JPH0880518A - Inside loading filling material and inside loading filling method - Google Patents

Inside loading filling material and inside loading filling method

Info

Publication number
JPH0880518A
JPH0880518A JP25265394A JP25265394A JPH0880518A JP H0880518 A JPH0880518 A JP H0880518A JP 25265394 A JP25265394 A JP 25265394A JP 25265394 A JP25265394 A JP 25265394A JP H0880518 A JPH0880518 A JP H0880518A
Authority
JP
Japan
Prior art keywords
solution
cement
mixed
filling
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25265394A
Other languages
Japanese (ja)
Other versions
JP2856345B2 (en
Inventor
Masaaki Noguchi
雅朗 野口
Masaru Shirasaka
優 白坂
Nobuaki Morishita
宣明 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP25265394A priority Critical patent/JP2856345B2/en
Publication of JPH0880518A publication Critical patent/JPH0880518A/en
Application granted granted Critical
Publication of JP2856345B2 publication Critical patent/JP2856345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: To contrive manufacturing of an inside loading filling material facilitating long distance pressure feed, by a method wherein a specific solution produced by mixing up a mixture of cement and fly ash taken as a curing material, a retarder, a thickening agent and water with one another and a specific solution of an aqueous solution of sodium silicate are mixed up with each other by pressure-feeding up to an operating place. CONSTITUTION: A 0.1-0.5wt.% retarder, 0.01-1.5wt.% thickening agent and at least 80wt.% water mixed up with a curing material produced by mixing up cement and fly ash with each other at a weight ratio of 7:3-3:7 are taken as a solution (A). A solution (B) comprised of an aqueous solution of sodium silicate mixed up with the solution (A) at a weight ratio of solution (A):solution (B)=95:5-80:20 is taken as an inside loading filling material. On the occasion of operation, the solution (A) and solution (B) are pressure-fed separately. Since both the solutions have a high fluidity, long distance pressure feed is possible. When both the solutions are mixed up with each other at the tip part of a pressure feed pipe, a calcium ion of the cement within the solution (A) and a silicate ion of the sodium silicate within the solution (B) react on each other and gel rapidly, hardened in a short time and strength is revealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中込め充填材及び中込
め充填方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filling material and a filling method.

【0002】[0002]

【従来の技術】中込め充填材とは、地下構造物の中空内
に一部あるいは全部に中込めする充填材であり、これを
用いた施工方法が中込め充填方法である。例えばシール
ド工法の二次施工において、図1のようにシールドトン
ネル内の上水道管、下水道管などを固定化したり、水平
面を築く為に充填されるものが中込め充填材料であり、
その工法が中込め充填方法である。従来行われているシ
ールドトンネルの二次施工方法の中込め充填方法は、水
道管などを配管した後、トンネル先端部分の打設基地よ
り、生コンクリートを充填材として圧送管を通じてコン
クリートポンプで圧送し、充填する方法が行われてい
る。なお、図1中の11はセグメント、12は生コンク
リート、13は水道管である。
2. Description of the Related Art A filling material is a filling material which is partially or wholly filled in the hollow of an underground structure, and a construction method using this is a filling material filling method. For example, in the secondary construction of the shield method, what is filled to fix the water pipes, sewer pipes, etc. in the shield tunnel as shown in FIG.
That method is the filling method. The conventional method of secondary filling of shield tunnels is to fill the inside of the tunnel with a concrete pump from a casting base at the end of the tunnel, using fresh concrete as a filling material through a pressure-feeding pipe. , The method of filling is done. In FIG. 1, 11 is a segment, 12 is fresh concrete, and 13 is a water pipe.

【0003】しかしながら、生コンクリートは流動性が
悪い為、コンクリートポンプの圧送圧力を80kg/c
以上の高圧とすることが要求されているので危険を
伴うことが多い。また、高圧で圧送する為、圧送管内が
損傷したり、ポンプが停止したり、またはこれに伴い生
コンクリートの品質がばらつくなどが指摘されている。
また圧送距離も、1000m以上の長距離圧送は非常に
困難で、生コンクリートのポンプ圧送は1日の施工は数
十メートルが限界であり、施工に相当の時間を要する。
さらに、生コンクリート打設終了後に圧送管内の水洗い
を行わなければならず、その為大量の水の確保が必要と
なり、打設基地設備内に、水タンク設備等を必要とす
る。
However, since the fresh concrete has poor fluidity, the pressure of the concrete pump is 80 kg / c.
Since a high pressure of m 2 or more is required, it is often dangerous. Further, it is pointed out that since the pressure is fed at a high pressure, the inside of the pressure feeding pipe is damaged, the pump is stopped, or the quality of the ready-mixed concrete is varied accordingly.
In addition, the pumping distance is very difficult to pump over a long distance of 1000 m or more, and the pumping of fresh concrete is limited to several tens of meters per day, which requires a considerable amount of time.
Furthermore, after pouring the ready-mixed concrete, it is necessary to wash the inside of the pumping pipe with water, so that it is necessary to secure a large amount of water, and a water tank facility, etc. is required in the pouring base facility.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の中込
め充填材である生コンクリートに代わる長距離圧送を容
易とした中込め充填材料及び中込め充填方法を提供する
こと目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an infill filling material and an infill filling method, which facilitates long-distance pressure-feeding, as an alternative to conventional concrete which is a conventional infill filling material.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明者らは種々研究の結果、セメントとフライア
ッシュとの混合物よりなる硬化材と増粘剤と遅延剤と水
とを混合したA液と、珪酸ソーダ水溶液からなるB液と
をそれぞれ別個に圧送することにより、両液は低圧で圧
送できること、これにより圧送距離を長くできること、
両液を充填個所で混合すると良好な中込め充填材となる
ことを見いだし、本発明を完成した。
In order to achieve this object, the inventors of the present invention have, as a result of various studies, mixed a hardening agent consisting of a mixture of cement and fly ash, a thickener, a retarder and water. By separately pumping the liquid A and the liquid B composed of a sodium silicate aqueous solution, both liquids can be pumped at a low pressure, and thus the pumping distance can be lengthened.
It was found that a good filling filler can be obtained by mixing both liquids at the filling point, and the present invention was completed.

【0006】すなわち本発明は、セメントとフライアッ
シュとの混合物からなる硬化材と遅延剤と増粘剤と水と
を混合したA液と、珪酸ソーダ水溶液からなるB液とを
混合してなる中込め充填材(請求項1)、セメントとフ
ライアッシュとを重量比で7:3〜3:7の割合で混合
した硬化材に対し、遅延剤を0.1〜0.5重量%、増
粘剤を0.01〜1.5重量%、水を80重量%以上混
合したA液と、珪酸ソーダ水溶液からなるB液とを、A
液:B液=95:5〜80:20の重量比で混合した請
求項1記載の中込め充填材(請求項2)、シールドトン
ネルの二次施工用の中込め充填材である請求項1または
2記載の中込め充填材(請求項3)、セメントとフライ
アッシュとの混合物からなる硬化材と遅延剤と増粘剤と
水とを混合したA液と、珪酸ソーダ水溶液からなるB液
とを充填個所まで圧送し、両液を混合することを特徴と
する中込め充填方法(請求項4)、セメントとフライア
ッシュとの混合物からなる硬化材と遅延剤と増粘剤と水
とを混合したA液と、珪酸ソーダ水溶液からなるB液と
を充填個所まで圧送し、両液を混合して中込めし、つい
で中込め硬化体の上部表面にセメントモルタルを塗布す
ることを特徴とする中込め充填方法(請求項5)、セメ
ントとフライアッシュとを重量比で7:3〜3:7の割
合で混合した硬化材に対し、遅延剤を0.1〜0.5重
量%、増粘剤を0.01〜1.5重量%、水を80重量
%以上混合したA液と、珪酸ソーダ水溶液からなるB液
とを、A液:B液=95:5〜80:20の重量比で充
填個所まで圧送し、両液を混合する請求項4または5記
載の中込め充填方法(請求項6)、セメントモルタルを
5mm以上の厚さに塗布する請求項5記載の中込め充填
方法(請求項7)、およびシールドトンネルの二次施工
の中込め充填方法である請求項4ないし7のいずれか一
項記載の中込め充填方法である。
That is, the present invention comprises a mixture of a hardening agent made of a mixture of cement and fly ash, a retarder, a thickener, and water, and a solution B made of an aqueous solution of sodium silicate. 0.1 to 0.5% by weight of a retarder and a thickening agent with respect to a filling material (claim 1), a hardening material obtained by mixing cement and fly ash in a weight ratio of 7: 3 to 3: 7. A solution in which 0.01 to 1.5% by weight of the agent and 80% by weight or more of water are mixed, and B solution consisting of an aqueous solution of sodium silicate are
Liquid: B liquid = 95: 5 to 80: 20 mixed in a weight ratio of claim 1 infill filler (claim 2), shield tunnel secondary construction infill filler. Alternatively, the filling agent according to claim 2 (claim 3), a liquid A in which a hardening material made of a mixture of cement and fly ash, a retarder, a thickener and water are mixed, and a liquid B made of an aqueous solution of sodium silicate. Is sent under pressure to the filling point, and the two liquids are mixed together. (Claim 4) A hardening agent consisting of a mixture of cement and fly ash, a retarder, a thickener, and water are mixed. Liquid A and liquid B consisting of an aqueous solution of sodium silicate are pressure-fed to a filling point, both liquids are mixed and filled in, and then cement mortar is applied to the upper surface of the in-fill cured body. Filling and filling method (claim 5), cement and flyer 0.1% to 0.5% by weight of a retarder and 0.01% to 1.5% by weight of a thickener, with respect to a hardening material in which a weight ratio of 7: 3 to 3: 7 is mixed. Liquid A mixed with 80% by weight or more of water and liquid B composed of an aqueous solution of sodium silicate are pressure-fed to a filling point at a weight ratio of liquid A: liquid B = 95: 5 to 80:20 to mix both liquids. Claim 4 or 5 filling method (Claim 6), cement mortar is applied to a thickness of 5 mm or more, filling method (Claim 7), and secondary construction of a shield tunnel. The fill-in filling method according to any one of claims 4 to 7, which is a fill-in filling method.

【0007】以下に本発明を詳細に説明する。A液はセ
メントとフライアッシュとの混合物からなる硬化材と遅
延剤と増粘剤と水とを混合したものである。ここで硬化
材中のセメントとしては、普通、早強、超早強、中庸熱
ポルトランドセメントや、高炉、フライアッシュセメン
トなどの混合セメントを挙げることができる。また、フ
ライアッシュは、JIS規格品、規格外品のいずれのも
のを用いることができるが、JIS規格品のものを用い
るのが好ましい。セメントとフライアッシュとの混合割
合は特に限定されないが、流動性、材料分離、強度等の
点から、セメントとフライアッシュとの混合割合は重量
比で7:3〜3:7の割合とするのが好ましい。
The present invention will be described in detail below. The liquid A is a mixture of a hardening material composed of a mixture of cement and fly ash, a retarder, a thickener, and water. Here, examples of the cement in the hardened material include normal, early strength, super early strength, moderate heat Portland cement, and mixed cement such as blast furnace and fly ash cement. As the fly ash, either JIS standard products or non-standard products can be used, but it is preferable to use JIS standard products. The mixing ratio of cement and fly ash is not particularly limited, but from the viewpoint of fluidity, material separation, strength, etc., the mixing ratio of cement and fly ash is 7: 3 to 3: 7 by weight. Is preferred.

【0008】遅延剤としては、グルコン酸系、オキシカ
ルボン酸系、有機リン酸系等のセメント用の遅延剤を挙
げることができる。遅延剤は硬化材に対し0.1〜0.
5重量%添加するのが好ましい。
Examples of the retarder include gluconic acid-based, oxycarboxylic acid-based, and organic phosphoric acid-based retarders for cement. The retarder is 0.1 to 0.
It is preferable to add 5% by weight.

【0009】増粘剤としては、セルロース系、アミド
系、バイオポリマー系等の有機系のもの、またベントナ
イト等の無機系のものを用いることができるが、有機系
のものは添加量を少なくできるから、有機系の増粘剤を
用いるのが好ましい。増粘剤は硬化材に対し0.01〜
1.5重量%添加するのが好ましい。
As the thickener, an organic type such as a cellulose type, an amide type, a biopolymer type or an inorganic type thickener such as bentonite can be used, but the addition amount of the organic type can be reduced. Therefore, it is preferable to use an organic thickener. The thickener is 0.01 to the curing material.
It is preferable to add 1.5% by weight.

【0010】水の量は、強度および流動性の面から硬化
材に対し80重量%以上とするのが好ましいが、200
重量%を越えると材料分離が起こることもあるので、8
0〜200重量%とするのがより好ましい。
From the viewpoint of strength and fluidity, the amount of water is preferably 80% by weight or more with respect to the hardened material.
If the content exceeds 8% by weight, material separation may occur.
It is more preferable to set it to 0 to 200% by weight.

【0011】B液の珪酸ソーダ水溶液は、珪酸ソーダの
濃度が5〜30%のものを用いるのが好ましい。
It is preferable to use the aqueous solution of sodium silicate of the liquid B having a concentration of sodium silicate of 5 to 30%.

【0012】A液とB液との混合割合は、重量比で9
5:5〜80:20とするのが良い。
The mixing ratio of liquid A and liquid B is 9 by weight.
It is good to set it to 5: 5 to 80:20.

【0013】次に、中込め充填方法について説明する。
A液およびB液は、それぞれ良好な流動性を示すため、
1000m以上の圧送管でも充填個所まで別個に容易に
圧送することができる。圧送管は、シールド工法におい
て施工時に裏込め用の圧送管が設置されている場合が多
いので、この圧送管を利用することができる。圧送管の
先端部でA液およびB液を混合することで、数秒から数
十秒で急結し、1時間1kgf/cmの強度を発現す
るので、短時間で中込め硬化体上部での施工が可能とな
り、施工時間が大幅に短縮することができる。
Next, the filling method for filling the inside will be described.
Since the liquids A and B show good fluidity,
Even a pressure-feeding pipe having a length of 1000 m or more can be easily pressure-fed separately to the filling point. As the pressure-feeding pipe is often provided with a back-filling pressure-feeding pipe at the time of construction in the shield construction method, this pressure-feeding pipe can be used. By mixing solution A and solution B at the tip of the pressure-feeding pipe, the solution is rapidly set in a few seconds to a few tens of seconds, and a strength of 1 kgf / cm 2 is developed for 1 hour. Construction is possible and construction time can be greatly reduced.

【0014】さらに、中込め硬化体の上部表面に、5m
m以上のセメントモルタルを塗布することにより、中込
め硬化体の乾燥を抑え、乾燥収縮による強度低下を防ぐ
ことができる。セメントモルタルの塗布厚は、5mm以
上とするのが好ましいが、5〜100mm厚とするのが
より好ましい。このようにした施工後のシールドの断面
を図2に示す。なお、図2中の21はセグメント、22
は本発明中込め充填材、23は水道管、24はセメント
モルタルである。
Furthermore, 5 m on the upper surface of the embedding cured product.
By applying a cement mortar of m or more, it is possible to suppress the drying of the infill-cured product and prevent the strength from decreasing due to drying shrinkage. The coating thickness of the cement mortar is preferably 5 mm or more, more preferably 5 to 100 mm. A cross section of the shield thus constructed is shown in FIG. In FIG. 2, 21 is a segment, 22
Is the filling material of the present invention, 23 is a water pipe, and 24 is cement mortar.

【0015】[0015]

【作用】A液中の硬化材中のセメントは、水和反応によ
り硬化して、強度を発現するものである。またフライア
ッシュはポソラン活性の物質で、セメントの水和物と反
応(ポゾラン反応)することで、長期強度が大きくな
る。また、セメント粒子のすき間にフライアッシュが充
填し、またセメントはゼータ電位を持っているためフラ
イアッシュ粒子と凝集し、密度を高くし、材料分離を少
なくする。遅延剤は、電位をもつ物質で、セメントの粒
子表面に付着して水和反応を遅らせる働きがある。遅延
剤の量を加減することでセメントの反応時間を制御し、
可使時間を長くすることができる。増粘剤は、粘性を高
める薬剤であり、A液とB液との混合物の材料分離を少
なくする。
The cement in the hardening material in the liquid A is hardened by a hydration reaction and exhibits strength. Fly ash is a posolan active substance that reacts with cement hydrate (pozzolan reaction) to increase long-term strength. Further, fly ash is filled in the voids of the cement particles, and because the cement has a zeta potential, it aggregates with the fly ash particles to increase the density and reduce the material separation. The retarder is a substance having an electric potential and adheres to the surface of cement particles to delay the hydration reaction. Control the reaction time of cement by adjusting the amount of retarder,
Pot life can be extended. The thickening agent is a viscosity-increasing agent and reduces the material separation of the mixture of liquid A and liquid B.

【0016】A液およびB液は、それぞれ流動性が高い
液であるから、長距離圧送が可能となる。また、A液と
B液とを混合することにより、A液中のセメントのカル
シウムイオンとB液中の珪酸ソーダのシリケートイオン
が急速に反応し、ゲル化し、短時間で硬化し、強度を発
現する。
Since the liquids A and B have high fluidity, they can be pressure-fed over a long distance. In addition, by mixing the liquids A and B, the calcium ions of the cement in the liquid A and the silicate ions of sodium silicate in the liquid B rapidly react, gel, harden in a short time, and develop strength. To do.

【0017】A液およびB液を混合し硬化せしめた後、
大気中で養生した場合、乾燥収縮によりクラックが発生
し、このため中込め硬化体の強度が低下することがあ
る。従って乾燥しない状態で養生するようにすれば、ク
ラックの発生を抑制し、強度低下を抑えることができ
る。中込め硬化体の上部表面にセメントモルタルを塗布
すれば、乾燥収縮を防ぎ、これによりクラックの発生を
抑制することができ強度を確保することができる。
After mixing the liquids A and B and curing them,
When cured in the air, cracks may occur due to drying shrinkage, which may reduce the strength of the infill cured product. Therefore, if curing is performed in a non-dried state, it is possible to suppress the occurrence of cracks and suppress the decrease in strength. If cement mortar is applied to the upper surface of the infill-cured product, drying shrinkage can be prevented, thereby suppressing the occurrence of cracks and ensuring strength.

【0018】[0018]

【実施例】以下に、実施例に基づきさらに本発明を説明
する。本実施例で使用した材料を表1に示す。
EXAMPLES The present invention will be further described below based on examples. The materials used in this example are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例1)水に遅延剤、増粘剤を混合
し、この溶液にあらかじめ混合したセメントとフライア
ッシュとの混合物を添加し、2分間混合しA液とした。
A液の最適な配合比を調べるため、表2に従って配合
し、この液について、フロー値を測定した。
(Example 1) A retarder and a thickener were mixed with water, and a mixture of cement and fly ash, which had been mixed in advance, was added to this solution and mixed for 2 minutes to prepare a liquid A.
In order to investigate the optimum blending ratio of the liquid A, the liquid was blended according to Table 2 and the flow value was measured for this liquid.

【0021】[0021]

【表2】 [Table 2]

【0022】図3は、表2のA液の各配合につき、セメ
ント(C)とフライアッシュ(FA)との重量比(C:
FA比)を変えたときの、水/(セメント+フライアッ
シュ)=W/(C+FA)とフロー値との関係を示した
ものである。図3から、W/(C+FA)比が80重量
%以上でC:FA比に関係無くすべて40cmを越えた
フロー値となった。フロー値が大きい程、流動性が高く
なるから、水/硬化材比80重量%以上で、良好な流動
性を示すことが分かった。従って水/硬化材比は80重
量%以上であれば良いが、200重量%を越えると材料
分離が起こることがあるので、80〜200重量%とす
るのが好ましい。なお、セメントとフライアッシュの重
量比10:0、すなわちセメント単身の場合、著しい浮
き水が見られ、材料分離を起こすことが確認された。ま
た、セメントとフライアッシュの重量比が0:10、す
なわちフライアッシュ単身の場合はB液と混合しても硬
化しない。従って、セメントとフライアッシュとの混合
割合はいずれの割合でも良いが、セメント:フライアッ
シュ=3:7〜7:3とするのが好ましい。
FIG. 3 shows the weight ratio of cement (C) and fly ash (FA) (C:
It shows the relationship between water / (cement + fly ash) = W / (C + FA) and the flow value when the FA ratio) is changed. From FIG. 3, when the W / (C + FA) ratio was 80% by weight or more, all flow values exceeded 40 cm regardless of the C: FA ratio. Since the larger the flow value, the higher the fluidity, it was found that the water / curing material ratio of 80% by weight or more shows good fluidity. Therefore, the water / curing material ratio may be 80% by weight or more, but if it exceeds 200% by weight, material separation may occur, so 80 to 200% by weight is preferable. In addition, when the weight ratio of cement and fly ash was 10: 0, that is, in the case of cement alone, remarkable floating water was observed, and it was confirmed that material separation occurs. Further, when the weight ratio of cement and fly ash is 0:10, that is, when the fly ash is alone, it does not cure even when mixed with the liquid B. Therefore, the mixing ratio of cement and fly ash may be any ratio, but cement: fly ash = 3: 7 to 7: 3 is preferable.

【0023】遅延剤の最適添加量を調べるため、表3に
従って配合し、A液についての可使時間を測定した。
In order to examine the optimum amount of the retarder added, the compounds were blended according to Table 3 and the pot life of solution A was measured.

【0024】[0024]

【表3】 [Table 3]

【0025】可使時間測定結果を表4に示す。遅延剤
0.05%以下の添加量では、8時間後にA液が硬化し
てしまい、B液と混合して中込め充填することができな
い。しかしながら、0.1%添加した場合、24時間後
で使用可能であることが分かる。なお、施工するにあた
って、1週間を越える可使時間は必要なく、従って遅延
剤は硬化材に対し0.1〜0.5重量%添加するのが好
ましい。
Table 4 shows the measurement results of the pot life. If the amount of the retarder added is 0.05% or less, the solution A will be cured after 8 hours, and it will not be possible to mix and fill the solution B with the filler. However, it can be seen that when 0.1% is added, it can be used after 24 hours. It should be noted that a pot life of more than one week is not required for the construction, and therefore it is preferable to add the retarder in an amount of 0.1 to 0.5% by weight based on the hardening material.

【0026】[0026]

【表4】 [Table 4]

【0027】増粘剤を硬化材に対して0.01重量%未
満添加した場合、A液は著しい材料分離が生じ、増粘剤
としての役割を果たさなくなる。また1.5重量%を越
えた量を添加するとA液の粘性が高くなり圧送性に劣る
ようになる。従って、増粘剤は硬化材に対し0.01〜
1.5重量%添加するのが好ましい。
When the thickener is added in an amount of less than 0.01% by weight with respect to the hardener, the liquid A undergoes significant material separation and cannot serve as a thickener. On the other hand, if the amount added exceeds 1.5% by weight, the viscosity of the liquid A becomes high and the pumpability becomes poor. Therefore, the thickener is 0.01 to
It is preferable to add 1.5% by weight.

【0028】(実施例2)水に遅延剤、増粘剤を添加
し、セメントとフライアッシュとを混合したものをA液
とし、珪酸ソーダ水溶液からなるB液とを混合したもの
を内径50mm、高さ200mmのモールドに入れた。
ついで、モールド内部の充填材上部にセメントモルタル
(水:セメント:標準砂=1:0.65:1)を10m
mの厚さに塗布して、所定の時間までモルタル養生し
た。所定時間養生後、モールドから試料を外し、直径5
0mm、高さ100mmの供試体を得た。得られた供試
体につき一軸圧縮強度試験を行った。A液とB液との配
合を表5に示す。比較の為、A液とB液とを混合したも
のを上記と同様のモールドに充填した後、モールドを外
し、直径50mm、高さ100mmの供試体を取り出し
た。供試体をそれぞれ20℃の水中養生、大気養生、湿
潤養生した後、一軸圧縮強度試験を行った。
(Example 2) A mixture of a retarder and a thickener, mixed with cement and fly ash, was used as solution A, and solution B composed of an aqueous solution of sodium silicate was mixed with an inner diameter of 50 mm. It was put in a mold having a height of 200 mm.
Then, 10m of cement mortar (water: cement: standard sand = 1: 0.65: 1) is placed on top of the filler inside the mold.
It was applied to a thickness of m and cured with mortar for a predetermined time. After curing for a predetermined time, remove the sample from the mold and set the diameter to 5
A specimen having a size of 0 mm and a height of 100 mm was obtained. A uniaxial compressive strength test was performed on the obtained specimen. Table 5 shows the composition of the solutions A and B. For comparison, after the mixture of the liquid A and the liquid B was filled in the same mold as described above, the mold was removed, and a specimen having a diameter of 50 mm and a height of 100 mm was taken out. After subjecting each of the specimens to water-curing, air-curing and wet-curing at 20 ° C., a uniaxial compressive strength test was conducted.

【0029】[0029]

【表5】 [Table 5]

【0030】一軸圧縮強度試験結果を図4に示す。1時
間強度では、すべての養生条件で3gf/cm前後の
値を示し、1時間以上で充填後の施工が可能となること
が分かる。また1日後の強度はすべて30kgf/cm
であり、強度増加が見られた。大気養生供試体につい
ては7日後でクラックが発生し、明らかな強度低下が起
きたことが分かる。しかしながら、モルタル養生、水中
養生、湿潤養生の3種類養生条件では、7日で70kg
f/cm前後、28日後ではモルタル養生が若干強度
が低下するが、いずれの養生条件でも強度は増加する。
しかし現場の施工では、水中養生は不可能である。一
方、湿潤養生は養生方法としては良い方法であるが、現
場施工では確実な養生方法とは言えないから、セメント
モルタルを上部に塗布したモルタル養生方法が最も適し
ている。
The results of the uniaxial compressive strength test are shown in FIG. The 1-hour strength shows a value of around 3 gf / cm 2 under all curing conditions, and it can be seen that the work after filling can be performed after 1 hour or more. The strength after 1 day is 30 kgf / cm.
2 , the increase in strength was observed. It can be seen that the air-cured specimen cracked after 7 days and a clear decrease in strength had occurred. However, under three types of curing conditions: mortar curing, underwater curing and wet curing, 70 kg in 7 days
The strength of mortar curing is slightly reduced around f / cm 2 and after 28 days, but the strength is increased under any curing condition.
However, underwater curing is not possible with on-site construction. On the other hand, although wet curing is a good curing method, it cannot be said to be a reliable curing method in the field, so the mortar curing method in which cement mortar is applied to the upper part is most suitable.

【0031】(実施例3)内径3mのシールドトンネル
内に、表5の配合で中込め充填材を充填し、中込め硬化
体の上部表面にセメントモルタルを塗布した。充填部に
圧送する圧送管として、A液およびB液用の2本の管
(いずれも内径5cm)を使用した。圧送した結果、圧
送には2000mの距離でも圧送圧が8kg/cm
問題なく圧送することができ、1週間の施工にも圧送管
内が閉鎖することがなかった。硬化体の上部表面にセメ
ントモルタルを塗布して、3日間養生したところ、クラ
ックの発生は全く見られず、硬化セメントモルタル上で
の作業はとどこおりなく行うことができた。なお、セメ
ントモルタルを5mm未満の厚さで塗布したのは、上部
表面での作業時にセメントモルタルの強度が弱いためク
ラックが入ったので、セメントモルタルの塗布厚は5m
m以上とするのが良い。
Example 3 In a shield tunnel having an inner diameter of 3 m, a filling material having the composition shown in Table 5 was filled, and cement mortar was applied to the upper surface of the hardened filling material. Two pipes (both having an inner diameter of 5 cm) for the liquid A and the liquid B were used as the pressure-feeding pipe for pressure-feeding the filling part. As a result of the pressure-feeding, the pressure-feeding was 8 kg / cm 2 without any problem even at a distance of 2000 m, and the inside of the pressure-feeding pipe was not closed even after one week of construction. When cement mortar was applied to the upper surface of the hardened body and cured for 3 days, no cracks were found and the work on the hardened cement mortar could be performed without any problems. The cement mortar applied with a thickness of less than 5 mm was cracked because the strength of the cement mortar was weak when working on the upper surface, so the application thickness of the cement mortar was 5 m.
It is good to be more than m.

【0032】[0032]

【発明の効果】以上説明したように、本発明の中込め充
填材を用いた中込め充填方法は、流動性が極めて高いの
で、ポンプ圧送が容易となり、長距離の圧送ができる。
また早期に強度が発現するので、施工も従来の生コンク
リートを用いた中込め充填方法よりも、施工時間を短縮
することができる。また本発明の中込め充填材の可使時
間は長いため、圧送時の緊急停止時等にも圧送管内が閉
鎖することはない。
As described above, the infill filling method using the infill filler of the present invention has extremely high fluidity, so that pumping can be facilitated and long-distance feeding is possible.
Further, since the strength is manifested at an early stage, the construction time can be shortened as compared with the conventional filling method using the ready-mixed concrete. Further, since the potting filler of the present invention has a long pot life, the inside of the pressure feeding pipe will not be closed even during an emergency stop during pressure feeding.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の中込め充填材としての生コンクリートを
用いたシールドトンネルの中込め後の断面図である。
FIG. 1 is a cross-sectional view of a conventional shield tunnel after being filled with a ready-mixed concrete as a filling material.

【図2】本発明中込め充填材を用いたシールドトンネル
の中込め後の断面図である。
FIG. 2 is a cross-sectional view of a shield tunnel using the filling filler of the present invention after being filled.

【図3】実施例1の表2のA液の配合につき、C:FA
を変化させたときのW/(C+FA)とフロー値との関
係を示す図である。
FIG. 3 shows C: FA for the composition of the liquid A in Table 2 of Example 1.
It is a figure which shows the relationship between W / (C + FA) and a flow value when changing.

【図4】実施例2の4種類の養生条件で養生したときの
養生日数と一軸圧縮強度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the number of curing days and the uniaxial compressive strength when cured under four types of curing conditions of Example 2.

【符号の説明】[Explanation of symbols]

11 セグメント 12 生コンクリート 13 水道管 21 セグメント 22 本発明中込め充填材 23 水道管 24 セメントモルタル 11 segment 12 ready-mixed concrete 13 water pipe 21 segment 22 filling material of the present invention 23 water pipe 24 cement mortar

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24:38) 24:04 103:44 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 24:38) 24:04 103: 44

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 セメントとフライアッシュとの混合物か
らなる硬化材と遅延剤と増粘剤と水とを混合したA液
と、珪酸ソーダ水溶液からなるB液とを混合してなる中
込め充填材。
1. An embedding filler comprising a mixture of a hardening agent made of a mixture of cement and fly ash, a retarder, a thickener and water, and a solution B made of an aqueous solution of sodium silicate. .
【請求項2】 セメントとフライアッシュとを重量比で
7:3〜3:7の割合で混合した硬化材に対し、遅延剤
を0.1〜0.5重量%、増粘剤を0.01〜1.5重
量%、水を80重量%以上混合したA液と、珪酸ソーダ
水溶液からなB液とを、A液:B液=95:5〜80:
20の重量比で混合した請求項1記載の中込め充填材。
2. A retarder is 0.1 to 0.5% by weight, and a thickener is 0.1% to a hardener in which cement and fly ash are mixed in a weight ratio of 7: 3 to 3: 7. Solution A, in which 01 to 1.5% by weight and 80% by weight or more of water are mixed, and solution B consisting of an aqueous solution of sodium silicate, are prepared as solution A: solution B = 95: 5 to 80:
The fill filler according to claim 1, which is mixed in a weight ratio of 20.
【請求項3】 シールドトンネルの二次施工用の中込め
充填材である請求項1または2記載の中込め充填材。
3. The infill filler according to claim 1, which is an infill filler for secondary construction of a shield tunnel.
【請求項4】 セメントとフライアッシュとの混合物か
らなる硬化材と遅延剤と増粘剤と水とを混合したA液
と、珪酸ソーダ水溶液からなるB液とを充填個所まで圧
送し、両液を混合することを特徴とする中込め充填方
法。
4. A liquid A in which a hardening agent made of a mixture of cement and fly ash, a retarder, a thickener, and water are mixed, and a liquid B made of an aqueous solution of sodium silicate is pressure-fed to a filling point, and both liquids An infill filling method, characterized in that:
【請求項5】 セメントとフライアッシュとの混合物か
らなる硬化材と遅延剤と増粘剤と水とを混合したA液
と、珪酸ソーダ水溶液からなるB液とを充填個所まで圧
送し、両液を混合して中込めし、ついで中込め硬化体の
上部表面にセメントモルタルを塗布することを特徴とす
る中込め充填方法。
5. Liquid A, which is a mixture of a cement and fly ash, containing a hardening agent, a retarder, a thickener, and water, and a liquid B, which is an aqueous solution of sodium silicate, are pressure-fed to the filling point, and both liquids A filling method for filling a filling, characterized by mixing and filling the mixture, and then applying cement mortar to the upper surface of the cured filling material.
【請求項6】 セメントとフライアッシュとを重量比で
7:3〜3:7の割合で混合した硬化材に対し、遅延剤
を0.1〜0.5重量%、増粘剤を0.01〜1.5重
量%、水を80重量%以上混合したA液と、珪酸ソーダ
水溶液からなるB液とを、A液:B液=95:5〜8
0:20の重量比で充填個所まで圧送し、両液を混合す
る請求項4または5記載の中込め充填方法。
6. A retarder is 0.1 to 0.5% by weight, and a thickener is 0.1% to a hardener obtained by mixing cement and fly ash in a weight ratio of 7: 3 to 3: 7. A liquid in which 01 to 1.5% by weight and 80% by weight or more of water are mixed, and a B liquid which is an aqueous solution of sodium silicate are A liquid: B liquid = 95: 5 to 8
The infill filling method according to claim 4 or 5, wherein the both liquids are mixed by pumping to a filling portion at a weight ratio of 0:20.
【請求項7】 セメントモルタルを5mm以上の厚さに
塗布する請求項5記載の中込め充填方法。
7. The filling method according to claim 5, wherein the cement mortar is applied to a thickness of 5 mm or more.
【請求項8】 シールドトンネルの二次施工の中込め充
填方法である請求項4ないし7のいずれか一項記載の中
込め充填方法。
8. The infill filling method according to claim 4, wherein the infill filling method is a secondary construction of a shield tunnel.
JP25265394A 1994-09-10 1994-09-10 Filling material and filling method Expired - Lifetime JP2856345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25265394A JP2856345B2 (en) 1994-09-10 1994-09-10 Filling material and filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25265394A JP2856345B2 (en) 1994-09-10 1994-09-10 Filling material and filling method

Publications (2)

Publication Number Publication Date
JPH0880518A true JPH0880518A (en) 1996-03-26
JP2856345B2 JP2856345B2 (en) 1999-02-10

Family

ID=17240355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25265394A Expired - Lifetime JP2856345B2 (en) 1994-09-10 1994-09-10 Filling material and filling method

Country Status (1)

Country Link
JP (1) JP2856345B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081879A (en) * 1996-09-04 1998-03-31 Chichibu Onoda Cement Corp Filling grout
JP2000128619A (en) * 1998-07-21 2000-05-09 Hilti Ag Use of cement-containing hardenable two-component mortar material
JP2008190133A (en) * 2007-02-01 2008-08-21 Kajima Corp Construction method for internal structure of tunnel
JP2009024481A (en) * 2007-06-20 2009-02-05 Meiko Construction Co Ltd Long distance pressure feed injection method of cement system filler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384422B (en) * 2015-12-09 2017-12-01 苏州市姑苏新型建材有限公司 A kind of cement base glaze paint caulking agent and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081879A (en) * 1996-09-04 1998-03-31 Chichibu Onoda Cement Corp Filling grout
JP2000128619A (en) * 1998-07-21 2000-05-09 Hilti Ag Use of cement-containing hardenable two-component mortar material
JP4499212B2 (en) * 1998-07-21 2010-07-07 ヒルティ アクチエンゲゼルシャフト How to use cement-containing curable two-component mortar materials
JP2008190133A (en) * 2007-02-01 2008-08-21 Kajima Corp Construction method for internal structure of tunnel
JP2009024481A (en) * 2007-06-20 2009-02-05 Meiko Construction Co Ltd Long distance pressure feed injection method of cement system filler

Also Published As

Publication number Publication date
JP2856345B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
CN111072366B (en) Inorganic grouting material capable of stopping open water and reinforcing structure and preparation method and application thereof
JP2009537433A5 (en)
CN107935516A (en) A kind of microdilatancy grout material that slurry is molded into for tunnel-liner vault band
CN114671644B (en) High-early-strength low-resilience high-performance sprayed concrete and preparation method thereof
CN112028594A (en) Cement-water glass double-liquid grouting material with stable product for shield synchronous grouting
KR101351382B1 (en) Concrete repairing method using self-healing repair mortar composite
JP3638578B2 (en) Frozen ground injection material and manufacturing / injection method thereof
KR102372471B1 (en) Quick-Hardening Grout Material and Steel Pipe Grouting Method Using the Same
CN108395126B (en) Anti-seepage leak-stopping material and application thereof in hydraulic engineering
JPH0880518A (en) Inside loading filling material and inside loading filling method
JP5059354B2 (en) Ground injection material for soil stabilization
CN117417200A (en) Preparation process and construction method of waterproof, anti-corrosion and anti-seepage concrete
JP5401664B2 (en) Injection material construction method
KR102260810B1 (en) Mid to longterm strength-enhancing accelerator composition for shotcrete
KR100377829B1 (en) Grouting material to be poured into lining rear cavity of tunnel
JP4727161B2 (en) Method for producing a concrete composition used in a shield direct striking method
KR101461190B1 (en) Self-Healing Tunnel Lining Concrete
JP3212870B2 (en) Cement-based grout material composition
Munn et al. Performance and compatibility of permeability reducing and other chemical admixtures in Australian concretes
JP4285675B2 (en) Aggregate for hardened cement and hardened cement
CN113003978A (en) Special cement additive for grouting and use method thereof
JPH05139804A (en) Cement admixture and its quick-setting application method
JPH07267700A (en) Two-pack grout composition
JP2003119062A (en) Hardener for backfilling material and backfilling material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 15

EXPY Cancellation because of completion of term