the gas phase to form clusters or powders. When such clusters and powders are deposited on the substrate, many defects are surrounded inside the thin film, and the surface shape becomes rough, and as a result, only a film with poor electrical and optical characteristics can be obtained. . Therefore, by preliminarily diluting the reaction gas with an inert gas and making the mean free path of the reaction gas sufficiently long, it becomes possible to suppress the agglomeration of radical species in the gas phase. When the concentration of the reaction gas is high, the number of reaction gas molecules is larger than the number of neutral radicals transported from the plasma generation region, and as a result, only part of the supplied reaction gas is decomposed. The use efficiency of expensive reaction gas becomes low. Therefore, it is possible to improve the utilization efficiency of the reaction gas by previously diluting the reaction gas with the inert gas.

【0015】[0015]

【実施例】次に本発明の詳細を添付図面に示した実施例
に基づいて説明する。図1は本発明の成膜原理を示す概
念図であり、図中1はガス流路、2は基板表面、3はガ
ス流路1の壁面、4は仕切板、5は反応ガス流路、6は
ラジカルガス流路をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the embodiments shown in the accompanying drawings. FIG. 1 is a conceptual diagram showing the film forming principle of the present invention. In the figure, 1 is a gas channel, 2 is a substrate surface, 3 is a wall surface of the gas channel 1, 4 is a partition plate, 5 is a reaction gas channel, Reference numerals 6 respectively denote radical gas passages.

【0016】ここで、「反応ガス」とは、膜形成元素を
含む原料ガスのことであり、適宜不活性ガス等を混合し
たものも総称して反応ガスという。また、「ラジカルガ
ス」とは、不活性ガス等のラジカル生成ガスをプラズマ
中で分解あるいは励起して生成した中性ラジカルを含む
ガスのことである。例えば、基板上にシリコン薄膜を形
成する場合には、反応ガスとしてシランガス(Si
4 :原料ガス)とHeの混合ガスを用い、ラジカル生
成ガスとしてHeとH2 の混合ガスを用いた。この場合
のラジカルガスは、励起状態のHe原子ラジカルと水素
原子ラジカル(水素原子の基底状態を含む)及び中性粒
子(励起されないHe原子、水素分子)の混合状態であ
る。
The term "reaction gas" as used herein means a raw material gas containing a film-forming element, and a mixture of an inert gas and the like is also generically called a reaction gas. The "radical gas" is a gas containing neutral radicals generated by decomposing or exciting a radical-producing gas such as an inert gas in plasma. For example, when forming a silicon thin film on a substrate, silane gas (Si
H 4: raw material gas) and a mixed gas of He, using a mixed gas of He and H 2 as the radical generating gas. In this case, the radical gas is a mixed state of excited He atom radicals, hydrogen atom radicals (including the ground state of hydrogen atoms), and neutral particles (He atoms not excited, hydrogen molecules).

【0017】本発明の高圧力下でのラジカルCVD法に
よる連続成膜方法は、基板表面のみに膜形成元素を含む
反応ガスを供給し、基板表面の近傍に厚さ及び密度が均
一且つ厚さの薄い反応ガスの層流を形成するとともに、
数Torr〜数気圧の高圧力プラズマ中で生成した高密度の
中性ラジカルを含むラジカルガスを反応ガス層流の上層
にその流れを乱さないように供給し、反応ガス中に拡散
してきた中性ラジカルによって反応ガスを分解し、膜形
成元素を基板表面に堆積させて薄膜を連続的に形成する
ことを要旨としている。
In the continuous film forming method by the radical CVD method under high pressure of the present invention, the reaction gas containing the film-forming element is supplied only to the substrate surface, and the thickness and density are uniform and thick near the substrate surface. While forming a thin laminar flow of the reaction gas,
A radical gas containing high-density neutral radicals generated in high-pressure plasma of several Torr to several atmospheres is supplied to the upper layer of the reaction gas laminar flow without disturbing the neutral gas and diffused into the reaction gas. The gist is to decompose a reaction gas by radicals and deposit a film-forming element on the substrate surface to continuously form a thin film.

【0018】また、本発明の連続成膜装置の第1実施例
は、図1(a) に示すように、平行偏平なガス流路1を基
板表面2とそれに対向する壁面3とで形成するととも
に、ガス流路1内であって基板表面2に対して微小間隔
を隔てて仕切板4を配設し、該仕切板4と基板表面2と
で反応ガス流路5を形成し且つ該仕切板4と基板表面2
と対面するガス流路1の他側壁面3とでラジカルガス流
路6を形成し、前記仕切板4の下流側端部を反応ガス流
路5とラジカルガス流路6の合流部7となし、反応ガス
流路5の上流側に膜形成元素を含む反応ガスの供給手段
8を設け、一方ラジカルガス流路6の上流側に数Torr〜
数気圧の高圧力プラズマを発生させる高周波高電界領域
(図示せず)を形成するとともに、該領域に不活性ガス
等のラジカル生成ガスの供給手段9を設けてなり、高圧
力の反応ガス及びラジカル生成ガスをガス供給手段8,
9からそれぞれ供給し、基板表面2に沿って反応ガスの
層流を形成するとともに、高圧力プラズマ中で生成した
高密度の中性ラジカルを含むラジカルガス流を前記合流
部7で反応ガス層流に合流させ、反応ガス中に拡散して
きた中性ラジカルによって反応ガスを分解し、膜形成元
素を基板表面2に堆積させて薄膜を連続的に形成するこ
とを特徴としている。
Further, in the first embodiment of the continuous film forming apparatus of the present invention, as shown in FIG. 1 (a), a parallel and flat gas flow path 1 is formed by a substrate surface 2 and a wall surface 3 facing it. At the same time, a partition plate 4 is disposed in the gas flow path 1 at a minute distance from the substrate surface 2, and the partition plate 4 and the substrate surface 2 form a reaction gas flow path 5 and the partition wall. Plate 4 and substrate surface 2
A radical gas flow channel 6 is formed by the other side wall surface 3 of the gas flow channel 1 facing the above, and the downstream end of the partition plate 4 is not formed as a reaction gas flow channel 5 and a merging portion 7 of the radical gas flow channel 6. A reaction gas supply means 8 containing a film-forming element is provided on the upstream side of the reaction gas flow channel 5, while several Torr to the upstream side of the radical gas flow channel 6.
A high-frequency high-electric field region (not shown) for generating high-pressure plasma of several atmospheres is formed, and a supply means 9 for supplying a radical-producing gas such as an inert gas is provided in the region, and a high-pressure reaction gas and radicals are provided. The generated gas is supplied to the gas supply means 8,
9 to form a laminar flow of the reaction gas along the substrate surface 2, and a radical gas flow containing high-density neutral radicals generated in the high-pressure plasma at the confluence section 7 to form the reaction gas laminar flow. It is characterized in that the reaction gas is decomposed by the neutral radicals diffused in the reaction gas and the film forming element is deposited on the substrate surface 2 to continuously form a thin film.

【0019】ここで、本発明において基板表面2の近傍
に反応ガスの薄い層流を形成し、その上層に反応ガスの
流れを乱さないようにラジカルガスの流れを形成するこ
とが重要である。本実施例では、平行偏平なガス流路1
の幅D1 を100μmに設定し、仕切板4の厚さD2
10〜20μmであり、また反応ガス流路5の幅D3
10〜20μmとしている。
Here, in the present invention, it is important to form a thin laminar flow of the reaction gas near the substrate surface 2 and to form a radical gas flow in the upper layer so as not to disturb the flow of the reaction gas. In this embodiment, the parallel flat gas flow path 1
The width D 1 is set to 100μm, the thickness D 2 of the partition plate 4 is 10 to 20 [mu] m, the width D 3 of the reaction gas channel 5 is set to 10 to 20 [mu] m.

【0020】そして、ラジカル生成ガスの供給手段9か
ら数Torr〜数気圧のラジカル生成ガスを、10MHz〜
100GHzの高周波高電界を印加したプラズマ発生領
域に供給して高圧力プラズマを発生させ、プラズマ中で
生成されたラジカルガスをガス流に伴ってラジカルガス
流路6に供給し、反応ガス流路5に供給した反応ガス流
と前記合流部7で平行に混合し、該合流部7よりも下流
側の成膜領域で反応ガスを分解して基板表面2に堆積さ
せるのである。
Then, the radical producing gas of several Torr to several atmospheres is supplied from the radical producing gas supply means 9 at 10 MHz to
A high-pressure plasma is generated by supplying a high-frequency high electric field of 100 GHz to the plasma generation region, and the radical gas generated in the plasma is supplied to the radical gas flow path 6 along with the gas flow, and the reaction gas flow path 5 The reaction gas flow supplied to the above is mixed in parallel at the merging portion 7, and the reaction gas is decomposed and deposited on the substrate surface 2 in the film forming region on the downstream side of the merging portion 7.

【0021】本発明の連続成膜装置の第2実施例は、図
1(b) に示すように、ガス流路1を平行に配した一対の
基板表面2,2で形成し、各基板表面2に対して微小間
隔を隔てて仕切板4を配設し、該仕切板4と基板表面2
とで反応ガス流路5を形成し且つ両仕切板4,4間でラ
ジカルガス流路6を形成したものであり、各反応ガス流
路5に供給手段8から反応ガスを供給するとともに、ラ
ジカルガス流路6に供給手段9からラジカル生成ガスを
プラズマ発生領域を通過させ、生成したラジカルガスを
供給し、各仕切板4の下流側端部の合流部7で合流さ
せ、その下流側で前記同様に各基板表面2に薄膜を形成
するのである。
In the second embodiment of the continuous film forming apparatus of the present invention, as shown in FIG. 1 (b), a gas flow path 1 is formed by a pair of substrate surfaces 2 and 2 arranged in parallel. 2 is provided with a partition plate 4 at a minute interval, and the partition plate 4 and the substrate surface 2
To form a reaction gas flow path 5 and a radical gas flow path 6 between the partition plates 4 and 4. The reaction gas is supplied from the supply means 8 to each reaction gas flow path 5 and the radical gas flow path 5 is formed. The radical generating gas is passed from the supply means 9 to the gas flow path 6 through the plasma generation region, the generated radical gas is supplied, and is merged at the merging portion 7 at the downstream end of each partition plate 4, and the gas is flown on the downstream side thereof. Similarly, a thin film is formed on the surface 2 of each substrate.

【0022】本発明の連続成膜装置の第3実施例は、図
1(c) に示すように、ガス流路1を基板表面2とそれに
対向する壁面3の平行面3aとで形成するとともに、ガ
ス流路1内であって基板表面2に対して微小間隔を隔て
て仕切板4の平面部4aを配設して反応ガス流路5を形
成し、該平面部4aに対して鋭角に設定した仕切板4の
傾斜部4bと、壁面3に該傾斜部4bと平行に形成した
傾斜面3bとでラジカルガス流路6を形成したものであ
る。ここで、前記仕切板4の下流側先端部は、鋭角を有
するナイフエッジとなっており、その先端部の幅D4
10〜20μmに設定し、下流側端部は合流部7となっ
ている。従って、反応ガス流路5に供給され基板表面2
の近傍に形成された反応ガスの薄い層流と、ラジカルガ
ス流路6に供給されたラジカルガス流とは合流部7で鋭
角に合流し、その下流側で前記同様に各基板表面2に薄
膜を形成するのである。
In the third embodiment of the continuous film forming apparatus of the present invention, as shown in FIG. 1 (c), the gas flow path 1 is formed by the substrate surface 2 and the parallel surface 3a of the wall surface 3 facing it. In the gas flow channel 1, the reaction gas flow channel 5 is formed by arranging the flat surface portion 4a of the partition plate 4 at a minute distance from the substrate surface 2 to form an acute angle with respect to the flat surface portion 4a. A radical gas channel 6 is formed by the set inclined portion 4b of the partition plate 4 and the inclined surface 3b formed on the wall surface 3 in parallel with the inclined portion 4b. Here, the downstream end portion of the partition plate 4 is a knife edge having an acute angle, the width D 4 of the leading end portion is set to 10 to 20 μm, and the downstream end portion is the confluence portion 7. There is. Therefore, the substrate surface 2 which is supplied to the reaction gas channel 5 is
The thin laminar flow of the reaction gas formed in the vicinity of and the radical gas flow supplied to the radical gas flow path 6 merge at an acute angle at the merging portion 7, and the thin film is formed on each substrate surface 2 on the downstream side in the same manner as described above. Is formed.

【0023】前述の実施例において、ガス流路1に沿っ
て反応ガスの流れ方向に対して順方向又は逆方向へ基板
Sを相対的に平行移動させることにより、大きな面積を
連続的に成膜することが可能となる。この場合、基板S
は剛性を有するガラス板や金属板若しくは合成樹脂板等
の剛体板であっても、また可撓性を有する高分子フィル
ムや金属フィルム等の可撓性フィルムであっても良い。
剛体板ではその有効面積にわたって平行移動させ、可撓
性フィルムでは一対のドラムに巻き取って成膜領域に連
続的に繰り送ることで連続的に成膜するのである。
In the above-described embodiment, the substrate S is moved in parallel in the forward or reverse direction with respect to the flow direction of the reaction gas along the gas flow path 1 to continuously form a large area. It becomes possible to do. In this case, the substrate S
May be a rigid plate such as a rigid glass plate, metal plate or synthetic resin plate, or a flexible film such as a flexible polymer film or metal film.
A rigid plate is moved in parallel over its effective area, and a flexible film is wound around a pair of drums and continuously fed to a film forming region to continuously form a film.

【0024】次に、図2〜図4に示した第1実施例に基
づく具体的な成膜装置について説明する。図示したもの
は、本発明に係る成膜原理を実証するための実験装置で
あって、基板Sは固定して成膜するが、本発明は図示し
た実施例に限定されるものではない。
Next, a specific film forming apparatus based on the first embodiment shown in FIGS. 2 to 4 will be described. What is shown is an experimental apparatus for demonstrating the film formation principle according to the present invention, and the substrate S is fixed for film formation, but the present invention is not limited to the illustrated embodiment.

【0025】本成膜装置は、立設した石英ガラス管10
の上下端を上フランジ板11と下フランジ板12とで閉
止し、下フランジ板12の上面には筒状の導電体13を
固定するとともに、導電体13の中心部に絶縁体14を
介在させて円柱状の中心電極体15を固定し、前記導電
体13の上端に固定した電極板16の中心孔17に前記
中心電極体15の先端を臨ませている。また、前記電極
板16の上面には上下方向に貫通した平行な間隙を有す
る成膜部18を取付け、該成膜部18の間隙内の一側面
には基板Sを取付け、残余の空間をガス流路1となし、
該ガス流路1の下端は前記中心孔17に臨ませている。
また、基板表面2に対して下端寄りに配したスペーサ1
9を介して仕切板4を固定し、基板表面2と仕切板4と
の間に形成された反応ガス流路5に、成膜部18及び基
板Sを貫通して反応ガスの供給手段8としての反応ガス
供給管20を接続している。更に、前記導電体13と中
心電極体15との間に形成された空間部には下フランジ
板12に貫通したラジカル生成ガスの供給手段9として
のラジカル生成ガス供給管21を接続している。
The present film-forming apparatus is provided with a quartz glass tube 10 installed upright.
The upper and lower ends are closed by the upper flange plate 11 and the lower flange plate 12, the cylindrical conductor 13 is fixed to the upper surface of the lower flange plate 12, and the insulator 14 is interposed at the center of the conductor 13. The cylindrical center electrode body 15 is fixed, and the tip of the center electrode body 15 is exposed to the center hole 17 of the electrode plate 16 fixed to the upper end of the conductor 13. Further, a film forming portion 18 having a vertical gap penetrating in the vertical direction is attached to the upper surface of the electrode plate 16, and a substrate S is attached to one side surface in the gap of the film forming portion 18 so that the remaining space is filled with gas. Without channel 1
The lower end of the gas flow path 1 faces the central hole 17.
In addition, the spacer 1 arranged near the lower end with respect to the substrate surface 2
A partition plate 4 is fixed via 9 and a reaction gas flow path 5 formed between the substrate surface 2 and the partition plate 4 is penetrated through the film forming section 18 and the substrate S to serve as a reaction gas supply means 8. The reaction gas supply pipe 20 is connected. Further, a radical producing gas supply pipe 21 as a radical producing gas supply means 9 penetrating through the lower flange plate 12 is connected to the space formed between the conductor 13 and the center electrode body 15.

【0026】そして、前記中心電極体15に高周波高電
圧を印加し、一方、電極板16及び導電体13を接地
し、好ましくは下フランジ板12を導電性材料で形成
し、該下フランジ板12に導電体13及び電極板16を
電気的に接続した状態で下フランジ板12を接地し、中
心電極体15の先端と電極板16の中心孔17の間に高
周波高電圧領域を形成する。そこで、前記ラジカル生成
ガス供給管21から1気圧程度のラジカル生成ガスを導
電体13と中心電極体15の間の空間部に供給すると、
高周波高電圧領域でラジカル生成ガスに基づく高圧力プ
ラズマが発生し、このプラズマ発生領域Pで生成された
中性ラジカル等は、中心孔17を通してラジカルガス流
路6に供給される。一方、反応ガス供給管20から供給
された反応ガスは、基板表面2と仕切板4間の反応ガス
流路5を通って基板表面2に沿った厚さの薄い層流とな
る。ここで、反応ガスの圧力は、ラジカル生成ガスの圧
力と一致若しくは若干高く設定する。そして、前記上フ
ランジ板11には排気管22が接続され、図示しないロ
ータリーポンプ等の排気手段が接続され、石英ガラス管
10の内部が排気される。
Then, a high frequency high voltage is applied to the center electrode body 15, while the electrode plate 16 and the conductor 13 are grounded, and the lower flange plate 12 is preferably made of a conductive material. The lower flange plate 12 is grounded while the conductor 13 and the electrode plate 16 are electrically connected to each other, and a high frequency high voltage region is formed between the tip of the center electrode body 15 and the center hole 17 of the electrode plate 16. Therefore, when a radical-producing gas of about 1 atm is supplied from the radical-producing gas supply pipe 21 to the space between the conductor 13 and the center electrode body 15,
High-pressure plasma based on the radical-producing gas is generated in the high-frequency and high-voltage region, and the neutral radicals and the like generated in the plasma-generating region P are supplied to the radical gas passage 6 through the central hole 17. On the other hand, the reaction gas supplied from the reaction gas supply pipe 20 passes through the reaction gas channel 5 between the substrate surface 2 and the partition plate 4 and becomes a thin laminar flow along the substrate surface 2. Here, the pressure of the reaction gas is set to be equal to or slightly higher than the pressure of the radical-producing gas. An exhaust pipe 22 is connected to the upper flange plate 11 and an exhaust means such as a rotary pump (not shown) is connected to exhaust the inside of the quartz glass pipe 10.

【0027】また、プラズマの発生によって導電体1
3、電極板16及び中心電極体15が加熱されるので、
導電体13及び中心電極体15を水冷するための冷却管
23を内部に配管している。更に、高圧力プラズマの発
生状態を確認するため、導電体13の内外に貫通した覗
き窓24と、上フランジ板11であって成膜部18のガ
ス流路1の直上に覗き窓25を設けている。
Further, the electric conductor 1 is generated by the generation of plasma.
3, since the electrode plate 16 and the central electrode body 15 are heated,
A cooling pipe 23 for cooling the conductor 13 and the center electrode body 15 with water is provided inside. Further, in order to confirm the generation state of the high-pressure plasma, a viewing window 24 penetrating the inside and outside of the conductor 13 and a viewing window 25 that is the upper flange plate 11 and immediately above the gas flow path 1 of the film forming unit 18 are provided. ing.

【0028】図5は、第3実施例に基づく具体的な成膜
装置の要部を示し、本成膜装置は基本的には前述の図2
〜図4に示した第1実施例に基づく成膜装置と同様であ
るが、成膜部18の構造が相違するものである。即ち、
本成膜装置の成膜部18は、その間隙内の一側面に基板
Sを取付け、残余の空間をガス流路1となし、断面略三
角形状の仕切板4の平面部4aを基板表面2に対して微
小間隔を隔てて配設して反応ガス流路5を形成し、該平
面部4aに対して鋭角に設定した仕切板4の傾斜部4b
と、ガス流路1の他側壁面3に該傾斜部4bと平行とな
るように切欠形成した傾斜面3bとでラジカルガス流路
6を形成したものである。
FIG. 5 shows a main part of a concrete film forming apparatus based on the third embodiment. This film forming apparatus is basically shown in FIG.
4 is similar to the film forming apparatus according to the first embodiment shown in FIG. 4, but the structure of the film forming unit 18 is different. That is,
In the film forming unit 18 of the present film forming apparatus, the substrate S is attached to one side surface in the gap, the remaining space is used as the gas flow path 1, and the flat surface 4a of the partition plate 4 having a substantially triangular cross section is formed on the substrate surface 2. With respect to the flat portion 4a, the reaction gas passage 5 is formed with a minute gap therebetween, and the inclined portion 4b of the partition plate 4 is set at an acute angle with respect to the flat portion 4a.
The radical gas channel 6 is formed by the inclined surface 3b formed by notching the other side wall surface 3 of the gas channel 1 so as to be parallel to the inclined portion 4b.

【0029】次に、本発明の成膜装置におけるガスの供
給系及び排気系について図6に基づき簡単に説明する。
ガスの供給系は、前記反応ガスの供給手段8とラジカル
生成ガスの供給手段9及び窒素ガス等のパージ用ガスの
供給手段26からなり、ガスの排気系は、大気圧以下又
は大気圧以上のガスを排気し且つ危険な原料ガスを処理
する機能を備えた排気手段27からなる。前記反応ガス
の供給手段8は、本実施例ではシランガスボンベ28か
らフィルター29、ダイアフラム式調整弁30、開閉弁
31、フィルター32、流量計33、ニードル弁34及
び逆止弁35を直列に接続して反応ガス供給管20に接
続するとともに、ヘリウムガスボンベ36からダイアフ
ラム式調整弁37と流量計38を介して反応ガス供給管
20に接続し、シランガスとヘリウムガスの流量を調節
し、混合比率を設定して反応ガス流路5に供給すること
が可能である。また、ラジカル生成ガスの供給手段9
は、本実施例ではヘリウムガスボンベ39からフィルタ
ー40、ダイアフラム式調整弁41及び開閉弁42を介
してラジカル生成ガス供給管21に接続するとともに、
水素ガスボンベ43からダイアフラム式調整弁44、逆
止弁45、流量計46、ニードル弁47及び開閉弁48
を介してラジカル生成ガス供給管21に接続し、ヘリウ
ムガスと水素ガスの流量を調節し、混合比率を設定して
ラジカルガス流路6に供給することが可能である。
Next, a gas supply system and an exhaust system in the film forming apparatus of the present invention will be briefly described with reference to FIG.
The gas supply system is composed of the reaction gas supply means 8 and the radical generation gas supply means 9 and the purge gas supply means 26 such as nitrogen gas, and the gas exhaust system is at or below atmospheric pressure. The exhaust means 27 has a function of exhausting gas and treating dangerous raw material gas. In the present embodiment, the reaction gas supply means 8 includes a silane gas cylinder 28, a filter 29, a diaphragm type adjusting valve 30, an opening / closing valve 31, a filter 32, a flow meter 33, a needle valve 34 and a check valve 35 connected in series. Is connected to the reaction gas supply pipe 20 and is also connected to the reaction gas supply pipe 20 from the helium gas cylinder 36 via the diaphragm type regulating valve 37 and the flow meter 38 to adjust the flow rates of the silane gas and the helium gas to set the mixing ratio. Then, it can be supplied to the reaction gas channel 5. Further, the radical generating gas supply means 9
In the present embodiment, is connected to the radical-producing gas supply pipe 21 from the helium gas cylinder 39 through the filter 40, the diaphragm type regulating valve 41 and the opening / closing valve 42,
From the hydrogen gas cylinder 43 to the diaphragm type adjustment valve 44, the check valve 45, the flow meter 46, the needle valve 47 and the opening / closing valve 48.
It is possible to connect to the radical generation gas supply pipe 21 via the, to adjust the flow rates of the helium gas and the hydrogen gas, set the mixing ratio, and supply the radical gas flow path 6.

【0030】また、パージ用ガスの供給手段26は、窒
素ガスボンベ49からダイアフラム式調整弁50、逆止
弁51及び開閉弁52を介してシランガスボンベ28と
フィルター29との間に接続し、通常は開閉弁52を閉
じておき、シランガスを使用する前に配管内の空気(酸
素)を窒素に置換し、またシランガスを使用した後に配
管内のシランガスを窒素に置換する際に、開閉弁53を
開いて使用するのである。
The purging gas supply means 26 is connected between the nitrogen gas cylinder 49 and the silane gas cylinder 28 and the filter 29 through the diaphragm type regulating valve 50, the check valve 51 and the opening / closing valve 52, and is usually The on-off valve 53 is closed, and the air (oxygen) in the pipe is replaced with nitrogen before using the silane gas, and the on-off valve 53 is opened when the silane gas in the pipe is replaced with nitrogen after using the silane gas. To use.

【0031】また、排気手段27は、排気管22に接続
した配管を分岐し、一方を開閉弁53を介してロータリ
ーポンプ54に接続し、更に開閉弁55を介してシラン
ガスの除外装置56に接続して排気し、他方をフィルタ
ー57及び開閉弁58を介して流量計59に接続し、更
に開閉弁60介して前記除外装置56に接続して排気す
るものである。ここで、成膜装置内の圧力、即ち石英ガ
ラス管10内の圧力を大気圧以下に設定して成膜を行う
場合には、開閉弁58,60を閉じ、開閉弁53,55
を開いてロータリーポンプ54で強制排気し、大気圧以
上に設定して成膜を行う場合には、逆に開閉弁53,5
5を閉じ、開閉弁58,60を開いて自然排気するので
ある。また、前記排気管22は、通常は閉じておく開閉
弁61を介して反応ガス供給管20にも接続し、開閉弁
61を開くことでシランガスの配管内を排気できるよう
にしている。
Further, the exhaust means 27 branches the pipe connected to the exhaust pipe 22, connects one to the rotary pump 54 via the open / close valve 53, and further connects to the silane gas removing device 56 via the open / close valve 55. Then, the other side is connected to the flow meter 59 via the filter 57 and the opening / closing valve 58, and further connected to the exclusion device 56 via the opening / closing valve 60 for exhausting. Here, when film formation is performed by setting the pressure in the film forming apparatus, that is, the pressure in the quartz glass tube 10 to atmospheric pressure or less, the opening / closing valves 58 and 60 are closed, and the opening / closing valves 53 and 55.
On the contrary, when the rotary pump 54 is forcibly evacuated and the film formation is carried out at the atmospheric pressure or higher, the open / close valves 53, 5 are reversed.
5 is closed and the on-off valves 58 and 60 are opened to allow natural exhaust. Further, the exhaust pipe 22 is also connected to the reaction gas supply pipe 20 via an on-off valve 61 which is normally closed so that the inside of the silane gas pipe can be exhausted by opening the on-off valve 61.

【0032】本実施例では、反応ガスとして、シランガ
スとヘリウムガスの混合ガスを用いるが、更に水素ガス
を混合して用いることができるように、前記反応ガス供
給管20は、開閉弁62を介して水素ガスボンベ43に
接続されたニードル弁47と開閉弁48との間に接続さ
れている。このように配管することで、開閉弁62を開
けば反応ガスとして、シランガスとヘリウムガス及び水
素ガスの混合ガスを利用することが可能となる。
In the present embodiment, a mixed gas of silane gas and helium gas is used as the reaction gas, but the reaction gas supply pipe 20 is provided with an opening / closing valve 62 so that hydrogen gas can be mixed and used. It is connected between a needle valve 47 connected to the hydrogen gas cylinder 43 and an opening / closing valve 48. By piping in this way, it is possible to use a mixed gas of silane gas, helium gas, and hydrogen gas as a reaction gas when the opening / closing valve 62 is opened.

【0033】また、前記ロータリーポンプ54は、開閉
弁63を介してシランガスボンベ28に接続されたダイ
アフラム式調整弁30と開閉弁31との間に接続され、
開閉弁63を開くことでシランガスの排気と、またロー
タリーポンプ54内のガスを窒素ガスで置換できるよう
にしている。
The rotary pump 54 is connected between a diaphragm type regulating valve 30 connected to the silane gas cylinder 28 via an opening / closing valve 63 and an opening / closing valve 31,
By opening the on-off valve 63, the silane gas can be exhausted and the gas in the rotary pump 54 can be replaced with nitrogen gas.

【0034】次に、前述の第1実施例に基づく成膜装置
によって実際に基板表面2にシリコン薄膜を形成する場
合を説明する。先ず、反応ガス流路5とラジカルガス流
路6の合流部7における流れの状態を計算機シュミレー
ションで調べ、仕切板4の厚さ及び反応ガス流路5とラ
ジカルガス流路6の幅の最適化を行った。図7は、仕切
板4の厚さを50μm、反応ガス流路5の幅を20μ
m、ラジカルガス流路6の幅を100μmとして、ラジ
カルガスの流れを示している。この場合、合流部7で大
きな渦流が発生していることが判り、ラジカルガス流が
反応ガスの層流を乱すことが推測される。一方、図8
は、仕切板4の厚さを20μm、反応ガス流路5の幅を
20μm、ラジカルガス流路6の幅を100μmとし
て、ラジカルガスの流れを示し、この場合は合流部7で
渦流が発生しないことが判った。しかし、仕切板4の厚
さが20μmの場合でも流線の間隔をもっと細かく刻め
ば、小さい渦流は発生するが、反応ガスの層流を乱さな
い程度であると推測できる。実際に、仕切板4の厚さが
50μmのときに得られた薄膜よりも20μmの場合の
方が、成膜速度も速く、表面の凹凸も少ないことが判っ
た。そこで、本実施例では、仕切板4の厚さを20μm
に設定して以下の成膜を行った。
Next, a case where a silicon thin film is actually formed on the substrate surface 2 by the film forming apparatus according to the first embodiment will be described. First, the flow state of the reaction gas channel 5 and the radical gas channel 6 at the confluence 7 is examined by computer simulation, and the thickness of the partition plate 4 and the widths of the reaction gas channel 5 and the radical gas channel 6 are optimized. I went. In FIG. 7, the partition plate 4 has a thickness of 50 μm and the reaction gas channel 5 has a width of 20 μm.
m and the width of the radical gas channel 6 is 100 μm, the flow of the radical gas is shown. In this case, it is found that a large vortex flow is generated at the confluence portion 7, and it is speculated that the radical gas flow disturbs the laminar flow of the reaction gas. On the other hand, FIG.
Shows the flow of the radical gas when the partition plate 4 has a thickness of 20 μm, the reaction gas flow channel 5 has a width of 20 μm, and the radical gas flow channel 6 has a width of 100 μm. In this case, no swirl is generated at the confluence portion 7. I knew that. However, even if the partition plate 4 has a thickness of 20 μm, it can be presumed that if the intervals of the streamlines are made finer, a small vortex flow is generated, but the laminar flow of the reaction gas is not disturbed. In fact, it was found that when the thickness of the partition plate 4 was 50 μm, when the thickness was 20 μm, the film formation rate was faster and the surface irregularities were smaller than when the thin film was obtained. Therefore, in this embodiment, the partition plate 4 has a thickness of 20 μm.
And the following film formation was performed.

【0035】また、実際の成膜に先立ち、ヘリウムと水
素の混合ガスからなるラジカル生成ガスを用いた大気圧
プラズマを発生させ、混合割合を変化させてシランの分
解量を調べた。シランの分解量は、基板表面へのシリコ
ンの堆積量(μm)を測定して調べた。図9はその結果
を示し、水素濃度が約70%以上の場合においてシラン
の分解量が多くなることを示し、シランの分解にはヘリ
ウムと水素を混合したラジカル生成ガスを用いることが
有効であることが確認された。尚、ヘリウム等の不活性
ガスは、プラズマの発生を容易にし且つその維持も安定
化するとともに、寿命の比較的長い準安定状態の中性ラ
ジカルを生成する上で不可欠であるので、ヘリウムの濃
度は10〜30%に設定することが好ましい。
Further, prior to the actual film formation, atmospheric pressure plasma was generated using a radical-producing gas composed of a mixed gas of helium and hydrogen, and the mixing ratio was changed to examine the amount of silane decomposed. The amount of silane decomposed was examined by measuring the amount of silicon deposited (μm) on the substrate surface. FIG. 9 shows the results, showing that the amount of silane decomposition increases when the hydrogen concentration is about 70% or more, and it is effective to use a radical-forming gas in which helium and hydrogen are mixed for the decomposition of silane. It was confirmed. In addition, an inert gas such as helium is essential for facilitating the generation of plasma and stabilizing its maintenance, and also for generating neutral radicals with a relatively long lifetime in a metastable state. Is preferably set to 10 to 30%.

【0036】そして、膜成形元素としてシリコンを含む
シランガスを主体とした反応ガスを基板表面の近傍に流
すとともに、ヘリウムと水素を混合したラジカル生成ガ
スをプラズマ発生領域を通過させて生成したラジカルガ
スを反応ガスの層流の上層に平行に流してシリコン薄膜
の成膜を行った。成膜条件によらず、反応ガスとラジカ
ルガスの合流部から下流に向かって基板にしっかり付着
したシリコン薄膜が得られた。この場合の成膜条件を以
下の表に示す。
Then, a reaction gas mainly composed of silane gas containing silicon as a film forming element is caused to flow near the substrate surface, and a radical generation gas in which helium and hydrogen are mixed is passed through a plasma generation region to generate a radical gas. A thin silicon film was formed by flowing the reaction gas in parallel with the upper layer. Regardless of the film forming conditions, a silicon thin film firmly attached to the substrate was obtained downstream from the confluence of the reaction gas and the radical gas. The film forming conditions in this case are shown in the following table.

【0037】 [0037]

【0038】この成膜によって、反応ガスとして、純粋
なシラン(ヘリウムで希釈しないこと)を用いて成膜し
た場合、シランの利用効率は数%以下であることが判っ
た。また、最大成膜速度は約5nm/sであった。
By this film formation, it was found that when pure silane (not diluted with helium) was used as a reaction gas, the utilization efficiency of silane was several percent or less. The maximum film formation rate was about 5 nm / s.

【0039】一方、反応ガスとして、シランをヘリウム
で10%に希釈した混合ガス(ヘリウム:90%、シラ
ン:10%)を用いた場合、供給したシランの約70%
が分解し、成膜に寄与した。この場合の最大成膜速度は
約7nm/sであった。また、シランをヘリウムで2.
5%に希釈した混合ガス(ヘリウム:97.5%、シラ
ン:2.5%)を用いた場合、供給したシランの略全て
が分解し、成膜に寄与した。この場合の最大成膜速度は
約2nm/sであった。これらの結果は図10に示し、
このグラフの横軸はシランガス合流部からの距離であ
り、縦軸は成膜速度である。
On the other hand, when a mixed gas of silane diluted to 10% with helium (helium: 90%, silane: 10%) was used as the reaction gas, about 70% of the supplied silane was used.
Decomposed and contributed to film formation. The maximum film formation rate in this case was about 7 nm / s. In addition, silane is used as helium for 2.
When a mixed gas diluted to 5% (helium: 97.5%, silane: 2.5%) was used, almost all of the supplied silane was decomposed and contributed to film formation. The maximum film formation rate in this case was about 2 nm / s. These results are shown in FIG.
The horizontal axis of this graph is the distance from the silane gas merging portion, and the vertical axis is the film formation rate.

【0040】以上のことから、シランガスをヘリウムで
希釈することによって、シランの利用効率を大幅に高め
得るとともに、最大成膜速度も向上することが判った。
また、シランガス合流部からの距離に応じて成膜速度を
制御でき、シランガスの濃度を下げれば合流部から比較
的遠い距離まで略均一厚さの成膜ができることが判っ
た。実際には、ヘリウムで希釈してシランの濃度を2〜
20%の範囲内に設定すれば、効率良く成膜を行えるの
である。一般的に、反応ガスとして、膜形成元素を含む
原料ガスを不活性ガスで希釈することは有効であると言
える。
From the above, it was found that by diluting the silane gas with helium, the utilization efficiency of silane can be greatly increased and the maximum film formation rate can be improved.
Further, it has been found that the film formation rate can be controlled according to the distance from the silane gas joining portion, and that if the concentration of the silane gas is lowered, a film having a substantially uniform thickness can be formed to a distance relatively far from the joining portion. In practice, dilute with helium to increase the concentration of silane from 2 to
If it is set within the range of 20%, the film can be formed efficiently. Generally, it can be said that it is effective to dilute a raw material gas containing a film-forming element with an inert gas as a reaction gas.

【0041】次に、本発明の技術的思想に基づく連続成
膜装置の各種変形例について簡単に説明する。図11
は、長尺の可撓性フィルムFの表面に連続的に薄膜を形
成する装置を示し、導電体13と中心電極体15との関
係は図2に示した装置と同様であるが、電極板16と成
膜部18を変形して図1(c) に示した第3実施例と同様
なガス流路1を形成し、更に可撓性フィルムFの送り機
構を付加したものである。この場合、前記導電体13の
上面64は同一平面となし、該上面64に平行平板状の
電極板16aと、該電極板16aよりも肉厚の平行平板
状の電極板16bとを、互いの端縁を対向させて固定し
ている。一方の電極板16aの上面は前記壁面3の平行
面3aに対応し、端縁上面に切欠形成した鋭角のナイフ
エッジ状の斜面は傾斜面3bに対応している。他方の電
極板16bの上面は前記仕切板4の平面部4aに対応
し、端縁下面に切欠形成した鋭角のナイフエッジ状の斜
面は傾斜部4bに対応している。そして、前記各電極板
16a,16bと平行であり且つ所定間隔を設けてガイ
ド部材65を配設し、該ガイド部材65の下面は平面状
の摺動面66となっている。そこで、ガイド部材65の
両側に一対のドラム67,68を配設し、両ドラム6
7,68に巻回した可撓性フィルムFの中間部をガイド
部材65の摺動面66に密接させている。
Next, various modifications of the continuous film forming apparatus based on the technical idea of the present invention will be briefly described. Figure 11
Shows an apparatus for continuously forming a thin film on the surface of a long flexible film F, and the relationship between the conductor 13 and the center electrode body 15 is the same as the apparatus shown in FIG. 16 and the film forming portion 18 are modified to form a gas flow path 1 similar to that of the third embodiment shown in FIG. 1C, and a flexible film F feeding mechanism is further added. In this case, the upper surface 64 of the conductor 13 is formed in the same plane, and the parallel plate-shaped electrode plate 16a and the parallel plate-shaped electrode plate 16b thicker than the electrode plate 16a are provided on the upper surface 64 with respect to each other. The edges are fixed to face each other. The upper surface of one electrode plate 16a corresponds to the parallel surface 3a of the wall surface 3, and the acute knife-edge-shaped inclined surface formed by notching in the upper surface of the edge corresponds to the inclined surface 3b. The upper surface of the other electrode plate 16b corresponds to the flat surface portion 4a of the partition plate 4, and the sharp knife-edge-shaped slope formed by cutting out the lower surface of the edge corresponds to the inclined portion 4b. A guide member 65 is arranged in parallel with each of the electrode plates 16a and 16b at a predetermined interval, and the lower surface of the guide member 65 is a flat sliding surface 66. Therefore, a pair of drums 67 and 68 are arranged on both sides of the guide member 65, and
The middle part of the flexible film F wound around 7, 68 is brought into close contact with the sliding surface 66 of the guide member 65.

【0042】ここで、可撓性フィルムFと電極板16b
の平面部4aとの間には微小な間隙を有し、該間隙が前
記反応ガス流路5となり、また電極板16aの傾斜面3
bと電極板16bの傾斜部4bとの間隙が前記ラジカル
ガス流路6となり、ラジカルガス流路6の下方開口部は
前記中心電極体15の先端に対峙している。この場合、
反応ガスは可撓性フィルムFと電極板16bの間に供給
され、ラジカルガスは両電極板16a,16bの間隙か
ら供給され、一方のドラム67から他方のドラム68へ
可撓性フィルムFを反応ガスの流れ方向と同じ順方向へ
繰り送ることによって、その下面に連続的に薄膜を形成
するのである。また、ドラム67,68は逆回転させれ
ば、反応ガスの流れ方向と逆方向へ可撓性フィルムFを
移動させることが可能である。その他の構成は前記同様
であるので、同一構成には同一符号を付してその説明は
省略する。
Here, the flexible film F and the electrode plate 16b
Has a minute gap between the flat surface portion 4a and the flat surface portion 4a, which serves as the reaction gas flow path 5, and the inclined surface 3 of the electrode plate 16a.
The gap between b and the inclined portion 4b of the electrode plate 16b serves as the radical gas flow channel 6, and the lower opening of the radical gas flow channel 6 faces the tip of the center electrode body 15. in this case,
The reaction gas is supplied between the flexible film F and the electrode plate 16b, and the radical gas is supplied through the gap between the electrode plates 16a and 16b, and the flexible film F is reacted from one drum 67 to the other drum 68. The thin film is continuously formed on the lower surface by feeding the gas in the same forward direction as the gas flow direction. Further, by rotating the drums 67 and 68 in the reverse direction, the flexible film F can be moved in the direction opposite to the flow direction of the reaction gas. Since other configurations are the same as those described above, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0043】図12は、同時に二つの可撓性フィルムF
1,F2の表面に連続的に薄膜を形成することが可能な
装置の要部を示し、本成膜装置の基本構成は、図1(b)
に示した第2実施例に対応するもである。本成膜装置
は、一対の反対称なガイド部材69,70を対向させて
配設し、それぞれの平行な摺動面69a,70aと端部
側へテーパー状に拡開した傾斜した摺動面69b,70
bとでガス流路1を形成し、各傾斜した摺動面69b,
70bには所定間隔を隔てて電極を兼ねた仕切板71,
72を配設するとともに、各ガイド部材69,70の摺
動面に沿って前記同様にドラム67,68に巻回された
可撓性フィルムF1,F2の中間部を密接させたもので
ある。そして、両仕切板71,72に高周波高電圧を印
加すると、その間隔が狭まった先端間に高周波高電界領
域(プラズマ発生領域P)が形成される。その他の構成
は前記同様であるので、同一構成には同一符号を付して
その説明は省略する。
FIG. 12 shows two flexible films F at the same time.
1A and 1B show the main parts of an apparatus capable of continuously forming a thin film on the surface of F2.
It corresponds to the second embodiment shown in FIG. This film forming apparatus has a pair of antisymmetric guide members 69 and 70 facing each other, and has parallel sliding surfaces 69a and 70a and slanted sliding surfaces that taper to the end side. 69b, 70
The gas flow path 1 is formed by b and each slanted sliding surface 69b,
70b is a partition plate 71 that also functions as an electrode at a predetermined interval.
72 is arranged, and the intermediate portions of the flexible films F1 and F2 wound around the drums 67 and 68 are closely contacted along the sliding surfaces of the guide members 69 and 70. Then, when a high frequency high voltage is applied to both partition plates 71, 72, a high frequency high electric field region (plasma generation region P) is formed between the tips whose intervals are narrowed. Since other configurations are the same as those described above, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0044】図13は、同時に二枚の剛性を有する基板
S1,S2の表面に連続的に薄膜を形成することが可能
な装置の要部を示し、本成膜装置の基本構成は、図1
(c) に示した第3実施例に対応するものである。本成膜
装置は、先端の断面形状がテーパー状を有し、他は平行
な平面部を有する主電極体73と、該主電極体73の先
端部に所定間隔を隔てて且つ互いに所定の間隔を隔てて
配設した一対の副電極体74,75とで電極部を構成
し、前記主電極体73のテーパー状の各斜面73a,7
3bと副電極体74の先端の斜面74a及び副電極体7
5の先端の斜面75aを略平行に設定し、更に主電極体
73の一側平面部と副電極体74の平面部に対して所定
間隔を隔てて平行に基板S1を配するとともに、主電極
体73の他側平面部と副電極体75の平面部に対して所
定間隔を隔てて平行に基板S2を配したものである。こ
こで、前記副電極体74,75と各基板S1,S2の間
が反応ガス流路5となり、主電極体73の各斜面73
a,73bと副電極体74,75の各斜面74a,75
aの間がラジカルガス流路6となる。そして、前記主電
極体73に高周波高電圧を印加し、副電極体74,75
は接地し、主電極体73の先端部にプラズマ発生領域P
が形成される。また、基板S1,S2は電極体に対して
平行に相対的移動可能である。その他の構成は前記同様
であるので、同一構成には同一符号を付してその説明は
省略する。
FIG. 13 shows an essential part of an apparatus capable of continuously forming a thin film on the surfaces of two rigid substrates S1 and S2 at the same time. The basic structure of the film forming apparatus is shown in FIG.
This corresponds to the third embodiment shown in (c). This film forming apparatus has a main electrode body 73 having a tapered cross-section at the tip and other parallel plane portions, and a predetermined interval at the tip of the main electrode body 73 and a predetermined distance from each other. A pair of sub-electrode bodies 74, 75 arranged apart from each other constitutes an electrode portion, and each of the tapered slopes 73a, 7 of the main electrode body 73 is formed.
3b, the inclined surface 74a at the tip of the sub-electrode body 74, and the sub-electrode body 7
5, the inclined surface 75a at the tip of the electrode 5 is set to be substantially parallel, and the substrate S1 is arranged in parallel with the one side flat surface portion of the main electrode body 73 and the flat surface portion of the sub electrode body 74 at a predetermined interval. The substrate S2 is arranged in parallel to the other flat surface portion of the body 73 and the flat surface portion of the sub-electrode body 75 at a predetermined interval. Here, the reaction gas flow path 5 is formed between the sub-electrode bodies 74 and 75 and the substrates S1 and S2, and the slopes 73 of the main electrode body 73 are formed.
a, 73b and slopes 74a, 75 of the sub-electrode bodies 74, 75
A radical gas flow path 6 is provided between a. Then, a high frequency high voltage is applied to the main electrode body 73, and the sub electrode bodies 74 and 75 are
Is grounded, and the plasma generation region P is formed at the tip of the main electrode body 73.
Is formed. Further, the substrates S1 and S2 can be relatively moved in parallel to the electrode body. Since other configurations are the same as those described above, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0045】図14は、広い面積の剛性を有する基板S
の表面に連続的に薄膜を形成することが可能な装置の要
部を示し、本成膜装置の基本構成は、図1(c) に示した
第3実施例に対応するものである。本成膜装置は、電極
ブロック体76の平面部77に開口し且つ該平面部77
に対して鋭角に傾斜したスリット状の反応ガス流路5と
ラジカルガス流路6を略平行に形成し、平面部77に対
して所定間隔を隔てて平行に基板Sを配設したものであ
る。また、反応ガス流路5はラジカルガス流路6よりも
上流側に開口している。反応ガス流路5とラジカルガス
流路6とによって分断された電極ブロック体76の各小
ブロックを下流側から順に76a,76b,76cと
し、各小ブロックは電気的に絶縁されている。そして、
小ブロック76aと76b間に高周波高電圧を印加し
て、ラジカルガス流路6の平面部77に開口した部分の
プラズマ発生領域Pで高周波プラズマが発生し、生成し
たラジカルガスが基板Sと平面部77の間を流れてきた
反応ガス流と合流し、その合流部7の下流で薄膜が形成
される。この場合、基板Sと電極ブロック体76とを相
対的に平行移動させることで、基板Sの大きい面積に連
続的に薄膜を形成することができる。
FIG. 14 shows a substrate S having a large area of rigidity.
The principal part of an apparatus capable of continuously forming a thin film on the surface of the film is shown, and the basic structure of the present film forming apparatus corresponds to the third embodiment shown in FIG. 1 (c). The present film forming apparatus has an opening in the flat surface portion 77 of the electrode block body 76 and the flat surface portion 77.
The reaction gas flow path 5 and the radical gas flow path 6 each having a slit shape inclined at an acute angle are formed substantially parallel to each other, and the substrate S is arranged parallel to the flat surface portion 77 at a predetermined interval. . Further, the reaction gas flow path 5 is open upstream of the radical gas flow path 6. The small blocks of the electrode block body 76 divided by the reaction gas flow path 5 and the radical gas flow path 6 are made into 76a, 76b, and 76c in order from the downstream side, and the small blocks are electrically insulated. And
A high-frequency high voltage is applied between the small blocks 76a and 76b, high-frequency plasma is generated in the plasma generation region P of the portion of the radical gas flow path 6 that is open to the flat portion 77, and the generated radical gas is generated by the substrate S and the flat portion. It merges with the reaction gas flow that has flowed between 77, and a thin film is formed downstream of the merged portion 7. In this case, by relatively moving the substrate S and the electrode block body 76 in parallel, a thin film can be continuously formed in a large area of the substrate S.

【0046】図15は、図14に示した成膜装置の電極
ブロック体76をタンデムに配した構造のものであり、
各電極ブロック体を78,79,80で示している。
尚、図示しないが、各電極ブロック体78,79,80
は、それぞれ電気的に絶縁している。本成膜装置の成膜
原理は前記同様であるが、前述の各電極ブロック体を7
8,79,80の反応ガス流路5及びラジカルガス流路
6に同時にガスを供給するのではなく、例えば電極ブロ
ック体80にガスを供給して一定時間成膜を行い、その
後電極ブロック体80のガス供給を止めて次の下流側の
電極ブロック体79にガス供給を開始し、一定時間成膜
を行うというように、各電極ブロック体での成膜を順番
に行うのである。従って、原理的には基板Sを移動させ
なくても大面積の成膜が可能である。但し、薄膜の均一
性を向上させる目的で、基板Sを相対的に移動させる機
構を設けることが好ましい。その他の構成は前記同様で
あるので、同一構成には同一符号を付してその説明は省
略する。
FIG. 15 shows a structure in which the electrode block bodies 76 of the film forming apparatus shown in FIG. 14 are arranged in tandem.
Each electrode block body is shown by 78, 79, 80.
Although not shown, each electrode block body 78, 79, 80
Are electrically isolated from each other. The film forming principle of this film forming apparatus is the same as the above, but the above-mentioned electrode block bodies are
Instead of simultaneously supplying gas to the reaction gas flow paths 5 and the radical gas flow paths 6 of 8, 79 and 80, for example, gas is supplied to the electrode block body 80 to perform film formation for a certain period of time, and then the electrode block body 80 That is, the gas supply is stopped and the gas supply to the next electrode block 79 on the downstream side is started, and film formation is performed for a certain period of time. Therefore, in principle, a large area film can be formed without moving the substrate S. However, it is preferable to provide a mechanism for relatively moving the substrate S for the purpose of improving the uniformity of the thin film. Since other configurations are the same as those described above, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0047】[0047]

【発明の効果】以上にしてなる本発明の高圧力下でのラ
ジカルCVD法による連続成膜方法及びその装置によれ
ば、プラズマ発生領域、即ちラジカル生成領域と、成膜
領域とを分離し、基板表面のみに膜形成元素を含む反応
ガス(原料ガス)を供給し、基板表面の近傍に厚さ及び
密度が均一且つ厚さの薄い反応ガスの層流を形成した状
態で、プラズマ発生領域で発生された数Torr〜数気圧の
高圧力プラズマ中で生成した高密度の中性ラジカルを含
むラジカルガスを、前記反応ガスの層流の上層に反応ガ
スの流れを乱さないように平行又は鋭角に合流させて、
反応ガス中へ拡散してきた中性ラジカルによって反応ガ
スを分解し、その結果生成された膜形成元素のラジカル
種を基板表面に堆積させて成膜するので、基板を直接プ
ラズマに曝さず、即ち高いエネルギーの荷電粒子による
欠陥等の損傷を導入せず且つ300℃以下の低温度で成
膜を行えるとともに、反応ガスが分解されて生成したラ
ジカル種同士が気相中で凝集することを抑制し、その結
果気相中でクラスタや粉の発生を防止し、電気的・光学
的特性に優れた薄膜を基板表面に高速成膜することがで
きる。
According to the continuous film forming method and apparatus for radical CVD under high pressure according to the present invention as described above, the plasma generating region, that is, the radical generating region and the film forming region are separated, In the plasma generation area, the reaction gas (raw material gas) containing the film-forming element is supplied only to the substrate surface, and a laminar flow of the reaction gas having a uniform thickness and density and a small thickness is formed near the substrate surface. The generated radical gas containing high-density neutral radicals generated in high-pressure plasma of several Torr to several atmospheres is parallel or acutely angled so as not to disturb the flow of the reaction gas in the upper layer of the laminar flow of the reaction gas. Let's merge
The reaction gas is decomposed by the neutral radicals diffused into the reaction gas, and the radical species of the film-forming element generated as a result are deposited on the substrate surface to form a film, so that the substrate is not directly exposed to plasma, that is, high. The film formation can be performed at a low temperature of 300 ° C. or lower without introducing damages such as defects due to charged particles of energy, and the radical species generated by decomposition of the reaction gas can be suppressed from aggregating in the gas phase, As a result, it is possible to prevent the generation of clusters and powders in the vapor phase, and to form a thin film having excellent electrical and optical characteristics on the substrate surface at high speed.

【0048】この場合に、基板を反応ガスの流れ方向に
対して順方向又は逆方向へ相対的に移動させることによ
って、広面積又は連続的な成膜ができ、極めて実用的で
ある。
In this case, by relatively moving the substrate in the forward direction or the reverse direction with respect to the flow direction of the reaction gas, a large area or continuous film formation can be performed, which is extremely practical.

【0049】また、反応ガスを不活性ガスで希釈して基
板表面に供給すれば、反応ガス(原料ガス)の濃度が低
くなり、ラジカル種同士が気相中で凝集してクラスタあ
るいは粉になって基板表面に堆積することを確実に抑制
することができるとともに、高価で後処理が必要な反応
ガスの利用効率を向上させることができる。
If the reaction gas is diluted with an inert gas and supplied to the surface of the substrate, the concentration of the reaction gas (raw material gas) decreases, and the radical species aggregate in the gas phase to form clusters or powders. Therefore, it is possible to reliably suppress the deposition of the reaction gas on the surface of the substrate, and it is possible to improve the utilization efficiency of the reactive gas that is expensive and requires a post-treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成膜装置の基本構成を示す原理図であ
り、(a) は反応ガス流とラジカルガス流を平行に合流さ
せて一枚の基板表面に成膜する場合、(b) は反応ガス流
とラジカルガス流を平行に合流させて同時に二枚の基板
表面に成膜する場合、(c) は反応ガス流とラジカルガス
流を鋭角に合流させて一枚の基板表面に成膜する場合を
示している。
FIG. 1 is a principle diagram showing a basic configuration of a film forming apparatus of the present invention, in which (a) shows a case where a reaction gas flow and a radical gas flow are combined in parallel to form a film on a single substrate surface. ) Is a case where a reaction gas flow and a radical gas flow are combined in parallel to form a film on the surfaces of two substrates at the same time, and (c) is a case where the reaction gas flow and the radical gas flow are combined at an acute angle to form a single substrate surface. The case of forming a film is shown.

【図2】本発明の成膜装置の実施例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of a film forming apparatus of the present invention.

【図3】同じく要部の拡大断面図である。FIG. 3 is also an enlarged cross-sectional view of a main part.

【図4】図3の要部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part of FIG.

【図5】本発明の成膜装置の他の実施例を示す要部の拡
大断面図である。
FIG. 5 is an enlarged cross-sectional view of essential parts showing another embodiment of the film forming apparatus of the present invention.

【図6】ガスの供給系と排気系を示す配管図である。FIG. 6 is a piping diagram showing a gas supply system and an exhaust system.

【図7】反応ガス流とラジカルガス流を平行に合流させ
る場合におけるラジカルガス流の計算機シュミレーショ
ンの結果を示す流線図である。
FIG. 7 is a streamline diagram showing the result of computer simulation of the radical gas flow when the reaction gas flow and the radical gas flow are merged in parallel.

【図8】同じく仕切板を薄くした場合の流線図である。FIG. 8 is a streamline diagram when the partition plate is thinned.

【図9】ラジカル生成ガス中のヘリウムと水素の混合比
に対するシリコン堆積量の変化を示すグラフである。
FIG. 9 is a graph showing changes in the amount of silicon deposited with respect to the mixing ratio of helium and hydrogen in radical-generating gas.

【図10】シランガスをヘリウムで希釈した場合におけ
るシランガス合流部からの距離の変化によるシリコン膜
の成膜速度を示すグラフである。
FIG. 10 is a graph showing a film formation rate of a silicon film according to a change in a distance from a silane gas joining portion when silane gas is diluted with helium.

【図11】可撓性フィルムの表面に連続的に成膜する装
置の要部断面図である。
FIG. 11 is a sectional view of an essential part of an apparatus for continuously forming a film on the surface of a flexible film.

【図12】同じく二枚の可撓性フィルムの表面に同時に
連続的に成膜する装置の要部断面図である。
FIG. 12 is a sectional view of an essential part of an apparatus for continuously and simultaneously forming films on the surfaces of two flexible films.

【図13】二枚の基板の表面に同時に連続的に成膜する
装置の要部断面図である。
FIG. 13 is a cross-sectional view of an essential part of an apparatus for continuously and continuously forming films on the surfaces of two substrates.

【図14】大面積の基板の表面に連続的に成膜する装置
の要部断面図である。
FIG. 14 is a cross-sectional view of an essential part of an apparatus for continuously forming a film on the surface of a large-area substrate.

【図15】同じくタンデム型の成膜装置の要部断面図で
ある。
FIG. 15 is a sectional view of an essential part of a tandem type film forming apparatus.

【符号の説明】[Explanation of symbols]

S,S1,S2 基板 F,F1,F2 可撓性フィルム 1 ガス流路 2 基板表面 3 壁面 3a 平行面 3b 傾斜面 4 仕切板 4a 平面部 4b 傾斜部 5 反応ガス流路 6 ラジカルガス流路 7 合流部 8 反応ガスの供給手段 9 ラジカル生成ガスの供給手段 10 石英ガラス管 11 上フランジ板 12 下フランジ板 13 導電体 14 絶縁体 15 中心電極体 16 電極板 17 中心孔 18 成膜部 19 スペーサ 20 反応ガス供給管 21 ラジカル生成ガス供給管 22 排気管 23 冷却管 24,25 覗き窓 26 パージ用ガスの供給手段 27 排気手段 28 シランガスボンベ 29,32,40,57 フィルター 30,37,41,44,50 ダイアフラム式調整弁 31,42,48,52,53,55,58,60,6
1,62,63 開閉弁 33,38,46,59 流量計 34,47 ニードル弁 35,45,51 逆止弁 36,39 ヘリウムガスボンベ 43 水素ガスボンベ 49 窒素ガスボンベ 54 ロータリーポンプ 56 除外装置 64 上面 65 ガイド部材 66 摺動面 67,68 ドラム 69,70 ガイド部材 71,72 仕切板 73 主電極体 74,75 副電極体 76 電極ブロック体 76a,76b,76c 小ブロック 77 平面部 78,79,80 電極ブロック体
S, S1, S2 substrate F, F1, F2 flexible film 1 gas flow path 2 substrate surface 3 wall surface 3a parallel surface 3b inclined surface 4 partition plate 4a flat surface portion 4b inclined portion 5 reaction gas flow path 6 radical gas flow path 7 Confluence part 8 Supply means for reaction gas 9 Supply means for radical generation gas 10 Quartz glass tube 11 Upper flange plate 12 Lower flange plate 13 Conductor 14 Insulator 15 Center electrode body 16 Electrode plate 17 Center hole 18 Film forming part 19 Spacer 20 Reaction gas supply pipe 21 Radical generation gas supply pipe 22 Exhaust pipe 23 Cooling pipe 24, 25 Peep window 26 Purge gas supply means 27 Exhaust means 28 Silane gas cylinder 29, 32, 40, 57 Filter 30, 37, 41, 44, 50 diaphragm type regulating valve 31, 42, 48, 52, 53, 55, 58, 60, 6
1,62,63 Open / close valve 33,38,46,59 Flow meter 34,47 Needle valve 35,45,51 Check valve 36,39 Helium gas cylinder 43 Hydrogen gas cylinder 49 Nitrogen gas cylinder 54 Rotary pump 56 Exclusion device 64 Upper surface 65 Guide Member 66 Sliding surface 67,68 Drum 69,70 Guide member 71,72 Partition plate 73 Main electrode body 74,75 Sub-electrode body 76 Electrode block body 76a, 76b, 76c Small block 77 Flat portion 78, 79, 80 Electrode block body

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板表面の近傍に厚さ及び密度が均一且
つ厚さの薄い反応ガスの層流を形成するとともに、数To
rr〜数気圧の高圧力プラズマ中で生成した高密度の中性
ラジカルを含むラジカルガスを反応ガス層流の上層にそ
の流れを乱さないように供給し、反応ガス中に拡散して
きた中性ラジカルによって反応ガスを分解し、膜形成元
素を基板表面に堆積させて薄膜を連続的に形成すること
を特徴とする高圧力下でのラジカルCVD法による連続
成膜方法。
1. A laminar flow of a reaction gas having a uniform thickness and density and a small thickness is formed in the vicinity of the surface of the substrate, and a few To
rr ~ Neutral radicals diffused into the reaction gas by supplying a radical gas containing high-density neutral radicals generated in high-pressure plasma of several atmospheres to the upper layer of the reaction gas laminar flow without disturbing the flow. A continuous film formation method by a radical CVD method under high pressure, characterized in that the reaction gas is decomposed by and the film forming element is deposited on the substrate surface to continuously form a thin film.
【請求項2】 前記反応ガスを不活性ガスで希釈して供
給してなる請求項1記載の高圧力下でのラジカルCVD
法による連続成膜方法。
2. The radical CVD under high pressure according to claim 1, wherein the reaction gas is diluted with an inert gas and supplied.
Continuous film formation method.
【請求項3】 前記反応ガス層流とラジカルガス流を平
行又は鋭角に合流させてなる請求項1又は2記載の高圧
力下でのラジカルCVD法による連続成膜方法。
3. The continuous film forming method by a radical CVD method under high pressure according to claim 1, wherein the reaction gas laminar flow and the radical gas flow are merged in parallel or at an acute angle.
【請求項4】 前記基板を反応ガスの流れ方向に対して
順方向又は逆方向へ相対的に移動させてなる請求項1又
は2又は3記載の高圧力下でのラジカルCVD法による
連続成膜方法。
4. A continuous film formation by a radical CVD method under high pressure according to claim 1, 2 or 3, wherein the substrate is moved in a forward direction or a reverse direction relative to a flow direction of a reaction gas. Method.
【請求項5】 ガス流路の少なくとも一側壁面を基板表
面で形成するとともに、ガス流路内であって基板表面に
対して微小間隔を隔てて仕切板を配設し、該仕切板と基
板表面とで反応ガス流路を形成し且つ該仕切板と基板表
面と対面するガス流路の他側壁面とで若しくは一対の仕
切板間でラジカルガス流路を形成し、前記仕切板の下流
側端部を反応ガス流路とラジカルガス流路の合流部とな
し、反応ガス流路の上流側に膜形成元素を含む反応ガス
の供給手段を設け、一方ラジカルガス流路の上流側に数
Torr〜数気圧の高圧力プラズマを発生させる高周波高電
界領域を形成するとともに、該領域に不活性ガス等のラ
ジカル生成ガスの供給手段を設けてなり、高圧力の反応
ガス及びラジカル生成ガスをガス供給手段からそれぞれ
供給し、基板表面に沿って反応ガスの層流を形成すると
ともに、高圧力プラズマ中で生成した高密度の中性ラジ
カルを含むラジカルガス流を前記合流部で反応ガス層流
に合流させ、反応ガス中に拡散してきた中性ラジカルに
よって反応ガスを分解し、膜形成元素を基板表面に堆積
させて薄膜を連続的に形成することを特徴とする高圧力
下でのラジカルCVD法による連続成膜装置。
5. The partition plate and the substrate are formed by forming at least one side wall surface of the gas flow path on the substrate surface and arranging a partition plate in the gas flow path with a minute gap from the substrate surface. Forming a reaction gas flow path with the surface and forming a radical gas flow path with the partition plate and the other side wall surface of the gas flow path facing the substrate surface or between a pair of partition plates, the downstream side of the partition plate The end part is formed as a confluence of the reaction gas flow channel and the radical gas flow channel, a reaction gas supply means containing a film-forming element is provided on the upstream side of the reaction gas flow channel, and a few are provided on the upstream side of the radical gas flow channel.
A high frequency high electric field region for generating high pressure plasma of Torr to several atmospheres is formed, and a means for supplying a radical generating gas such as an inert gas is provided in the region, and a high pressure reaction gas and a radical generating gas are gasified. The reaction gas is supplied from each of the supply means to form a laminar flow of the reaction gas along the surface of the substrate, and a radical gas flow containing high-density neutral radicals generated in high-pressure plasma is formed into the reaction gas laminar flow at the confluence portion. Radical CVD method under high pressure, characterized in that the reaction gas is decomposed by neutral radicals that have been merged and diffused into the reaction gas, and film-forming elements are deposited on the substrate surface to continuously form a thin film. Continuous film forming equipment.
【請求項6】 前記仕切板を平行平板となして基板表面
に対して平行に配設してなる請求項5記載の高圧力下で
のラジカルCVD法による連続成膜装置。
6. A continuous film forming apparatus by a radical CVD method under high pressure according to claim 5, wherein the partition plate is a parallel plate and is arranged parallel to the substrate surface.
【請求項7】 前記仕切板の一面を基板表面に対して平
行に配設し、他面を基板表面に対して鋭角を有する傾斜
面となした請求項5記載の高圧力下でのラジカルCVD
法による連続成膜装置。
7. The radical CVD under high pressure according to claim 5, wherein one surface of the partition plate is arranged parallel to the substrate surface, and the other surface is an inclined surface having an acute angle with respect to the substrate surface.
Continuous film forming apparatus by the method.
【請求項8】 前記仕切板がプラズマ発生用の電極を兼
ねてなる請求項5又は6又は7記載の高圧力下でのラジ
カルCVD法による連続成膜装置。
8. A continuous film forming apparatus by a radical CVD method under high pressure according to claim 5, 6 or 7, wherein said partition plate also serves as an electrode for plasma generation.
【請求項9】 前記基板をガス流路の流れ方向に対して
順方向又は逆方向へ相対的に平行移動させてなる請求項
5又は6又は7又は8記載の高圧力下でのラジカルCV
D法による連続成膜装置。
9. The radical CV under high pressure according to claim 5, 6 or 7 or 8, wherein the substrate is relatively moved in parallel in a forward direction or a reverse direction with respect to the flow direction of the gas passage.
Continuous film forming apparatus by method D.
JP22146694A 1994-09-16 1994-09-16 Continuous film formation method and apparatus by radical CVD under high pressure Expired - Fee Related JP3632999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22146694A JP3632999B2 (en) 1994-09-16 1994-09-16 Continuous film formation method and apparatus by radical CVD under high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22146694A JP3632999B2 (en) 1994-09-16 1994-09-16 Continuous film formation method and apparatus by radical CVD under high pressure

Publications (2)

Publication Number Publication Date
JPH0881778A true JPH0881778A (en) 1996-03-26
JP3632999B2 JP3632999B2 (en) 2005-03-30

Family

ID=16767163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22146694A Expired - Fee Related JP3632999B2 (en) 1994-09-16 1994-09-16 Continuous film formation method and apparatus by radical CVD under high pressure

Country Status (1)

Country Link
JP (1) JP3632999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209252A2 (en) * 2000-09-15 2002-05-29 Shipley Co. L.L.C. Continuous coating apparatus
JPWO2005098918A1 (en) * 2004-04-02 2008-03-06 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, recording medium, and software

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209252A2 (en) * 2000-09-15 2002-05-29 Shipley Co. L.L.C. Continuous coating apparatus
EP1209252A3 (en) * 2000-09-15 2002-11-27 Shipley Co. L.L.C. Continuous coating apparatus
US6869484B2 (en) 2000-09-15 2005-03-22 Shipley Company, L.L.C. Continuous feed coater
JPWO2005098918A1 (en) * 2004-04-02 2008-03-06 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, recording medium, and software
JP4493649B2 (en) * 2004-04-02 2010-06-30 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, recording medium, and software
US7836900B2 (en) 2004-04-02 2010-11-23 Tokyo Electron Limited Substrate processing system, substrate processing method, recording medium and software

Also Published As

Publication number Publication date
JP3632999B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
CA2182247C (en) Apparatus and method for treatment of substrate surface using plasma focused below orifice leading from chamber into substrate containing area
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
US5330802A (en) Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
US4908329A (en) Process for the formation of a functional deposited film containing groups II and VI atoms by microwave plasma chemical vapor deposition process
US4914052A (en) Process for the formation of a functional deposited film containing groups III and V atoms by microwave plasma chemical vapor deposition process
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
US5183685A (en) Diamond film deposition by ECR CVD using a catalyst gas
JPH04337076A (en) High-speed film formation by plasma and radical cvd method under high pressure
JPH01230496A (en) Novel diamond carbon membrane and its production
JP3632999B2 (en) Continuous film formation method and apparatus by radical CVD under high pressure
US5993919A (en) Method of synthesizing diamond
JPH02167891A (en) Gas-phase synthetic device of diamond film
RU2792526C1 (en) Diamond coating device
RU2788258C1 (en) Gas jet method for deposition of diamond films with activation in microwave discharge plasma
JP3160194B2 (en) Plasma processing method and plasma processing apparatus
JPS6267822A (en) Plasma processor
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JP3010333B2 (en) Film forming method and film forming apparatus
US20050263071A1 (en) Apparatus and system for manufacturing a semiconductor
JPH0532489A (en) Synthesis of diamond using plasma
JP3272187B2 (en) Apparatus and method for forming semiconductor thin film
JP2956395B2 (en) Magnetic field plasma processing equipment
CN115287624A (en) Technology for preparing carbon-based material film based on combined action of bias voltage and laser
JP3359475B2 (en) Thin film forming method and thin film forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Effective date: 20041015

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110107

LAPS Cancellation because of no payment of annual fees