JP5208588B2 - Injection material construction method - Google Patents
Injection material construction method Download PDFInfo
- Publication number
- JP5208588B2 JP5208588B2 JP2008152111A JP2008152111A JP5208588B2 JP 5208588 B2 JP5208588 B2 JP 5208588B2 JP 2008152111 A JP2008152111 A JP 2008152111A JP 2008152111 A JP2008152111 A JP 2008152111A JP 5208588 B2 JP5208588 B2 JP 5208588B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- parts
- mass
- injection
- injection material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、注入材の施工方法に関する。 The present invention relates to an injection material construction method.
注入材としては、以下の製造方法が知られている(特許文献1〜4)。
本発明は、特許文献1〜4よりも、止水性を改良するものである。 The present invention improves water-stopping performance more than Patent Documents 1 to 4.
本発明は、浸透性が良く地山改良効果に優れた注入材の施工方法を提供する。 The present invention provides a method for constructing an injection material having good permeability and excellent ground improvement effect.
即ち、本発明は、予め消石灰0.1〜10質量部と水100質量部を含有するB材、予めポゾラン物質100質量部と水200〜600質量部を含有するA材の順に、A材とB材の混合比率は質量比で、2:1〜1:2になるように、注入する注入材の施工方法であり、A材が予め分散剤を、ポゾラン物質100質量部に対して、0.5〜3質量部含有する該注入材の施工方法であり、ポゾラン物質が球状シリカである該注入材の施工方法であり、分散剤量が、ナフタリン系減水剤とメラミン系減水剤からなる群のうちの1種以上である該注入材の施工方法である。 That is, the present invention is previously hydrated lime 0.1 to 10 parts by weight of B material containing 100 parts by mass of water, in the order of A material containing pre-pozzolanic material 100 parts by weight of water 200 to 600 parts by weight, and the material A The mixing ratio of the material B is a construction method of the injecting material to be injected so that the mass ratio is 2: 1 to 1: 2 , and the material A is preliminarily dispersed with 100 parts by mass of the pozzolanic substance. .5-3 parts by mass of the injection material construction method, wherein the pozzolanic material is spherical silica, and the amount of dispersant is a group consisting of a naphthalene water reducing agent and a melamine water reducing agent. It is the construction method of this injection material which is 1 or more types .
本発明の注入材の施工方法は浸透性が良く、優れた地山改良効果を奏することができる。 The construction method of the injection material of the present invention has good permeability and can exhibit an excellent ground improvement effect.
ポゾラン物質として、フライアッシュ、シリカヒューム、及び球状シリカ等のシリカ質物質等が挙げられる。これらの中では、浸透性の点で、シリカヒューム及び/又は球状シリカが好ましく、球状シリカがより好ましい。球状シリカとしては、平均粒径1μm以下に粉砕した原料珪石を高温の火炎中で溶融し、球状にした球状シリカが好ましい。 Examples of the pozzolanic material include siliceous materials such as fly ash, silica fume, and spherical silica. Among these, silica fume and / or spherical silica is preferable, and spherical silica is more preferable in terms of permeability. As the spherical silica, spherical silica obtained by melting raw material silica, which has been pulverized to an average particle size of 1 μm or less, in a high-temperature flame and making it spherical is preferable.
予めポゾラン物質と水を含有するA材は水に予め分散して製造する。 A material containing a pozzolanic substance and water in advance is produced by dispersing in water.
A材の水の使用量は、ポゾラン物質100質量部に対して、100〜2000質量部が好ましく、200〜600質量部がより好ましい。水量が少ないと浸透性が悪くなり好ましくない傾向がある。水量が多いと強度が弱くなり好ましくない傾向がある。 100-2000 mass parts is preferable with respect to 100 mass parts of pozzolanic substances, and the usage-amount of the water of A material is more preferable 200-600 mass parts. If the amount of water is small, the permeability tends to be poor, which tends to be undesirable. If the amount of water is large, the strength tends to be weak, which tends to be undesirable.
又、分散性を高めるためA材に分散剤を併用することも可能である。分散剤として、市販のセメント減水剤が使用できる。分散剤の使用量は、ポゾラン物質100質量部に対して、0.5〜3質量部が好ましく、1〜2質量部がより好ましい。分散剤の量が少ないと浸透性が悪くなり好ましくない傾向がある。分散剤の量が多いと強度が弱くなり好ましくない傾向がある。 In order to improve dispersibility, it is possible to use a dispersant in combination with the A material. A commercially available cement water reducing agent can be used as the dispersant. 0.5-3 mass parts is preferable with respect to 100 mass parts of pozzolanic substances, and, as for the usage-amount of a dispersing agent, 1-2 mass parts is more preferable. If the amount of the dispersing agent is small, the permeability tends to deteriorate, which tends to be undesirable. If the amount of the dispersing agent is large, the strength tends to be weak, which tends to be undesirable.
予めカルシウム含有物質と水を含有するB材は、カルシウム含有物質を水に予め分散又は溶解して製造する。 The B material containing a calcium-containing substance and water in advance is produced by dispersing or dissolving the calcium-containing substance in water in advance.
カルシウム含有物質としては、セメント、消石灰、生石灰、石膏等の無機物質、ギ酸カルシウム等の有機酸のカルシウム塩等が挙げられる。これらの中では、浸透性の点で、消石灰が好ましい。 Examples of the calcium-containing substance include inorganic substances such as cement, slaked lime, quicklime and gypsum, and calcium salts of organic acids such as calcium formate. Among these, slaked lime is preferable in terms of permeability.
カルシウム含有物質の使用量は水100質量部に対して、0.1〜10質量部が好ましく、0.5〜5質量部がより好ましい。カルシウム含有物質の使用量が少ないと強度が弱くなり好ましくない傾向がある。カルシウム含有物質の使用量が多いと浸透性が悪くなり好ましくない傾向がある。 0.1-10 mass parts is preferable with respect to 100 mass parts of water, and, as for the usage-amount of a calcium containing substance, 0.5-5 mass parts is more preferable. If the amount of the calcium-containing substance used is small, the strength tends to be weak, which tends to be undesirable. When the amount of the calcium-containing substance used is large, the permeability tends to deteriorate, which tends to be undesirable.
又、分散性を高めるためB材に分散剤を併用することも可能である。 Further, in order to improve dispersibility, it is possible to use a dispersant in combination with the B material.
A材とB材の混合比率は地山の条件によって異なるので特に限定されるものではない。A材とB材の混合比率は質量比で、2:1〜1:2が好ましく、1:1がより好ましい。 Since the mixing ratio of A material and B material changes with conditions of natural ground, it is not specifically limited. The mixing ratio of the A material and the B material is a mass ratio, preferably 2: 1 to 1: 2, and more preferably 1: 1.
A材を先に注入する場合、A材は設計量を注入した後、B材を圧力上昇が認められるまで注入すればよい。又、逆にB材を先に注入する場合も同様な方法で注入すればよい。 In the case of injecting the A material first, the A material may be injected until the pressure rise is recognized after the design amount is injected. Conversely, when the B material is injected first, the same method may be used.
本発明は、A材とB材からなる注入材において、A材とB材をそれぞれ別々に注入するのが特徴である。注入する順序はB材を先に注入した後、A材を注入する方法が、地山の改良効果が大きく、地山の透水係数を小さくできる点で、好ましい。 The present invention is characterized in that the A material and the B material are separately injected in the injection material composed of the A material and the B material. The method of injecting the material B after the material B is injected first is preferable in that the effect of improving the natural ground is large and the hydraulic conductivity of the natural ground can be reduced.
注入材は、スクイズポンプやプランジャーポンプ等の通常のグラウトポンプで注入できる。又、空気で圧送することもできる。 The injection material can be injected with a normal grout pump such as a squeeze pump or a plunger pump. It can also be pumped with air.
実施例1
平均粒径1μm以下に粉砕した原料珪石を高温の火炎中で溶融し、球状シリカを製造した。球状シリカ100質量部と、水400質量部を混合してA材を製造した。一方、消石灰(試薬)1質量部と、水100質量部を混合してB材を製造した。A材とB材を表1に示す順序に従い、1.5mPaの圧力で注入した。注入材の透水係数と圧縮強度を測定し、表1に示した。A材とB材を、質量比で等量ずつ混合した。
Example 1
Raw material silica stone ground to an average particle size of 1 μm or less was melted in a high-temperature flame to produce spherical silica. A material A was produced by mixing 100 parts by weight of spherical silica and 400 parts by weight of water. On the other hand, B material was manufactured by mixing 1 part by mass of slaked lime (reagent) and 100 parts by mass of water. In accordance with the order shown in Table 1, A material and B material were injected at a pressure of 1.5 mPa. The water permeability coefficient and compressive strength of the injection material were measured and are shown in Table 1. A material and B material were mixed in equal amounts by mass ratio.
(評価方法)
透水係数:地盤工学会基準のJGS0831に準ずる注入装置を用いた。50cmの試料槽に7号珪砂を充填し、注入試験を行った。1日後、水を用いて透水係数を測定した。
強度:透水係数を測定した試料槽から硬化物を取り出し、長さ10cmに切断し、アムスラー型圧縮試験機で圧縮強度を測定した。
(Evaluation method)
Permeability coefficient: An injection device according to JGS0831 of the Japan Geotechnical Society standard was used. A 50 cm sample tank was filled with No. 7 silica sand and an injection test was conducted. One day later, the water permeability was measured using water.
Strength: The cured product was taken out from the sample tank whose water permeability was measured, cut into a length of 10 cm, and the compressive strength was measured with an Amsler type compression tester.
実験No.2のA材のみ注入の場合と実験No.6のB材のみ注入の場合は、何も注入していない実験No.1とほぼ同等の透水係数であり、浸透性が劣っていた。実験No.5のA材とB材を同時注入した場合は、注入材が直ちに硬化してしまい、注入ができなかった。一方、本願発明の実験No.3、本願発明の実験No.4は、実験No.1より透水係数が小さく、止水性や浸透性が優れ、圧縮強度が優れていた。特にB材を先に注入した実験No.4は、止水性や浸透性の効果が顕著であった。 Experiment No. No. 2 material A injection and experiment No. In the case of injecting only the B material of No. 6, no. The permeability coefficient was almost the same as 1, and the permeability was poor. Experiment No. When the A material and the B material of No. 5 were injected at the same time, the injected material was immediately cured and the injection could not be performed. On the other hand, in the experiment No. 1 of the present invention, 3. Experiment No. 1 of the present invention. 4 is an experiment No. The water permeability coefficient was smaller than 1, water-stopping and permeability were excellent, and the compressive strength was excellent. In particular, Experiment No. 1 in which the B material was injected first. No. 4 had remarkable water-stopping and penetrating effects.
実施例2
球状シリカ100質量部、水400質量部、表2に示す量の分散剤を混合してA材を製造し、A材とB材を実験No.3に示す順序に従い、注入し、注入材の透水係数と圧縮強度を測定したこと以外は、実施例1と同様に行った。結果を、表2に示した。ここで、FT−500はナフタリン系の減水剤であり、FT−80はナフタリン系の減水剤であり、FT−700NLはメラミン系の減水剤である。
Example 2
100 parts by weight of spherical silica, 400 parts by weight of water, and a dispersant of the amount shown in Table 2 were mixed to produce A material. In the same manner as in Example 1, except that the injection was performed according to the order shown in 3 and the water permeability coefficient and compressive strength of the injection material were measured. The results are shown in Table 2. Here, FT-500 is a naphthalene-based water reducing agent, FT-80 is a naphthalene-based water reducing agent, and FT-700NL is a melamine-based water reducing agent.
分散剤を適量使用することにより、実験No.3より透水係数が小さく、止水性や浸透性が優れ、圧縮強度が優れていた。 By using an appropriate amount of the dispersant, Experiment No. The water permeability coefficient was smaller than 3, water-stopping and permeability were excellent, and the compressive strength was excellent.
本発明の注入材の施工方法は、止水性、浸透性、強度発現性が大きい。本発明の注入材の施工方法は地山改良の他に、コンクリートのひび割れ補修の用途にも適応できる。 The construction method of the injection material of the present invention has a large water-stopping property, permeability, and strength development. The construction method of the injection material of the present invention can be applied not only to natural ground improvement but also to concrete crack repair applications.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008152111A JP5208588B2 (en) | 2008-06-10 | 2008-06-10 | Injection material construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008152111A JP5208588B2 (en) | 2008-06-10 | 2008-06-10 | Injection material construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009299291A JP2009299291A (en) | 2009-12-24 |
JP5208588B2 true JP5208588B2 (en) | 2013-06-12 |
Family
ID=41546463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008152111A Active JP5208588B2 (en) | 2008-06-10 | 2008-06-10 | Injection material construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5208588B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011026572A (en) * | 2009-07-01 | 2011-02-10 | Denki Kagaku Kogyo Kk | Grouting material and grouting workpiece |
WO2011115245A1 (en) * | 2010-03-19 | 2011-09-22 | 電気化学工業株式会社 | Injection material for repairing cracks in concrete, method for manufacturing same, and injection method using same |
JP5390442B2 (en) * | 2010-03-19 | 2014-01-15 | 戸田建設株式会社 | How to repair cracks in mortar or concrete at a radioactive waste disposal site |
JP5734642B2 (en) * | 2010-12-21 | 2015-06-17 | 電気化学工業株式会社 | Method for producing inorganic coating composition |
WO2012108360A1 (en) * | 2011-02-08 | 2012-08-16 | 電気化学工業株式会社 | Filling material, method for producing filling material, and filling method |
WO2012108359A1 (en) * | 2011-02-08 | 2012-08-16 | 電気化学工業株式会社 | Filling material for repairing concrete cracks, and filling method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794660B2 (en) * | 1992-01-29 | 1995-10-11 | 強化土エンジニヤリング株式会社 | Ground injection method |
JPH0841455A (en) * | 1994-07-29 | 1996-02-13 | Japan Found Eng Co Ltd | Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry |
JP4275618B2 (en) * | 2004-12-27 | 2009-06-10 | 電気化学工業株式会社 | Highly permeable ground injection material |
JP5165201B2 (en) * | 2006-02-14 | 2013-03-21 | 電気化学工業株式会社 | Injection material, manufacturing method thereof, and injection method using the same |
JP5189274B2 (en) * | 2006-11-10 | 2013-04-24 | 電気化学工業株式会社 | Ground injection material and ground injection method using the same |
-
2008
- 2008-06-10 JP JP2008152111A patent/JP5208588B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009299291A (en) | 2009-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aliabdo et al. | Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance | |
Vora et al. | Parametric studies on compressive strength of geopolymer concrete | |
Wang et al. | Improving performance of recycled aggregate concrete with superfine pozzolanic powders | |
JP5208588B2 (en) | Injection material construction method | |
CN108059382B (en) | Concrete glue reducing agent and preparation method thereof | |
Kubissa et al. | Ecological concrete based on blast-furnace cement with incorporated coarse recycled concrete aggregate and fly ash addition | |
CN102976672A (en) | Low-carbon high-performance concrete auxiliary cementing material | |
Abid et al. | A methodology to improve nanosilica based cements used in CO2 sequestration sites | |
Mahmoud et al. | Improving Class G cement carbonation resistance using nanoclay particles for geologic carbon sequestration applications | |
CN105731919B (en) | A kind of superelevation concrete adulterated with fly ash | |
WO2019054950A1 (en) | Cementitious composition, cement-based structure, and methods of forming the same | |
Gautam et al. | Effect of Alccofine on strength characteristics of Concrete of different grades-A Review | |
CN109608139A (en) | Cement concrete | |
Kazemian et al. | Effect of calcium chloride and kaolinite on shear strength and shrinkage of cement grout | |
Venugopal et al. | Development of alkali activated geopolymer masonry blocks | |
KR100906234B1 (en) | Plastic grout composite for filling | |
CN103073244A (en) | Bamboo fiber concrete and preparation method thereof | |
Papayianni et al. | Experimental study of nano-modified lime-based grouts | |
Safi et al. | Incorporation mode effect of Nano-silica on the rheological and mechanical properties of cementitious pastes and cement mortars | |
Yong et al. | Nano-CaCO3 enhances PVA fiber-matrix interfacial properties: an experimental and molecular dynamics study | |
JP4976803B2 (en) | Grout composition and grout material using the same | |
Sanjith et al. | A study on mechanical properties of latex modified high strength concrete using bottom ash as a replacement for fine aggregate | |
JP5401664B2 (en) | Injection material construction method | |
KR100979180B1 (en) | Composition of rapid setting micro cement | |
RU2474603C2 (en) | High-structure grouting mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5208588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |