JP5401664B2 - Injection material construction method - Google Patents

Injection material construction method Download PDF

Info

Publication number
JP5401664B2
JP5401664B2 JP2009211509A JP2009211509A JP5401664B2 JP 5401664 B2 JP5401664 B2 JP 5401664B2 JP 2009211509 A JP2009211509 A JP 2009211509A JP 2009211509 A JP2009211509 A JP 2009211509A JP 5401664 B2 JP5401664 B2 JP 5401664B2
Authority
JP
Japan
Prior art keywords
construction
injection material
fine powder
radioactive waste
waste disposal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009211509A
Other languages
Japanese (ja)
Other versions
JP2011059044A (en
Inventor
守正 内藤
朝雄 藤田
一郎 関根
高志 関口
山田  勉
奈緒美 福岡
秀朗 石田
健吉 平野
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Japan Atomic Energy Agency
Toda Corp
Original Assignee
Japan Atomic Energy Agency
Denki Kagaku Kogyo KK
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Denki Kagaku Kogyo KK, Toda Corp filed Critical Japan Atomic Energy Agency
Priority to JP2009211509A priority Critical patent/JP5401664B2/en
Publication of JP2011059044A publication Critical patent/JP2011059044A/en
Application granted granted Critical
Publication of JP5401664B2 publication Critical patent/JP5401664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、地下深部の岩盤内に建設される放射性廃棄物処分場で使用する注入材の施工方法に関する。   The present invention relates to a method for constructing an injection material used in a radioactive waste disposal site constructed in a bedrock in the deep underground.

通常、地下坑道掘削では湧水があるため、掘削時の障害とならないように、水抜きを行ない、さらに注入材を注入して、止水を行った後に掘削が行われる。   In general, there is spring water in underground mine excavation, so that excavation is performed after draining water, injecting an injection material, and stopping water so as not to hinder the excavation.

地下深部の岩盤内に建設される放射性廃棄物処分場においては、操業時の作業性を考慮して湧水量が通常の地下構造物より厳しく制限される可能性が高い。このため、微細な亀裂からのわずかな湧水に対しても確実に止水することができる高浸透性の注入材が求められる。また、高い地下水圧が加わることが想定されるため、高強度の注入材が求められる。さらに、注入材には、操業期間の止水性を確保する耐久性が要求される。   In the radioactive waste disposal site constructed in the bedrock in the deep underground, it is highly possible that the amount of spring water is more severely restricted than normal underground structures in consideration of workability during operation. For this reason, the highly permeable injection material which can stop water reliably also to the slight spring water from a fine crack is calculated | required. Moreover, since high groundwater pressure is assumed to be applied, a high-strength injection material is required. Furthermore, the injection material is required to have durability to ensure water-stopping during the operation period.

注入材としては、セメント系、水ガラス系、コロイダルシリカ系、有機樹脂系等がある。
セメント系は、強度が高く耐久性が高いが、浸透性が他の材料系と比較して低く、より高い浸透性が求められていた。浸透性を改良した高炉スラグ含有の微粒子あるいは、超微粒子セメント(特許文献1参照)が開発されているが、最大粒径が18μm程度であり、亀裂開口幅が数十μmの岩盤亀裂に対しては、ほとんど浸透しない。また、セメントの水和により水酸化カルシウムが生成し、その高アルカリ性の影響が天然バリアとなる岩盤や工学的なバリアとなる人工バリア材料の変質を引き起こすことが想定され、結果として処分場の長期的な隔離性能への影響が懸念されている。
Examples of the injection material include cement-based, water glass-based, colloidal silica-based, and organic resin-based materials.
The cement system has high strength and high durability, but its permeability is lower than that of other material systems, and higher permeability is required. Blast furnace slag-containing fine particles or ultrafine particle cement (see Patent Document 1) with improved permeability has been developed. For rock cracks with a maximum particle size of about 18 μm and a crack opening width of several tens of μm. Hardly penetrates. In addition, it is assumed that calcium hydroxide is generated by hydration of cement, and the influence of its high alkalinity causes the alteration of the rocks that serve as natural barriers and the artificial barrier materials that serve as engineering barriers. There is concern about the impact on the isolation performance.

水ガラス系(特許文献2参照)は、浸透性が高く、止水性が良好である。しかしながら、ゲル強度が低いため、高い水圧がかかるとゲル体が押し出される可能性があること、シリカの溶出などによる耐久性の低下などの問題点があった。   The water glass system (see Patent Document 2) has high permeability and good water stopping properties. However, since the gel strength is low, there is a problem that the gel body may be pushed out when high water pressure is applied, and durability is lowered due to elution of silica.

コロイダルシリカ系(特許文献3参照)は、低アルカリ性であるが、ゲル体の強度が低く、水ガラス系と同様に高い水圧がかかるとゲル体が押し出される可能性があった。   Although colloidal silica type (refer patent document 3) is low alkalinity, the intensity | strength of a gel body is low and there exists a possibility that a gel body may be extruded when high water pressure is applied like a water glass type | system | group.

有機樹脂系(特許文献4参照)は付着力が強い利点があるが、有機物及び有機物の分解生成物は放射性核種と錯体を形成することによりキャリアとなって放射性核種の移行を早める可能性があった。   The organic resin system (see Patent Document 4) has the advantage of strong adhesion, but organic substances and decomposition products of organic substances may form a carrier with the radionuclide to accelerate the transfer of the radionuclide. It was.

これらの問題を解消する方法として、超微粒子普通ポルトランドセメントにシリカフュームなどを配合した低アルカリ性セメント(特許文献5参照)が知られている。
この低アルカリ性セメントは、超微粒子普通ポルトランドセメントをベースとしており、最大粒子径が15μm程度と超微粒子セメントと同程度である。
As a method for solving these problems, a low alkaline cement (see Patent Document 5) in which silica fume or the like is blended with ultrafine normal portland cement is known.
This low alkaline cement is based on ultrafine ordinary Portland cement and has a maximum particle size of about 15 μm, which is the same as that of ultrafine cement.

一方、球状シリカ微粉について、高温気流中でケイ素質材料を溶融することでシリカの球状体(球状シリカ微粉)が得られることは公知であり(特許文献6及び7参照)、これらの特許文献には、球状シリカ微粉を封止材に用いることが記載されているが、注入材に用いることは示唆されていない。   On the other hand, it is known that spherical spherical silica powder (spherical silica fine powder) is obtained by melting a silicon material in a high-temperature air stream (see Patent Documents 6 and 7). Describes that spherical silica fine powder is used as a sealing material, but it is not suggested to use it as an injection material.

特開2001−233645号公報JP 2001-233645 A 特開2004−27023号公報Japanese Patent Laid-Open No. 2004-27023 特開平5−70776号公報JP-A-5-70776 特開平3−233075号公報Japanese Patent Laid-Open No. 3-233075 特開2000−65992号公報JP 2000-65992 A 特開2001−335313号公報JP 2001-335313 A 特開2002−20113号公報Japanese Patent Laid-Open No. 2002-2011

地下深部の岩盤内に建設される放射性廃棄物処分場においては、湧水量を低減するために、微細な亀裂に対して、より高い浸透性を有し、高い地下水圧に抵抗するために、高強度の注入材が求められていた。さらに、操業期間における止水性を確保する耐久性も求められていた。また、放射性廃棄物処分場の天然バリアとなる岩盤や放射性廃棄物の周囲に設置される人工バリアには、長期にわたり安定し、変質しにくい性能が求められる。しかし、支保工や止水のための注入材として用いたセメント系材料によって、岩盤や人工バリアと接する地下水が高アルカリ性となる場合には、岩盤や人工バリアの変質が懸念される。このような岩盤や人工バリアの長期性能に及ぼす影響を低減するために、処分環境で用いられる注入材も含めたセメント系材料の開発では、pH値が11以下となることを目標に設定している。
本発明は、上記の課題を解決しようとするものであり、放射性廃棄物処分場に求められる注入材の施工方法であって、高浸透性、高強度、高耐久性で、少なくともpH値が11以下の注入材の施工方法を提供することを課題とする。
In the radioactive waste disposal site constructed in the bedrock in the deep underground, in order to reduce the amount of spring water, it has higher permeability against fine cracks and high resistance to resist high groundwater pressure. There was a need for a strong injection material. Furthermore, the durability which ensures the water stop in the operation period was also calculated | required. In addition, rocks that serve as natural barriers for radioactive waste disposal sites and artificial barriers installed around radioactive wastes are required to have long-term stability and resistance to alteration. However, if the groundwater in contact with the rock mass or the artificial barrier becomes highly alkaline due to the cement-based material used as an injection material for the support work or water stoppage, there is a concern about the alteration of the rock mass or the artificial barrier. In order to reduce the impact on the long-term performance of such rocks and artificial barriers, in the development of cement-based materials including injecting materials used in the disposal environment, the pH value is set to 11 or less. Yes.
The present invention is intended to solve the above-described problems, and is an injection material construction method required for a radioactive waste disposal site, which has high permeability, high strength, high durability, and at least a pH value of 11. It aims at providing the construction method of the following injection | pouring materials.

本発明者らは、前記課題を解決するために鋭意検討した結果、浸透性注入材の基材として、球状シリカ微粉を選定することにより達成できることが明らかとなった。球状シリカは、高温気流中でシリカ質材料を溶融することで得られる特許文献6及び7に記載されているようなシリカの球状体である。この球状体を冷却、分級、捕集して本発明で使用する球状シリカ微粉が得られる。球状シリカ微粉は、セメント系材料よりも微粉であり、球状体のため、高い浸透性を示す。球状シリカ微粉を水に入れても、単独では水硬性が得られないが、硬化剤として消石灰微粉を特定量配合することにより、水和反応してカルシウムシリケート水和物を生成し高強度、高耐久、低アルカリ性を示す。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that this can be achieved by selecting spherical silica fine powder as the base material of the permeable injecting material. The spherical silica is a spherical body of silica as described in Patent Documents 6 and 7 obtained by melting a siliceous material in a high-temperature air stream. The spherical body is cooled, classified and collected to obtain fine spherical silica powder used in the present invention. The spherical silica fine powder is finer than the cement-based material, and exhibits high permeability because of the spherical body. Even if spherical silica fine powder is put in water, hydraulic properties cannot be obtained by itself, but by adding a specific amount of slaked lime fine powder as a curing agent, a hydration reaction occurs to produce calcium silicate hydrate, which has high strength and high strength. Shows durability and low alkalinity.

本発明は、上記課題を解決するために、以下の手段を採用する。
)球状シリカ微粉と消石灰微粉を含有する注入材であってその硬化体からの浸出水のpH値が11以下となる注入材を、注入し加圧脱水させることを特徴とする放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
)前記注入材を前記岩盤の亀裂内で、加圧脱水させることを特徴とする前記()の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
)前記球状シリカ微粉に対する前記消石灰微粉のモル比が、CaO/SiOに換算したモル比で1.5未満であることを特徴とする前記(1)又は(2)の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
)分散剤として高性能減水剤を使用することを特徴とする前記(1)〜(3)のいずれかの放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
)前記球状シリカ微粉の最大粒径が1μm以下であることを特徴とする前記(1)〜(4)のいずれかの放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
)前記消石灰微粉の最大粒径が1μm以下であることを特徴とする前記(1)〜(5)のいずれかの放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法である。
なお、本発明に記載する部や%は、記載が無い限りは、質量部、質量%を意味する。
The present invention employs the following means in order to solve the above problems.
( 1 ) A radioactive waste characterized by injecting an injection material containing spherical silica fine powder and slaked lime fine powder, which has a pH value of 11 or less from leachate from the cured product, and pressurizing and dehydrating the injection material This is a construction method for the injection material used for the underground rock mass during the construction of the disposal site.
( 2 ) In the construction method of the injection material used for the underground rock mass at the time of construction of the radioactive waste disposal site according to ( 1 ), wherein the injection material is pressurized and dehydrated in the crack of the rock mass. is there.
(3) the spherical molar ratio of slaked lime pulverized to silica fine powder, radioactive waste of the to and less than 1.5 in a molar ratio in terms of CaO / SiO 2 (1) or (2) Disposal This is the method of construction of the injection material used for the underground bedrock during the construction of the site.
( 4 ) Construction of injection material to be used for underground rocks when constructing the radioactive waste disposal site according to any one of (1) to ( 3), wherein a high-performance water reducing agent is used as a dispersant. Is the method.
( 5 ) The spherical silica fine powder has a maximum particle size of 1 μm or less, and the injection used for the underground bedrock during construction of the radioactive waste disposal site according to any one of (1) to ( 4) above It is a construction method of materials.
( 6 ) The injection material used for the underground bedrock when constructing the radioactive waste disposal site according to any one of (1) to ( 5) above, wherein the maximum particle size of the slaked lime fine powder is 1 μm or less This is the construction method.
In addition, as long as there is no description, the part and% described in this invention mean a mass part and mass%.

本発明の注入方法により、地下坑道掘削などで生じる湧水を事前注入で止水できる。セメント系材料では浸透せずに止水しにくい亀裂でも、本方法を使用することにより浸透固化し止水可能となる。注入材の硬化体からの浸出水のpH値は11以下になる。
また、注入材はブリーディング量が少なく、注入圧力による注入材の加圧脱水作用もあり、注入硬化体は小さな亀裂に対し充填した後でもブリーディングによる空隙ができない特徴がある。
By the injection method of the present invention, spring water generated by underground mine excavation or the like can be stopped by prior injection. Even cracks that do not penetrate with cement material and are difficult to stop water can be solidified and stopped by using this method. The pH value of leachate from the cured product of the injection material is 11 or less.
In addition, the injection material has a small amount of bleeding and also has a pressure dehydration effect of the injection material due to the injection pressure, and the injection hardened body has a feature that voids due to bleeding cannot be formed even after filling with respect to small cracks.

以下、本発明の実施の形態につき具体的に説明する。
球状シリカは、高温気流中でシリカ質材料を溶融することで得られるシリカの球状体である。この球状体を冷却、分級、捕集して本発明で使用する球状シリカ微粉が得られる。最大粒径がより小さいものが浸透性の点から好ましい。最大粒径1μm以下が好ましい。
本発明の消石灰微粉の粒径は、最大粒径が使用する球状シリカ微粉と同等以下のものが好ましい。最大粒径1μm以下が好ましい。
Hereinafter, embodiments of the present invention will be specifically described.
Spherical silica is a spherical body of silica obtained by melting a siliceous material in a high-temperature air stream. The spherical body is cooled, classified and collected to obtain fine spherical silica powder used in the present invention. A smaller maximum particle size is preferred from the viewpoint of permeability. The maximum particle size is preferably 1 μm or less.
The particle diameter of the slaked lime fine powder of the present invention is preferably equal to or less than the spherical silica fine powder used for the maximum particle diameter. A maximum particle size of 1 μm or less is preferred.

本発明においては、球状シリカ微粉に対する前記消石灰微粉のモル比を、CaO/SiOに換算したモル比で1.5未満とすることが好ましく、1.0以下であることがより好ましく、0.8以下とすることが特に好ましい。
CaO/SiOモル比を1.5未満とすることにより、注入材の硬化体からの浸出水のpH値を11以下とすることができる。
また、本発明においては、圧縮強度を向上させる点から、球状シリカ微粉に対する前記消石灰微粉のモル比を、CaO/SiOに換算したモル比で0.04以上とすることが好ましく、0.09以上とすることがより好ましい。
In the present invention, the molar ratio of the slaked lime fine powder to the spherical silica fine powder is preferably less than 1.5 in terms of a molar ratio converted to CaO / SiO 2 , more preferably 1.0 or less. It is particularly preferable to set it to 8 or less.
By setting the CaO / SiO 2 molar ratio to less than 1.5, the pH value of leachate from the cured product of the injection material can be made 11 or less.
In the present invention, from the viewpoint of improving the compressive strength, the molar ratio of the slaked lime fine powder to the spherical silica fine powder is preferably 0.04 or more in terms of a molar ratio converted to CaO / SiO 2. More preferably.

注入材の濃度は特に限定されるものではないが、水/粉体比で、70〜500%が好ましく、90〜300%がより好ましく、100〜150%が最も好ましい。粉体とは、球状シリカ微粉と消石灰微粉を混合したものをいう。濃度が濃いと強度は高いが浸透性が低下し、薄いと浸透性は高いが強度が低下する傾向にある。   The concentration of the injection material is not particularly limited, but is preferably 70 to 500%, more preferably 90 to 300%, and most preferably 100 to 150% in terms of water / powder ratio. The powder means a mixture of spherical silica fine powder and slaked lime fine powder. When the concentration is high, the strength is high but the permeability is lowered. When the concentration is thin, the permeability is high but the strength tends to be lowered.

分散剤として高性能減水剤を使用することが好ましく、高性能減水剤の成分は特に限定されない。高性能減水剤とは、ポリアルキルアリルスルホン酸塩系高性能減水剤、芳香族アミノスルホン酸塩系高性能減水剤、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤、及び、ポリカルボン酸塩系高性能減水剤などのいずれかを主成分とするものであり、これらの一種又は二種以上が使用される。ポリアルキルアリルスルホン酸塩系高性能減水剤には、メチルナフタレンスルホン酸ホルマリン縮合物、ナフタレンスルホン酸ホルマリン縮合物、及びアントラセンスルホン酸ホルマリン縮合物などがあり、減水率が大きくて空気連行性がなく、凝結遅延性も小さい特徴を有する。市販品としては電気化学工業(株)商品名「FT-500」とそのシリーズ、花王(株)商品名「マイティー100(粉末)」や「マイティー150」とそのシリーズなどが代表的である。高性能減水剤の添加量は特に限定はされないが、球状シリカと消石灰の合計量に対して、固形分換算10%以下が好ましく、5%以下がより好ましい。高性能減水剤の添加量は特に限定はされないが、0.5%以上が好ましく、1%以上がより好ましい。高性能減水剤の添加量によりゲルタイムを調整でき、添加量が多いほどゲルタイムを長くすることができる。   It is preferable to use a high-performance water reducing agent as the dispersant, and the components of the high-performance water reducing agent are not particularly limited. High-performance water reducing agents are polyalkylallyl sulfonate-based high-performance water reducing agents, aromatic amino sulfonate-based high-performance water reducing agents, melamine formalin resin sulfonate-based high-performance water reducing agents, and polycarboxylate-based water reducing agents. The main component is any one of a high-performance water reducing agent, and one or more of these are used. Polyalkylallyl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate. Also, it has a feature that the setting delay is small. Typical examples of commercially available products are “FT-500” and its series, trade name of “Electrochemical Industry Co., Ltd.”, “Mighty 100 (powder)” and “Mighty 150” and its series of Kao Corporation. The amount of the high-performance water reducing agent added is not particularly limited, but is preferably 10% or less, more preferably 5% or less, in terms of solid content, based on the total amount of spherical silica and slaked lime. The amount of the high-performance water reducing agent added is not particularly limited, but is preferably 0.5% or more, and more preferably 1% or more. The gel time can be adjusted by the amount of the high-performance water reducing agent added, and the gel time can be lengthened as the added amount increases.

注入材を岩盤の亀裂等に注入するにあたっては、注入し加圧脱水させることが好ましい。注入圧力を湧水圧力より0.5MPa以上高くし、加圧脱水させることがより好ましい。注入材は亀裂等に浸透し、水和によってゲル化すると、球状シリカと消石灰が結合し粒径が大きくなる。このため、注入材は亀裂の最小部で止められ、後から来る注入材は加圧脱水される。加圧脱水により注入材は高濃度となり、注入開始時の最初に設定されたものより高い強度性状を示す。高い強度の硬化体は水を通しにくくし止水性や耐久性も高くなる。
また、ゲル化前の注入材でも加圧脱水が生じる。浸透していく注入材が最小亀裂部で注入材が浸透できない亀裂幅となる場合に前記同様の加圧脱水作用が生じる。本発明では、積極的に加圧脱水を活用するために設定された最終注入圧まで高圧注入することを原則とし、少なくとも注入開始圧力よりも0.5MPa以上の注入終了圧力とすることが好ましい。
In injecting the injection material into a rock crack or the like, it is preferable to inject and pressure dehydrate. More preferably, the injection pressure is higher than the spring water pressure by 0.5 MPa or more and pressure dehydration is performed. When the injection material penetrates into cracks and gels by hydration, the spherical silica and slaked lime are combined to increase the particle size. For this reason, the injection material is stopped at the minimum part of the crack, and the subsequent injection material is pressure-dehydrated. Due to the pressure dehydration, the injection material becomes a high concentration, and exhibits higher strength properties than those initially set at the start of injection. A high-strength cured body makes it difficult for water to pass through and increases water-stopping and durability.
Further, pressure dehydration occurs even in the injection material before gelation. The pressure dehydration action similar to that described above occurs when the infiltrated material that has penetrated has a crack width that prevents the infused material from penetrating at the minimum crack portion. In the present invention, in principle, high-pressure injection is performed up to the final injection pressure set in order to actively utilize pressurized dehydration, and it is preferable that the injection end pressure is at least 0.5 MPa higher than the injection start pressure.

施工方法としては、対象地山をボーリングし、岩盤などの地山内に漏れ防止のパッカーを設置する。球状シリカと消石灰をあらかじめ配合するか、別々に水と混合しそれぞれのスラリーを別のポンプで圧送し合流してボーリング孔より圧力注入する。注入速度は通常10〜50リットル/分程度で注入される。   The construction method is to drill the target ground and install a leak-proof packer in the ground such as rock. Spherical silica and slaked lime are preliminarily blended or mixed separately with water, and the respective slurries are pumped and merged with separate pumps and injected through a borehole. The injection rate is usually 10 to 50 liters / minute.

ゲルタイムは短いと注入孔近くでゲル化し注入範囲は小さくなり、長いと注入範囲は広くなる。通常、トンネルなどの地下構造物の止水範囲は地山の良いところでは1.5〜2.0D(D:直径)、悪いところでは5D程度で実施されている。ゲルタイムは短くて10〜30分、長くて15時間程度のものが使用される。ゲルタイムの長いものは注入後注入口のバルブを閉めて硬化待ちを行う。事前に試験注入を行うことにより、地山の亀裂の状況、浸透範囲などを調査しゲルタイムを設定する。
本発明の方法では、ゲルタイムの設定は高性能減水剤の添加量、注入材の濃度、注入材の温度などを調整して設定することができる。
When the gel time is short, gelation occurs near the injection hole, and the injection range becomes small. When the gel time is long, the injection range becomes wide. Usually, the water stoppage range of underground structures such as tunnels is 1.5 to 2.0D (D: diameter) where the ground is good, and about 5D where it is bad. The gel time is as short as 10 to 30 minutes and as long as 15 hours. If the gel time is long, close the inlet valve and wait for curing. By conducting test injection in advance, the state of cracks in the natural ground, the penetration range, etc. are investigated and the gel time is set.
In the method of the present invention, the gel time can be set by adjusting the addition amount of the high-performance water reducing agent, the concentration of the injection material, the temperature of the injection material, and the like.

注入工法としては、二重管ダブルパッカー工法、ストレーナー工法などの注入工法、またスラリーの混合方法として1、1.5、2ショット方法などが使用できる。   As the injection method, an injection method such as a double pipe double packer method or a strainer method can be used, and a 1, 1.5, two-shot method or the like can be used as a slurry mixing method.

以下、実施例に基づいて本発明を説明する。
実施例、比較例は、特記しない限りは20℃で行った。
Hereinafter, the present invention will be described based on examples.
Examples and Comparative Examples were performed at 20 ° C. unless otherwise specified.

(実施例1)
SiO純度99%以上の球状シリカ微粉(電気化学工業(株)商品名「SFP20M」)を水に分散し50%濃度のスラリーを作製した。粒度分布計による測定結果は最大粒径が1.0μmであった。
超微粒子の消石灰微粉(純度99%以上)を20%濃度のスラリーとし硬化材を作製した。粒度分布計による測定結果は最大粒径が1.0μmであった。
スラリー状態の球状シリカ微粉/消石灰微粉を容積で1/1(CaO/SiOモル比0.35)とし、直ちに混合して直径5×高さ10cmの型枠に入れ、1日後に脱型、20℃養生し材齢別に一軸圧縮強度、硬化体からの浸出水のpH値(以下、「硬化体のpH値」という)を測定した。pH値は、注入材の硬化体を粉砕後100gと、水1リットルを混合しガラス電極pHメーターにより測定した。なお、ゲルタイムは20秒であった。
一軸圧縮強度、pH値の測定結果を表1に示す。
Example 1
Spherical silica fine powder having a SiO 2 purity of 99% or more (Electrochemical Industry Co., Ltd., trade name “SFP20M”) was dispersed in water to prepare a slurry having a concentration of 50%. As a result of measurement by a particle size distribution meter, the maximum particle size was 1.0 μm.
An ultrafine slaked lime powder (purity 99% or more) was used as a 20% concentration slurry to prepare a curing material. As a result of measurement by a particle size distribution meter, the maximum particle size was 1.0 μm.
The spherical silica fine powder / slaked lime fine powder in a slurry state is 1/1 (CaO / SiO 2 molar ratio 0.35) by volume, immediately mixed and put into a mold having a diameter of 5 × 10 cm in height and demolded after one day. The uniaxial compressive strength and the pH value of leachate from the cured body (hereinafter referred to as “the pH value of the cured body”) were measured according to the age of the material cured at 20 ° C. The pH value was measured with a glass electrode pH meter after mixing 100 g of the cured product of the injection material and 1 liter of water. The gel time was 20 seconds.
Table 1 shows the measurement results of uniaxial compressive strength and pH value.

Figure 0005401664
Figure 0005401664

(実施例2)
実施例1のスラリー状態の球状シリカ微粉/消石灰微粉を容積で1/1とし、球状シリカ微粉と消石灰微粉の合計に対して固形分換算2%の高性能減水剤(花王(株)商品名「マイティー150」、ナフタレンスルホン酸ホルマリン縮合物)を配合して混合した注入材のゲルタイムは9時間、7日後の供試体圧縮強度は0.6N/mm、硬化体のpH値は10.4であった。直径5cm高さ1mのアクリル管に7号硅砂を詰め、水締めした後に浸透性試験を実施した。注入圧力は空気圧を利用して0.5MPaで実施した。1.5リットルの混合液が10分で全通した。材齢28日でのpH値は10.2であった。
(Example 2)
The volume of the spherical silica fine powder / slaked lime fine powder in the slurry state of Example 1 is 1/1, and a high-performance water reducing agent (trade name “Kao Co., Ltd.” having a solid content conversion of 2% with respect to the total of the spherical silica fine powder and slaked lime fine powder. The gel time of the injection material mixed and mixed with “Mighty 150” and naphthalenesulfonic acid formalin condensate) was 9 hours, the specimen compressive strength after 7 days was 0.6 N / mm 2 , and the pH value of the cured product was 10.4. there were. No. 7 cinnabar sand was packed in an acrylic tube having a diameter of 5 cm and a height of 1 m, and water penetration was performed, and then a permeability test was performed. The injection pressure was 0.5 MPa using air pressure. A 1.5 liter mixture was allowed to pass through in 10 minutes. The pH value at the age of 28 days was 10.2.

(比較例1)
比較のため、超微粒子セメント(電気化学工業(株)商品名「デンカ超微粒子セメント コロイダルスーパー」)の30%濃度スラリーを用いて実施例2と同様に7号砂への浸透性試験を実施した。10cmまでは浸透したが、それ以上は浸透しなかった。硬化体のpH値は12.3であった。
(Comparative Example 1)
For comparison, a permeability test into No. 7 sand was conducted in the same manner as in Example 2 using a 30% concentration slurry of ultrafine cement (Electrochemical Industry Co., Ltd., trade name “DENKA Ultrafine Cement Colloidal Super”). . It penetrated up to 10 cm, but did not penetrate any further. The pH value of the cured product was 12.3.

(実施例3)
表2に示す配合でA液、B液を作製し、両液を混合し直径5cm高さ10cmの円筒型枠に入れ、硬化体を作製し、材齢別に一軸圧縮強度を測定した。養生温度20℃での試験結果を表3に示す。分散剤として実施例2と同じ高性能減水剤を使用した。材齢28日の硬化体のpH値を測定した。
(Example 3)
Liquid A and liquid B were prepared according to the formulation shown in Table 2, and both liquids were mixed and placed in a cylindrical frame having a diameter of 5 cm and a height of 10 cm to prepare a cured body, and the uniaxial compressive strength was measured according to material age. Table 3 shows the test results at a curing temperature of 20 ° C. The same high performance water reducing agent as in Example 2 was used as a dispersant. The pH value of the cured product with a material age of 28 days was measured.

Figure 0005401664
Figure 0005401664

Figure 0005401664
Figure 0005401664

(実施例4)
実施例3の消石灰30%の配合において高性能減水剤の配合量を変化させてゲルタイムを測定した。測定温度は20℃とした。測定結果を表4に示す。
高性能減水剤を配合しないものは混合後10秒で粘性が上昇し流動性を失いゲル化した。配合量を増加するとゲルタイムは長くなった。
ゲルタイムは、注入材を200ミリリットルプラスチック製容器に入れ、傾けても流動性が無くなった時点を値とした。
Example 4
In the blend of 30% slaked lime of Example 3, the gel time was measured by changing the blending amount of the high-performance water reducing agent. The measurement temperature was 20 ° C. Table 4 shows the measurement results.
In the case where the high-performance water reducing agent was not blended, the viscosity increased 10 seconds after mixing and the fluidity was lost and gelled. Increasing the blending amount increased the gel time.
The gel time was defined as the point at which the fluidity disappeared even when the injection material was placed in a 200 ml plastic container and tilted.

Figure 0005401664
Figure 0005401664

(実施例5)
実施例1の配合材料を使用して注入材を調整しゲル化させた。またゲル化前に圧縮強度用の供試体をサンプリングした。ゲル化した材料を加圧脱水試験器にて加圧し加圧脱水率とその後の圧縮強度を測定した。測定結果を表5に示す。
ゲル化後加圧脱水することで圧縮強度が高くなることが確認された。
加圧脱水率は、(加圧により脱水された脱水量/加圧前の全水量)×100(%)で示した。
(Example 5)
The compounding material of Example 1 was used to adjust the injecting material to gel. Moreover, the specimen for compressive strength was sampled before gelatinization. The gelled material was pressurized with a pressure dehydration tester, and the pressure dehydration rate and the subsequent compressive strength were measured. Table 5 shows the measurement results.
It was confirmed that the compressive strength was increased by dehydrating under pressure after gelation.
The pressure dehydration rate was expressed as (dehydrated amount dehydrated by pressurization / total water amount before pressurization) × 100 (%).

Figure 0005401664
Figure 0005401664

本発明は、高浸透性で低アルカリ性を示す注入材の施工方法であり、放射性廃棄物処分場の施工に利用できる。   INDUSTRIAL APPLICABILITY The present invention is an injection material construction method that exhibits high permeability and low alkalinity, and can be used for construction of a radioactive waste disposal site.

Claims (6)

球状シリカ微粉と消石灰微粉を含有する注入材であってその硬化体からの浸出水のpH値が11以下となる注入材を、注入し加圧脱水させることを特徴とする放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。   An injecting material containing spherical silica fine powder and slaked lime fine powder, and injecting an injecting material having a pH value of 11 or less from leachate of the cured product, and dehydrating under pressure. Construction method of injection material used for underground rock mass during construction. 前記注入材を前記岩盤の亀裂内で、加圧脱水させることを特徴とする請求項に記載の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。 The method for constructing an injection material used for an underground rock mass when constructing a radioactive waste disposal site according to claim 1 , wherein the injection material is pressurized and dehydrated in a crack of the rock mass. 前記球状シリカ微粉に対する前記消石灰微粉のモル比が、CaO/SiOに換算したモル比で1.5未満であることを特徴とする請求項1又は2に記載の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。 The molar ratio of the hydrated lime fines with respect to the spherical silica fine powder, when the construction of radioactive waste disposal site according to claim 1 or 2, characterized in that less than 1.5 in a molar ratio in terms of CaO / SiO 2 The method of construction of the injection material used for underground bedrock. 分散剤として高性能減水剤を使用することを特徴とする請求項1〜のいずれか一項に記載の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。 The high performance water reducing agent is used as a dispersing agent, The construction method of the injection material used with respect to an underground bedrock at the time of construction of the radioactive waste disposal site as described in any one of Claims 1-3 characterized by the above-mentioned. 前記球状シリカ微粉の最大粒径が1μm以下であることを特徴とする請求項1〜のいずれか一項に記載の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。 The grout maximum particle size of the spherical silica fine powder to be used for radioactive waste disposal site during construction underground rock according to any one of claims 1 to 4, characterized in that at 1μm or less Construction method. 前記消石灰微粉の最大粒径が1μm以下であることを特徴とする請求項1〜のいずれか一項に記載の放射性廃棄物処分場の建設時に地下の岩盤に対して使用する注入材の施工方法。 Construction of grout maximum particle size of the hydrated lime fines be used for claims 1 to 5 or underground rock during construction of radioactive waste disposal sites according to one of, characterized in that at 1μm or less Method.
JP2009211509A 2009-09-14 2009-09-14 Injection material construction method Expired - Fee Related JP5401664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211509A JP5401664B2 (en) 2009-09-14 2009-09-14 Injection material construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211509A JP5401664B2 (en) 2009-09-14 2009-09-14 Injection material construction method

Publications (2)

Publication Number Publication Date
JP2011059044A JP2011059044A (en) 2011-03-24
JP5401664B2 true JP5401664B2 (en) 2014-01-29

Family

ID=43946835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211509A Expired - Fee Related JP5401664B2 (en) 2009-09-14 2009-09-14 Injection material construction method

Country Status (1)

Country Link
JP (1) JP5401664B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683302B2 (en) * 2011-02-03 2015-03-11 電気化学工業株式会社 Adhesive and bonding method
JP6329070B2 (en) * 2011-07-02 2018-05-23 ルンプ,ビヨルン・ジイグート Safe reactor plant construction method and corresponding reactor plant
JP6183678B2 (en) * 2012-09-27 2017-08-23 株式会社大林組 Solution type grout and grout method using the same
WO2017022345A1 (en) 2015-07-31 2017-02-09 勝義 近藤 Cement-based material for radioactive-waste disposal site

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952324B2 (en) * 1994-05-30 1999-09-27 日特建設株式会社 Dynamic injection method of ground improvement
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JPH08199165A (en) * 1995-01-19 1996-08-06 Denki Kagaku Kogyo Kk High-strength grouting material
JP5052804B2 (en) * 2006-03-29 2012-10-17 電気化学工業株式会社 Emergency repair material
JP5189274B2 (en) * 2006-11-10 2013-04-24 電気化学工業株式会社 Ground injection material and ground injection method using the same
JP5278655B2 (en) * 2008-02-22 2013-09-04 ウシオ電機株式会社 Excimer lamp

Also Published As

Publication number Publication date
JP2011059044A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CN103880372B (en) For the cement based grouting material of reinforcing and repairing, its preparation method and application thereof
RU2656266C2 (en) Method for treating a subterranean formation with a mortar slurry with the possibility of formation of a permeable layer of hardened mortar slurry
CN103214217B (en) Composite superfine cement grout slurry and preparation method thereof
CN102757206A (en) Mine fracture grouting material and usage method thereof
KR101209282B1 (en) Ultra-high performance fiber reinforced cementitious composites and manufacturing method
CN103102128A (en) Injecting paste material for underground structure water plugging and preparation method thereof
CN104402376A (en) Super high-water inorganic cementing filling and fire prevention and extinguishing material
CN102838332A (en) Novel green grouting superfine cement
JP5401664B2 (en) Injection material construction method
CN103265237A (en) Dual-fluid grouting material for sand and gravel stratum and application method thereof
CN105198333A (en) Modified grouting material
CN110700032A (en) Method for treating soft soil foundation of municipal road
CN104591646A (en) Grouting material for surrounding rock
KR100414856B1 (en) A cement grouting materials of micro-fine hybrid silicates with high penetrable, strong and durable
JP5423959B2 (en) Fast-hardening injection material using fast-curing material for injection material
JP5208588B2 (en) Injection material construction method
Zhao-feng et al. Experimental study of water-soluble vegetable gum-modified cement-sodium silicate plugging materials
JPH10168452A (en) Water glass based suspension grout and method for grouting and solidifying ground by using it
CN108911568B (en) Grouting material additive and application thereof
JPH04221116A (en) Grouting engineering method
KR100979180B1 (en) Composition of rapid setting micro cement
JP2010215865A (en) Injection material and injection method
KR100413340B1 (en) A grouting method by using grouting materials of micro-fine hybrid silicates cement with high penetrable, strong and durable
CN115368076A (en) Novel grouting material for water-rich fractured zone stratum and preparation method thereof
CN114751714A (en) Inorganic rapid-setting double-liquid grouting reinforcing material for mine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5401664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees