JPH0880484A - Method for purifying contaminated soil and contaminated ground water - Google Patents

Method for purifying contaminated soil and contaminated ground water

Info

Publication number
JPH0880484A
JPH0880484A JP6217283A JP21728394A JPH0880484A JP H0880484 A JPH0880484 A JP H0880484A JP 6217283 A JP6217283 A JP 6217283A JP 21728394 A JP21728394 A JP 21728394A JP H0880484 A JPH0880484 A JP H0880484A
Authority
JP
Japan
Prior art keywords
pipe
impregnation
soil
injection
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6217283A
Other languages
Japanese (ja)
Other versions
JP3332600B2 (en
Inventor
Yukitoshi Okubo
幸俊 大久保
Toshiyuki Komatsu
利行 小松
Yuji Kawabata
祐司 川畑
Kazusane Tanaka
和実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21728394A priority Critical patent/JP3332600B2/en
Publication of JPH0880484A publication Critical patent/JPH0880484A/en
Application granted granted Critical
Publication of JP3332600B2 publication Critical patent/JP3332600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: To provide a purifying method which surely executes uniform impregnation of a decomposing material in a depth direction, impregnation to a specific range on a line or plane, impregnation to a specified concn., impregnation in a short time, repetitive impregnation and impregnation of plural materials in soil purification. CONSTITUTION: An outside pipe 21 having many stages of impregnation ports 23 provided with valves 33 to allow easy passage to the discharge side alone are inserted into the soil. Packing materials are packed around the pipe and an inside pipe 21 having an ejection port 28 is inserted into the pipe by sealing the upper and lower impregnation ports with packers 29. A liquid microorganism material is impregnated under pressurization from the desired impregnation ports via the ejection ports 28 into the ground strata. The inside pipe is moved in the depth direction after the completion of one step of the impregnation and thereafter the pressure impregnation stages are successively repeated, by which the liquid microorganism material is supplied into the contaminated ground strata.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汚染源の化学物質を生
物学的に分解する土壌浄化(修復)方法に関し、更に詳
しくは、原位置処理(IN SITU)の土壌汚染の修
復方法であり、正確には、汚染地下へ液状の微生物汚染
物質分解材料を供給する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil remediation (restoration) method for biologically decomposing chemical substances as pollutants, and more specifically to an in situ treatment (IN SITU) soil remediation method. To be precise, it relates to a method for supplying a liquid microbial pollutant decomposing material to a contaminated underground.

【0002】[0002]

【従来の技術】近年、芳香族炭化水素、パラフィン、ナ
フテン等の炭化水素、あるいはトリクロロエチレン、テ
トラクロロエチレン、テトラクロロエタン等の有機塩素
系化合物等による環境汚染が問題となっている。これら
の多くは土壌中に浸透し、分解されずに、徐々に地下水
に溶け地下水を通じて汚染領域が拡大する。
2. Description of the Related Art In recent years, environmental pollution caused by hydrocarbons such as aromatic hydrocarbons, paraffin and naphthene, and organic chlorine compounds such as trichloroethylene, tetrachloroethylene and tetrachloroethane has become a problem. Most of these penetrate into the soil, are not decomposed, and gradually dissolve in the groundwater to expand the contaminated area through the groundwater.

【0003】これらの深刻な環境汚染の再発を防止する
と共に、すでに汚染されてしまった環境を浄化し、もと
の状態に戻していく技術の確立が強く望まれている。
It is strongly desired to establish a technique for preventing the recurrence of these serious environmental pollutions and for purifying the already polluted environment and returning it to its original state.

【0004】この環境修復技術の例としては、汚染され
た地下水を汲み上げて揮発性の有機物を分離し、活性炭
に吸着させる曝気処理、汚染土壌を太陽や熱源にさら
し、揮発性有機物を熱により蒸発させる加熱処理、汚染
土壌にボーリング穴を設け、真空で汚染物質を吸引する
真空抽出、または汚染土壌を真空釜に入れて加熱し吸引
して抽出する真空釜処理等が行われている。
Examples of this environmental restoration technology include aeration treatment in which polluted groundwater is pumped up to separate volatile organic substances and adsorbed on activated carbon, contaminated soil is exposed to the sun or a heat source, and volatile organic substances are evaporated by heat. The heat treatment is performed, the contaminated soil is provided with a boring hole and vacuum extraction is performed to suck contaminants in a vacuum, or the contaminated soil is placed in a vacuum kettle and heated to be sucked and extracted.

【0005】特に高濃度で、局部的な汚染がひどい場合
はこれらの物理化学的処理が有効となることもあるが、
汚染が低濃度で、広範囲である時、処理速度やコストが
問題となる。また活性炭によりこれら有機物を回収でき
ても、通常難分解性の物質が多く、これを更に無害化す
るための処理が必要となるという問題を有している。
These physicochemical treatments may be effective especially when the concentration is high and local pollution is severe.
When contamination is low concentration and wide range, processing speed and cost become a problem. Further, even if these organic substances can be recovered by the activated carbon, there are many substances that are usually hardly decomposable, and there is a problem that a treatment for further detoxifying the substances is required.

【0006】これら物理化学的処理の問題点を解決する
方法として、近年微生物による生物学的な処理を用いた
土壌修復法が検討されている。
As a method for solving these problems of physicochemical treatment, a soil remediation method using biological treatment by microorganisms has been studied in recent years.

【0007】微生物、特に土壌に棲息できる微生物が汚
染物質を分解する方法であれば、自然のエネルギーによ
り浄化が行われ、投入エネルギーも小さく、また分解も
水や炭酸ガスにまで進められる。
If microorganisms, especially microorganisms that can live in the soil, decompose pollutants, purification is carried out by natural energy, the input energy is small, and the decomposition proceeds to water and carbon dioxide.

【0008】さて、土壌汚染を引き起こしている難分解
性化合物、例えば、芳香族炭化水素や有機塩素系化合物
を分解する微生物は数多く知られている。しかしなが
ら、実際の汚染土壌に、これらの微生物分解材料をその
まま散布した場合、通常、材料の供給に過不足や不均一
を生じ的確な浄化が行われない場合が発生する。
A large number of microorganisms that decompose persistent compounds that cause soil pollution, such as aromatic hydrocarbons and organic chlorine compounds, are known. However, when these microorganism-decomposing materials are directly sprayed on the actual contaminated soil, the supply of the materials usually becomes excessive or deficient or uneven, and proper purification may not be performed.

【0009】これは「汚染物質の分布」と「微生物分解
材料の散布」では時間的差異、物理化学的性質の差異が
あり同一になり難いためである。
This is because "distribution of pollutants" and "dispersion of microbial decomposition material" are difficult to be the same due to differences in time and physicochemical properties.

【0010】これらを克服するため、微生物分解材料を
地中内に強制的に配置する施工をするか、材料を土質層
内に挿入したパイプで圧送する等の方法が用いられてき
た。
In order to overcome these problems, a method of forcibly arranging the microbial decomposition material in the ground or a method of pumping the material with a pipe inserted into the soil layer has been used.

【0011】従来USP5、120、160やDE3、
839、093、USP5、080、782、USP
5、032、042、USP4、401、569等の公
報において、地中内へ微生物や栄養物を供給して、汚染
物質の生物浄化する方法が提案されている。しかしこれ
らは微生物分解材料の的確な分布、即ち深さと広がりの
濃度分布について保証する技術ではない。
Conventional USP 5,120,160 and DE3,
839, 093, USP 5, 080, 782, USP
5, 032, 042, USP 4, 401, 569, etc., propose a method for biologically purifying pollutants by supplying microorganisms and nutrients into the ground. However, these are not the techniques for guaranteeing the accurate distribution of the biodegradable material, that is, the concentration distribution of depth and spread.

【0012】またUSP4、442、895の公報に記
載されているように、石油や天然ガスの採取、軟弱地盤
の固化等の分野で、地層内に加圧流体を注入し亀裂を生
成する方法が知られているが、本発明で意図する分解材
料の地層内への供給手段として完成された技術ではな
い。
Further, as described in US Pat. No. 4,442,895, a method of injecting a pressurized fluid into a formation to generate cracks in the fields of oil and natural gas collection, soft ground solidification, etc. Although known, it is not a complete technique as a means of delivering degradable material into the formation as contemplated by the present invention.

【0013】USP5、133、625では、パイプの
先端部に注入口を持ち、地中に挿入しながら順次、液体
状微生物分解材料を圧入する方法が提案されているが、
液体と気体をシークエンシャルに注入するには一定の深
さ毎に先に注入した液体もしくは気体を排除しながら入
れるか、液体用と気体用の二本の注入パイプを設けるこ
とが必要で煩雑である。
In USP 5,133,625, a method is proposed in which an inlet is provided at the tip of a pipe, and liquid microbial decomposing materials are sequentially pressed while being inserted into the ground.
In order to inject liquid and gas sequentially, it is necessary to remove the previously injected liquid or gas at a fixed depth, or to install two injection pipes for liquid and gas, which is complicated. is there.

【0014】USP5、032、042には、地中内へ
圧縮空気を導入するパイプを持ち、パッカーを持ち順次
深さ方向のクラックを形成する技術が開示されている
が、弁のある注入口を持たないため液体と気体または二
種の液体を順次注入する時や所定時間を隔てて注入する
時に不向きであり、また管外壁方向への注入物の移動が
生じる等の欠点を有している。
USP 5,032,042 discloses a technique in which a pipe for introducing compressed air into the ground is provided and a packer is provided to successively form cracks in the depth direction. Since it does not have it, it is unsuitable when sequentially injecting a liquid and a gas or two kinds of liquids, or when injecting at a predetermined time, and has a drawback that the injectate moves toward the outer wall of the tube.

【0015】汚染された地下水を汲み上げて物理化学的
もしくは微生物学的に処理する方法も試みられている
が、この方法は、汲み上げや処理のエネルギーを要し、
浄化のための地上施設を要し、更に地盤沈下を生じた
り、地下水流の下流側での利用に支障を生じたり、伏流
水の変化による下流生態系への影響等の問題が少なくな
い。
Although a method of pumping polluted groundwater and treating it physically or chemically or microbiologically has been attempted, this method requires energy for pumping and treatment,
There are many problems such as the need for ground facilities for purification, further ground subsidence, hindrance to the downstream use of groundwater flow, and effects on downstream ecosystems due to changes in underground water.

【0016】[0016]

【発明が解決しようとする課題】従来、菌やその栄養素
等の微生物分解材料を土壌中に直接供給する方法では、
汚染物質の分布に対応した分布を、地表面で人為的に作
ることが非常に難しかった。このような不十分な菌の分
布コントロール下では過剰にこれらを供給する等分解の
効率低下や経済性で不利である。一方地中へ分解材料を
供給するために、広い領域で、地中深く掘り起こすこと
は物理的に困難かコスト的に難点が生じる。また分解材
料を単に地表面からの散布により自然拡散させる場合
は、汚染物質の拡散し始めた時間と生物学的分解物を供
給する時期の時間的ズレから両者の分布状態を同じにす
ることは困難である。特に拡散性の差は、この時間的差
に加え、両者の比重の差、土壌との化学的、もしくは生
物学的親和性の差等も分布の違いを増長させる原因とな
る。特に従来の方法では不飽和帯と飽和帯水層で異なる
供給状態になる問題についての解決手段が示されていな
い。
[Problems to be Solved by the Invention] Conventionally, in the method of directly supplying a microorganism decomposing material such as bacteria and its nutrients into the soil,
It was very difficult to artificially create a distribution corresponding to the distribution of pollutants on the ground surface. Under such insufficient distribution control of bacteria, it is disadvantageous in that the efficiency of decomposition such as excessive supply of these is lowered and the economy is low. On the other hand, it is physically difficult or costly to dig deep into the ground in a wide area in order to supply the decomposition material to the ground. In addition, when the degradable material is naturally diffused by simply spraying it from the ground surface, it is not possible to make the distribution state of both the same due to the time difference between the time when pollutants started to diffuse and the time when the biological degradant was supplied. Have difficulty. In particular, the difference in diffusibility, in addition to this time difference, causes a difference in distribution to be increased due to a difference in specific gravity between the two and a difference in chemical or biological affinity with soil. In particular, the conventional method does not provide a solution to the problem of different supply states in the unsaturated zone and the saturated aquifer.

【0017】そこで、ボーリン穴を設け、その穴よりこ
れら微生物分解材料を注入する方法が提案されている
が、ボーリン穴からの単純な注入では、分解材料の位
置、分布範囲、濃度等について設計どおりの供給を期待
することは困難である。
Therefore, a method has been proposed in which a boring hole is provided and these microbial decomposition materials are injected from the hole. However, in the simple injection from the boring hole, the position, distribution range, concentration, etc. of the decomposition material are as designed. It is difficult to expect a supply of.

【0018】これは、土質層のヘテロジニアスな性質
や、自然が形成した水道(ウォーターチャンネル)のみ
への供給や、供給した材料の過不足について知る手段が
無いまま垂れ流す等によるものである。
This is due to the heterogeneous nature of the soil layer, the supply to the water channel (water channel) formed by nature, and the drooling without knowing the excess or deficiency of the supplied material.

【0019】そこで本発明の目的は、上述の土壌修復に
おける問題点を解決することにあり、分解材料の深さ方
向での均一な注入、線上または面上での所定範囲への注
入、及び所定濃度の注入、短時間での注入、繰り返し注
入、複数の材料の注入を確実に行う方法を提供すること
にある。
Therefore, an object of the present invention is to solve the above-mentioned problems in soil restoration, and to uniformly inject the decomposed material in the depth direction, inject it into a predetermined range on a line or on a plane, and to inject a predetermined amount. An object of the present invention is to provide a method for surely performing concentration injection, short-time injection, repeated injection, and injection of a plurality of materials.

【0020】[0020]

【課題を解決するための手段】上記の目的は、以下の本
発明によって達成される。
The above object can be achieved by the present invention described below.

【0021】即ち本発明は、ハロゲン化炭化水素で汚染
された土壌・地下水領域の地表の少なくとも一か所以上
に、液体状材料を加圧注入できる注入管を設け、この注
入管より該炭化水素を分解できる液体状微生物材料を加
圧注入し、該炭化水素分解材料により汚染土壌・汚染地
下水を原位置にて浄化する方法であって、排出側へだけ
通過しやすい弁を持つ多段の注入口を有する外管を土壌
に挿入し、その周囲に管外壁挿入方向へ注入物が移動す
るのを防ぐ充填剤を充填し、該管内には、噴出口を持つ
内管を上下の注入口をパッカーにてシールし、内管噴出
口を介して目的とする注入口より液体微生物材料を地層
内に加圧注入し、一段の注入が完了した後、深さ方向へ
内管を移動し、順次加圧注入工程を繰り返すことによ
り、液体状微生物材料を汚染地層へ供給することを特徴
とする汚染土壌・汚染地下水の浄化方法であり、分解菌
液、栄養素、微生物担体を同時または個別に注入するこ
とを含み、液体状微生物分解材料と気体(空気またはガ
ス)材料を同一の注入管を利用して注入することを含
み、所定時間経過後、液体状微生物分解材料や気体の再
注入を任意の注入口より行うことを含む。
That is, according to the present invention, an injection pipe capable of injecting a liquid material under pressure is provided at least at one or more locations on the surface of the soil / groundwater region contaminated with a halogenated hydrocarbon, and the hydrocarbon is introduced from this injection pipe. A method of injecting a liquid microbial material capable of decomposing urine under pressure and purifying contaminated soil and contaminated groundwater in situ with the hydrocarbon decomposing material, which is a multi-stage injection port with a valve that easily passes only to the discharge side. The outer pipe having the above is inserted into the soil, and the periphery thereof is filled with a filler that prevents the injectate from moving in the insertion direction of the outer wall of the pipe. The liquid microbial material is pressure-injected into the formation from the intended injection port through the inner pipe ejection port, and after the one-step injection is completed, the inner pipe is moved in the depth direction and sequentially added. By repeating the pressure injection process, liquid microbial material Is a method for cleaning contaminated soil and contaminated groundwater, which comprises injecting decomposing bacteria solution, nutrients, and microbial carrier simultaneously or individually, and liquid microbial decomposing material and gas (air Or gas) material is injected using the same injection pipe, and reinjection of liquid microbial decomposition material or gas is performed from an arbitrary injection port after a predetermined time has elapsed.

【0022】[0022]

【作用】以下、本発明を詳述する。The present invention will be described in detail below.

【0023】土壌汚染が実質的に環境へ影響を与える経
路は、汚染物質の性質や汚染状態により多様である。し
かしながら、近年特に問題とされている有機塩素系の溶
剤による土壌汚染の場合は、地下に漏洩した溶剤が、地
中深くに浸透し、徐々に地下水に溶解し、この地下水の
移動と共に汚染領域の拡大を生じ、地下水下流域におい
て、この地下水を直接利用する時に初めて問題が発生し
たり、もしくは地下より湧き出た伏流水、更には河川へ
の流出時に問題となることが多かった。
The route in which soil pollution substantially affects the environment varies depending on the nature of the pollutant and the pollution state. However, in the case of soil pollution due to an organic chlorine-based solvent, which has been particularly problematic in recent years, the solvent leaking underground penetrates deep into the ground and gradually dissolves in groundwater. In many cases, the problems occurred only when this groundwater was directly used in the groundwater downstream area, or when the groundwater spewed from the ground and outflowed to a river.

【0024】汚染土壌が局所的で、汚染の初期であれ
ば、汚染された土壌を直接処理することにより問題を解
決することが可能となる。しかしながら、今日問題とな
る多くの例は、有機塩素系の溶剤が広く使用されだして
10数年以上経過し、初めて問題に気付いた場合が多
く、その実態は土壌に深く浸透した溶剤が土壌物質に吸
着され、ここを通過する地下水に、少しずつ溶解して、
上述の地下水汚染として環境に影響を与えている。
If the contaminated soil is local and at the beginning of the contamination, the problem can be solved by directly treating the contaminated soil. However, in many of today's problems, organochlorine-based solvents have been widely used and more than 10 years have passed, and it is often the first time that problems are noticed. Is adsorbed on the groundwater and gradually dissolves in the groundwater passing through it.
The above-mentioned groundwater pollution affects the environment.

【0025】ここで比重の大きな有機塩素系溶剤の典型
的な汚染機構について述べる。
Here, a typical fouling mechanism of an organic chlorine solvent having a large specific gravity will be described.

【0026】図1は典型的な有機塩素系汚染土壌の地下
断面の模式図である。
FIG. 1 is a schematic diagram of an underground cross section of a typical organochlorine-contaminated soil.

【0027】まず汚染源Cより土壌I(表土)、H(ロ
ーム層)、G(砂層)やF(砂礫層)へ浸透した溶剤は
土壌に吸着され、吸着できない過剰な溶剤は下層の土壌
に次々と吸着が進行する。この時の汚染物質の分布は急
峻な山型となり、浸透し、吸着できる土壌があるかぎ
り、水平方向への分布はあまり進行しない。
First, the solvent that has penetrated from the pollution source C to the soil I (top soil), H (loam layer), G (sand layer) and F (sand gravel layer) is adsorbed to the soil, and the excess solvent that cannot be adsorbed is successively admitted to the lower layer soil. And adsorption progresses. The distribution of pollutants at this time has a steep mountain shape, and as long as there is soil that can penetrate and adsorb, the distribution in the horizontal direction does not proceed so much.

【0028】次に溶剤が十分浸透できない地層E(シル
ト質粘土層)や緻密な土質層にある帯水層に到達する
と、溶剤は、その近辺に滞留することになる。次に地上
から供給された雨水もしくは地下水が、土壌と水の間
で、溶剤の吸着平衡をとり、一定の分配係数により、溶
剤が水へ溶解する。多くの場合有機塩素系溶剤では、溶
解度は低く数1000ppm以下である。この数値は物
理的に見れば溶解度としては低い数字であるが、環境汚
染としては大きな数値である。
Next, when the solvent reaches the formation E (silty clay layer) where the solvent cannot sufficiently permeate or the aquifer in the dense soil layer, the solvent stays in the vicinity. Next, the rainwater or groundwater supplied from the ground establishes the adsorption equilibrium of the solvent between the soil and the water, and the solvent dissolves in the water with a constant distribution coefficient. In many cases, an organic chlorine solvent has a low solubility of several 1000 ppm or less. Although this number is physically low in terms of solubility, it is a large number for environmental pollution.

【0029】更に、汚染物質の土壌と地下水への吸着平
衡(分配係数により一定値を保つ)が新規に流入・供給
されてくる地下水により再平衡へズレると、溶け出した
溶剤は水を介して汚染を拡大する。地下水流Jは地下水
位Dより下で生じるが、砂礫層の吸着はローム層やシル
ト層に比較して溶剤の吸着が少なく、このことは地下水
流の移動し易い砂層、砂礫層で汚染物の拡大を増進させ
ることとなる。
Furthermore, when the adsorption equilibrium of the pollutants to the soil and groundwater (keeping a constant value by the distribution coefficient) shifts to the re-equilibrium due to the newly inflowing / supplied groundwater, the dissolved solvent passes through the water. Expand pollution. The groundwater flow J occurs below the groundwater level D, but the adsorption of the gravel layer is less than the adsorption of the solvent as compared with the loam layer and the silt layer. It will increase the expansion.

【0030】また地中に浸透した有機塩素系溶剤は液体
状での拡散と共に、地中で蒸発し、地下空気の汚染を生
じており、この汚染は低濃度で広い領域を汚染する場合
が多くなる。
Further, the organic chlorine-based solvent that has penetrated into the ground evaporates in the ground along with the diffusion in a liquid state, and the ground air is polluted. This pollution often pollutes a wide area at a low concentration. Become.

【0031】本発明の目的は、このような汚染機構を考
慮して、短時間に有効な汚染浄化対策を提供することに
ある。即ち、土壌中深くに浸透した汚染溶剤を土壌ごと
掘り起こし、除去するには、多くの場合困難を伴う。浸
透する土壌の深さは地層により異なるが、数メートルか
ら数十メートルに達することがある。汚染地の地上部に
は稼働中の工場や、施設、住宅等があることも多い。ま
た当然のことながら、深くなればなるほど汚染領域は広
くなる。緩慢な地下水の移動は、汚染が察知されるまで
に長時間を要し、このことも、汚染領域を拡大する原因
となっている。従って汚染領域全域についての完全な浄
化が非現実的にならざるを得ない場合がある。
An object of the present invention is to provide an effective pollution purification measure in a short time in consideration of such a pollution mechanism. That is, in many cases, it is difficult to dig up and remove the contaminated solvent that has penetrated deep into the soil together with the soil. The depth of infiltrated soil varies from stratum to stratum, but can reach several meters to several tens of meters. There are often operating factories, facilities, houses, etc. on the ground above the polluted areas. Also, of course, the deeper the area, the wider the contaminated area. The slow movement of groundwater takes a long time before the contamination is detected, which also causes the contamination area to expand. Therefore, complete purification of the entire contaminated area may be impractical.

【0032】本発明ではこれら帯水層・非帯水層の汚染
機構に対し、的確な位置及び配置にて、短時間で微生物
学的浄化(バイオレメディエーション)による修復を実
施することを狙いとしている。
In the present invention, it is an object of the present invention to carry out repair by microbiological purification (bioremediation) in a short time at an appropriate position and arrangement for the contamination mechanism of these aquifers and non-aquifers. .

【0033】次に生物学的に有害な化学物質を分解する
方法について述べる。
Next, a method for decomposing biologically harmful chemical substances will be described.

【0034】本発明で問題としている土壌汚染を引き起
こしている有害化学物質は、難分解性化合物で、ハロゲ
ン化炭化水素、例えば、芳香族炭化水素系化合物や有機
塩素系炭化水素化合物である。これらを分解する微生物
は数多く知られており、またあるものについては分解酵
素が明らかにされているものも知られている。しかしな
がら、現実の汚染土壌にこれらの微生物または酵素をそ
のまま散布しても土壌中の有害化学物質に対して十分な
効果は期待できない。
Hazardous chemical substances causing soil pollution, which is a problem in the present invention, are hardly decomposable compounds such as halogenated hydrocarbons such as aromatic hydrocarbon compounds and organic chlorine hydrocarbon compounds. Many microorganisms that decompose these are known, and some of them are known to have degradative enzymes. However, even if these microorganisms or enzymes are directly applied to the actual contaminated soil, no sufficient effect can be expected against harmful chemical substances in the soil.

【0035】その理由のひとつはこれら微生物材料と化
学物質の分布の特性が異なり、しかも分布の時間的経過
を同じにできないためである。
One of the reasons is that the distribution characteristics of these microbial materials and chemical substances are different, and the time course of the distribution cannot be the same.

【0036】他の理由は培養器等地上の一定の条件下
で、分解活性が得られても、地中にて同様な棲息条件が
得られないからである。
Another reason is that even if the decomposing activity is obtained under a certain condition on the ground such as an incubator, the same habitation condition cannot be obtained in the ground.

【0037】直接微生物材料を地上もしくは地中に散布
すると、通常散布時の初期濃度に対して、土壌中でこの
微生物菌もしくは酵素濃度は時間と共に急速に減少す
る。
When the microbial material is sprayed directly on the ground or in the ground, the microbial or enzyme concentration in the soil rapidly decreases with time, as compared with the initial concentration at the time of spraying.

【0038】減少する理由はかならずしも明確では無い
が、土壌に従来からいる微生物との競合、栄養その他の
環境不適合からの死滅、原虫等他の生物群による捕食等
によると考えらる。
The reason for the decrease is not always clear, but it is considered to be due to competition with microorganisms existing in the soil, death from nutrition and other environmental incompatibility, predation by other organism groups such as protozoa, and the like.

【0039】そのため、微生物材料を頻繁に、大量に蒔
く等の対策を必要とし、処理時間、コスト等に不都合を
生じる。従って、有害物の存在する土壌中で、微生物が
増殖し、活性を維持する方法が強く求められている。酵
素の場合も同様に活性維持の条件を土壌中にて確保する
必要がある。従って、地中にこれら微生物を供給する時
には、同時に微生物活性材料、生残材料、増殖材料等を
合わせて供給する必要がある。
Therefore, it is necessary to take measures such as frequent and large-scale seeding of microbial material, which causes inconvenience in processing time, cost and the like. Therefore, there is a strong demand for a method in which microorganisms grow in soil containing harmful substances and the activity is maintained. Similarly, in the case of enzymes, it is necessary to secure conditions for maintaining activity in soil. Therefore, when supplying these microorganisms into the ground, it is necessary to simultaneously supply the microbial active material, the survival material, the growth material and the like.

【0040】本発明ではこれら微生物による分解に必要
な材料をまとめて、またはシークエンシャルに、また適
宜の時間間隔で目的とする場所に、必要な量を供給する
ことを目的としている。
The object of the present invention is to supply the necessary amount of the materials required for the decomposition by the microorganisms collectively or sequentially, and to a desired place at an appropriate time interval.

【0041】この発明で土壌中へ「必要材料」を供給す
る時、「目的とする場所」へは、すくなくとも一本以上
の多段の注入口を持つ注入パイプを挿入し、このパイプ
から目的とする深さの注入口のみから注入すべき材料を
必要量圧入し、次に異なる深さの注入口から同様の圧入
を行い、必要な量注入する。
When supplying the "necessary material" into the soil according to the present invention, an injection pipe having at least one multi-stage injection port is inserted into the "target place", and the target is obtained from this pipe. The required amount of material to be injected is injected only from the injection port of the depth, and then the same amount of material is injected from the injection ports of different depths to inject the required amount.

【0042】これら単位操作を容易に繰り返し行える施
工方法は、軟弱地盤を固める土木工事で使用されている
セメントや硬化剤の注入装置に類似した装置が利用で
き、この発明では基本的にこの装置に類似した構成で微
生物材料を地中に供給できることを見出した。
As a construction method in which these unit operations can be easily repeated, an apparatus similar to the cement or hardening agent injection apparatus used in the civil engineering work for hardening soft ground can be used. It has been found that microbial material can be supplied underground with a similar configuration.

【0043】土木工事における注入剤と本発明における
微生物材料の注入の差異は、土木工事は比較的限定した
領域内に注入液が留まり、目的とする部分が硬化するよ
う注入資材を地層内に導入するのに対し、微生物材料の
供給においては、より広い領域への材料の浸透を期待す
る場合が多く、粘性も水に近い材料が用いられる。この
ため注入圧力や時間、即ち注入量における制約が大きく
異なる。硬化を目的とした土木工事では流動性の良い状
態での注入と同時に早い硬化を期待するための制限が生
じるが、微生物材料についてはこのような制限は生じな
い。また土木工事では、一度硬化が完了すれば目的を達
成するが、微生物による浄化では複数の材料、特に液体
と気体のように異なる物性を持つ材料を導入する要求が
生じたり、数次にわたり注入を繰り返す必要を生じる場
合がある。これらは基本的には注入に用いるパイプやポ
ンプの構成が類似しているが、各々を管理・運用するた
めの構成や資材が異なる。
The difference between the injection agent in civil engineering work and the injection of the microbial material in the present invention is that in the civil engineering work, the injection liquid is retained in a relatively limited area, and the injection material is introduced into the stratum so that the intended portion is hardened. On the other hand, in supplying the microbial material, it is often expected that the material penetrates into a wider area, and a material having a viscosity close to that of water is used. For this reason, restrictions on the injection pressure and time, that is, the injection amount are greatly different. In the civil engineering work for the purpose of hardening, there is a limitation to expect rapid hardening at the same time as injecting in a fluid state, but such a limitation does not occur for microbial materials. Also, in civil engineering work, the objective is achieved once curing is completed, but in the purification by microorganisms, there are demands to introduce multiple materials, especially materials with different physical properties such as liquid and gas, and injection is performed over several orders. May need to be repeated. Basically, the pipes and pumps used for injection are similar in configuration, but the configurations and materials for managing and operating each are different.

【0044】次に注入に必要な材料について述べる。Next, the materials necessary for implantation will be described.

【0045】本発明で使用する汚染化学物質を分解する
微生物材料は、化学物質を分解できる微生物材料であ
り、これに添加する材料として、微生物の増殖に必要と
なる増殖機能を持つ材料、微生物の分解を発現する活性
維持機能材料、微生物が地中に入って安定に棲息できる
担体となる生残機能材料が用いられる。増殖材料は微生
物の培地に相当するものである。微生物は栄養素により
増殖し、有害物の分解に寄与する。活性維持材料は有害
物の分解を実質的に推進するためのもので、栄養素と区
別できない場合もある。微生物は特定の物質が直接栄養
素として利用できない時、この特定の物質を分解するた
め、誘導物質(インデューサー)により分解酵素を生産
し、分解を進める。有害物の分解はこの時に微生物が生
産する酵素により可能となる。この発明ではこの有害物
分解酵素を生産するのに必要な材料を活性維持材料とし
た。
The microbial material for decomposing polluted chemical substances used in the present invention is a microbial material capable of decomposing chemical substances, and as a material to be added thereto, a material having a growth function necessary for the growth of microorganisms, An active maintenance functional material that exhibits decomposition and a survival functional material that serves as a carrier that allows microorganisms to enter the ground and stably inhabit are used. The growth material corresponds to the culture medium of the microorganism. Microbes grow with nutrients and contribute to the decomposition of harmful substances. The activity-maintaining material is intended to substantially promote the decomposition of harmful substances, and may be indistinguishable from nutrients. When a specific substance cannot be directly used as a nutrient, the microorganism decomposes this specific substance, so that an inducing substance (inducer) produces a degrading enzyme to promote the decomposition. Decomposition of harmful substances is made possible by enzymes produced by microorganisms at this time. In the present invention, the material necessary for producing this harmful substance-degrading enzyme is used as the activity maintaining material.

【0046】このことは微生物そのものを利用しなくて
も、微生物の代謝物である酵素があるだけでも有害化学
物質を分解できることを示している。微生物に代わり酵
素を使用する場合には、この酵素を保持する担体や酵素
が分解活性を発現するためにミネラル等が必要とされ
る。
This indicates that harmful chemical substances can be decomposed without using the microorganisms themselves, only with the enzyme which is a metabolite of the microorganisms. When an enzyme is used in place of the microorganism, a carrier that retains the enzyme and a mineral or the like are required for the enzyme to exhibit degrading activity.

【0047】生残材料は、ひとつには微生物が地中にお
いて他の微生物や微小生物により捕食されたり、競合す
る時に、これらから保護されるための棲息空間を付与す
るものである。またある時には有効な微生物が地下水中
に拡散消滅するのを防ぐ意味で、固定化担体となる場合
も含む。これは増殖材料、つまり栄養素そのものがこの
機能を果たすことも可能である。
The surviving material is, in part, to provide a living space for protecting microorganisms when they are predated by other microorganisms and microbes in the ground or compete with each other. In some cases, it also serves as an immobilization carrier in order to prevent effective microorganisms from diffusing and disappearing in groundwater. It is also possible that the growth material, that is, the nutrient itself, fulfills this function.

【0048】生残材料として、微生物の棲息空間を与え
る材料は、従来医薬品工業、食品工業、廃水処理システ
ム等で知られているバイオリアクターで使用されている
さまざまな微生物担体が用いられる。例えば多孔質ガラ
ス、セラミックス、金属酸化物、活性炭、カオリナイ
ト、ベントナイト、ゼオライト、シリカゲル、アルミ
ナ、アンスラサイト等の粒子状担体、デンプン、寒天、
キチン、キトサン、ポリビニルアルコール、アルギン
酸、ポリアクリルアミド、カラギーナン、アガロース、
ゼラチン等のゲル状担体、イオン交換樹性セルローズ、
イオン交換樹脂、セルローズ誘導体、グルタルアルデヒ
ド、ポリアクリル酸、ウレタンポリマー等がある。また
天然、もしくは合成の高分子化合物も有効であり、セル
ローズを主成分とする綿、麻、パルプ材より作られる紙
類もしくは天然物を変性した高分子アセテート等。ポリ
エステル、ポリウレタンを初めとする合成高分子からな
る布類も使用できる。これらは微生物の付着性が良く、
微細な間隙を有するものが好ましい。また注入時に容易
に浸透できる微細な材料が好ましく用いられる。
As a material for providing a living space for microorganisms as a survival material, various microbial carriers which have been used in bioreactors conventionally known in the pharmaceutical industry, food industry, wastewater treatment system and the like are used. For example, porous glass, ceramics, metal oxides, activated carbon, kaolinite, bentonite, zeolite, silica gel, alumina, particulate carriers such as anthracite, starch, agar,
Chitin, chitosan, polyvinyl alcohol, alginic acid, polyacrylamide, carrageenan, agarose,
Gelatinous carrier such as gelatin, ion-exchange resinous cellulose,
There are ion exchange resins, cellulose derivatives, glutaraldehyde, polyacrylic acid, urethane polymers and the like. In addition, natural or synthetic polymer compounds are also effective, such as cellulose-based cotton, linen, paper made from pulp materials, or polymer acetate modified from natural products. Cloths made of synthetic polymers such as polyester and polyurethane can also be used. These have good adhesion of microorganisms,
Those having fine gaps are preferable. Further, a fine material that can easily penetrate at the time of injection is preferably used.

【0049】棲息空間を与える材料と栄養素を兼用する
材料としては、農林業関係で知られている堆肥材料等に
その例を多く見ることができる。即ち、麦わら等の穀物
類のワラやオガクズ、米糠、オカラ、砂糖黍の絞りカス
等の乾燥植物遺体、またカニやエビの殻も微小間隙を有
すると同時に微生物による分解性栄養素となるもので、
特に微小な粒径に処理できる材料が用いられる。
As the material that provides the habitation space and the material that also serves as the nutrient, many examples can be found in the compost material and the like known in the agriculture and forestry industry. That is, dried plant remains such as straw and sawdust of cereals such as straw, rice bran, okara, sugar cane squeezing residue, crabs and shrimp shells also have micropores and become degradable nutrients by microorganisms,
In particular, a material that can be processed into a fine particle size is used.

【0050】次に微生物の具体的な材料を示す。微生物
としては分解活性が確認されている材料が使用される
が、次の属にあるものから選択される。
Next, concrete materials of the microorganism will be shown. As the microorganism, a material whose degrading activity has been confirmed is used, and it is selected from those belonging to the following genera.

【0051】Saccharomyces、Hanse
nula、Candida、Micrococcus、
Staphylococcus、Streptococ
cus、Leuconostoa、Lactobaci
llus、Corynebacterium、Arth
robacter、Bacillus、Clostri
dium、Neisseria、Escherichi
a、Enterobactor、Serratia、A
chromobacter、Alcaligenes、
Flavobacterium、Acetobacte
r、Nitrosomonas、Nitrobacte
r、Thiobacillus、Gluconbact
er、Pseudomonas、Xanthomona
s、Vibria。
Saccharomyces, Hanse
nula, Candida, Micrococcus,
Staphylococcus, Streptococ
cus, Leuconostoa, Lactobasi
llus, Corynebacterium, Arth
roberter, Bacillus, Clostri
aluminum, Neisseria, Escherichi
a, Enterobactor, Serratia, A
chromobacter, Alcaligenes,
Flavobacterium, Acetobacter
r, Nitrosomonas, Nitrobacte
r, Thiobacillus, Gluconbact
er, Pseudomonas, Xanthomona
s, Vibria.

【0052】増殖材料としては、微生物培養の培地で使
用されているものを使用することができる。例えばブイ
ヨン培地、M9培地、L培地、Maltextrac
t、MY培地、硝化菌選択培地等が有効である。
As the growth material, those used in the medium for culturing microorganisms can be used. For example, broth medium, M9 medium, L medium, Maltextrac
t, MY medium, nitrifying bacteria selective medium and the like are effective.

【0053】活性維持材料としては、分解菌が特定され
ているものでは、誘導物質として知られているものがあ
るが、天然材料ではこれらが混在した状態にあるのが普
通であり、また特定できないものも多い。特に混合状態
の微生物の場合には、ある微生物の代謝物が別の微生物
の誘導物質として機能する共生系となることが多い。し
たがって、混合微生物を使用する場合には種々の物質が
共存する天然の有機物が有効となる。特定できる誘導物
質としてはメタン資化菌ではメタンが、芳香属資化菌で
は、トルエン、フェノール、o−、m−、p−クレゾー
ル等、硝化菌ではアンモニウム塩などがある。トリクロ
ロエタンを分解できる菌として知られているものを例に
挙げると、これまでに、十数種が発見、単離されてい
る。このうち代表的なものはその基質の種類によって大
きく2つに分けることができる。
As the activity-maintaining material, there are those known as inducers when the degrading bacteria have been specified, but in natural materials, these are usually present in a mixed state and cannot be specified. There are many things. Particularly in the case of mixed microorganisms, metabolites of one microorganism often form a symbiotic system that functions as an inducer of another microorganism. Therefore, when a mixed microorganism is used, a natural organic substance in which various substances coexist is effective. Examples of the inducer that can be identified include methane in methanotrophic bacteria, toluene, phenol, o-, m-, p-cresol and the like in aromatic bacterium, and ammonium salts in nitrifying bacteria. To date, more than a dozen species have been discovered and isolated, for example, what is known as a bacterium capable of degrading trichloroethane. Of these, the representative ones can be roughly divided into two depending on the type of the substrate.

【0054】即ちメタン資化菌、フェノール等の芳香属
化合物資化菌である。前者の代表的なものは、メタンモ
ノオキシゲナーゼを有するMethylocystis
sp.strain M(Agri.Biosci.
Biotech.Biochem.,56,486(1
992)、同56,736(1992))、Methy
losinus trichoseporium OB
3b(Am.Chem.Soc.Natl.Meet.
Div.Environ.Chem.,29,365
(1989)、Appl.biochem.Biote
chnol.,28,877(1991)であり、後者
は、トルエンモノオキシゲナーゼあるいはトルエンジオ
キシゲナーゼを有するAcinetobacter s
p.strain G4(Appl.Environ.
Microbiol.,52,383(1986)、同
53,949(1987)、同54,951(198
9)、同56,279(1990)、同57,1935
(1991)) 、Pseudomonas putid
a F1(Appl.Environ.Microbi
ol.,54,1703(1988)、同54,257
8(1988))がその代表格である。これらのうち、
芳香属化合物資化性トリクロロエタン(TCE)分解菌
に関しては、TCEを分解する酵素は、フェノール、ト
ルエン等の芳香属化合物によって誘導される誘導酵素で
あり、そのため、これらの微生物でTCEを分解させる
ためには、芳香属化合物を含んだ、もしくは芳香属化合
物に分解される材料が使用される。
That is, it is a methane-utilizing bacterium and an aromatic compound-utilizing bacterium such as phenol. The representative of the former is Methylocystis having methane monooxygenase.
sp. strain M (Agri. Biosci.
Biotech. Biochem. , 56, 486 (1
992), ibid. 56,736 (1992)), Methy.
losinus trichosporium OB
3b (Am. Chem. Soc. Natl. Meet.
Div. Environ. Chem. , 29, 365
(1989), Appl. biochem. Biote
chnol. , 28, 877 (1991), the latter of which is a case of Acinetobacter s having toluene monooxygenase or toluene dioxygenase.
p. strain G4 (Appl. Environ.
Microbiol. , 52,383 (1986), 53,949 (1987), 54,951 (198).
9), ibid. 56,279 (1990), ibid. 57,1935.
(1991)), Pseudomonas putid
a F1 (Appl. Environ. Microbi
ol. 54, 1703 (1988), 54, 257.
8 (1988)) is the representative. Of these,
Regarding an aromatic compound-assimilating trichloroethane (TCE) -degrading bacterium, the enzyme that decomposes TCE is an inducible enzyme that is induced by an aromatic compound such as phenol or toluene. Therefore, in order to decompose TCE in these microorganisms, As the material, a material containing an aromatic compound or being decomposed into an aromatic compound is used.

【0055】酵素材料を使用する時は、栄養素等の増殖
材料は不要であるが、その酵素が活性を示すのに必要な
ミネラル、例えばFe2+等やNAPH等の補酵素等を混
合する必要がある。酵素は原理的にはその系に存在すれ
ば、永続的に分解効果があるはずであるが、実際には使
用条件に応じて失活する。従ってこの酵素ができるだけ
長時間活性を維持するために必要な材料を混合一体化す
ることを要する。
When an enzyme material is used, no growth material such as nutrients is required, but it is necessary to mix minerals necessary for the enzyme to exhibit activity, such as coenzymes such as Fe 2+ and NAPH. There is. In principle, an enzyme should have a permanent degrading effect if it exists in the system, but it is actually inactivated depending on the conditions of use. Therefore, it is necessary to mix and integrate the materials necessary for this enzyme to maintain its activity as long as possible.

【0056】酵素の例としては、トルエンモノオキシゲ
ナーゼ、トルエンオキシゲナーゼ、アンモニアモノオキ
シゲナーゼ、メタンモノオキシゲナーセ等がある。
Examples of enzymes include toluene monooxygenase, toluene oxygenase, ammonia monooxygenase, methane monooxygenase and the like.

【0057】本発明の微生物分解材料は、上記物質の全
部または一部を水溶液もしくは懸濁液として用いられ
る。
In the microbial decomposition material of the present invention, all or part of the above substances are used as an aqueous solution or suspension.

【0058】図2は本発明で用いる注入パイプの各ユニ
ットの断面図である。
FIG. 2 is a sectional view of each unit of the injection pipe used in the present invention.

【0059】汚染領域20の少なくとも一か所に本発明
で用いる多段注入口23を持つ注入用外管22を挿入
し、この外管22の外周辺を充填剤30により囲む。外
管22の内側には噴出口28を持つ内管21を挿入す
る。内管21の噴出口28の上下に、この隣接する注入
口へ液体や気体が移動しないようパッカー29が設けら
れている。内管21は上下に可動できるようフレキシブ
ルなパイプ32と延長可能な接続パイプ(図示せず)に
つながれている。このパイプの末端はバルブ25を介し
て送液ポンプ24もしくはコンプレッサーに接続され、
微生物分解材料タンク27の液体を送るか、26のバル
ブを介して別途の流体を送る。
An outer injection tube 22 having a multistage injection port 23 used in the present invention is inserted into at least one of the contaminated areas 20, and the outer periphery of the outer tube 22 is surrounded by a filler 30. The inner pipe 21 having the ejection port 28 is inserted inside the outer pipe 22. Packers 29 are provided above and below the ejection port 28 of the inner tube 21 to prevent liquid or gas from moving to the adjacent injection port. The inner pipe 21 is connected to a flexible pipe 32 and an extendable connection pipe (not shown) so as to be movable up and down. The end of this pipe is connected to a liquid feed pump 24 or a compressor via a valve 25,
The liquid in the microorganism decomposing material tank 27 is sent, or a separate fluid is sent through the valve 26.

【0060】各注入口には噴出口の流体を送り出す方向
にのみ通過できる弁33が設けられている。外管22は
各段ごと接続して、目的地層の深さに応じて適宜長さを
変更可能な構造となっている。注入口のピッチは一段の
パイプ長を変更することで任意に設定されるが、あらか
じめ設定したピッチのパイプを使用する。通常30cm
から1m程度のピッチのものが用いられる。注入は噴出
口を目的とする注入口の位置へ配置後、パッカーを膨張
させて管内壁をシールする。パッカーの膨張は注入用流
体自体をゴム状体の内部に送り込むか、別途パッカーを
膨張させる流体を送る機構を設けることにより機密シー
ルを得る。
Each injection port is provided with a valve 33 that allows passage of the fluid at the ejection port only in the direction of sending it out. The outer pipe 22 is connected to each stage and has a structure in which the length can be appropriately changed according to the depth of the destination layer. The pitch of the inlet is arbitrarily set by changing the length of the pipe in one stage, but a pipe with a preset pitch is used. Usually 30 cm
A pitch of about 1 m is used. The injection is performed by arranging the jet port at the intended injection port position and then inflating the packer to seal the inner wall of the tube. For the expansion of the packer, a seal is obtained by sending the injecting fluid itself into the inside of the rubber-like body, or by separately providing a mechanism for sending the fluid for expanding the packer.

【0061】[0061]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0062】実施例1 5m四方のコンクリート容器内にモデル試験土壌として
下から細砂層1.5m、関東ローム層1.5m、鹿沼土
1m、黒ぼく土0.5mを積層し、表面を練り固めた粘
土層約20cmで覆った。細砂層、ローム層、鹿沼土の
各地層はトリクロロエチレン(TCE)が約10mg/
Kgの汚染濃度を持つよう調整されている。また各々の
地層は実際の土壌に近い透水係数を持つよう積層施工の
時点で圧接されている。
Example 1 As a model test soil, a fine sand layer of 1.5 m, a Kanto loam layer of 1.5 m, Kanuma soil of 1 m, and Kuroboku soil of 0.5 m were laminated in a 5 m square concrete container, and the surface was kneaded and solidified. The clay layer was covered with about 20 cm. About 10 mg of trichlorethylene (TCE) is used in the fine sand layer, loam layer, and Kanuma soil layers.
It is adjusted to have a Kg contamination concentration. In addition, each stratum is pressure-welded at the time of stacking so that it has a permeability coefficient close to that of actual soil.

【0063】容器の中央に注入井戸として、掘削孔を設
け、先端が底部から25cmとなるよう外径80mmの
外管を挿入する。外管の注入口は各地層の中央部になる
よう下から0.5m、2.0m、3.25mの3段に配
置し各段とも4方向に直径8mmの穴を設けた。この注
入口を塞ぐよう外管の外径より小さいゴム管を各注入口
部へ嵌めた。掘削孔と外管の間を細砂と水ガラスを混合
した粘結性材料でシールした。外径40mmの内管は先
端から20mmの位置に噴出口を持ち、上下にパッカー
となるゴム管を配置した。各ゴム管の上下はこの内管の
外壁に密着固定されており、中央部から注入流体の圧力
で膨張する機構となっている。
An excavation hole is provided in the center of the container as an injection well, and an outer tube having an outer diameter of 80 mm is inserted so that the tip is 25 cm from the bottom. The injection port of the outer tube was arranged in three stages of 0.5 m, 2.0 m, and 3.25 m from the bottom so as to be in the center of each layer, and each stage was provided with a hole having a diameter of 8 mm in four directions. A rubber tube smaller than the outer diameter of the outer tube was fitted into each injection port so as to close the injection port. The space between the drill hole and the outer pipe was sealed with a caking material containing a mixture of fine sand and water glass. The inner pipe having an outer diameter of 40 mm had a jet port at a position 20 mm from the tip, and rubber pipes serving as a packer were arranged above and below. The upper and lower sides of each rubber tube are closely fixed to the outer wall of the inner tube, and have a mechanism that expands from the central portion by the pressure of the injected fluid.

【0064】内管の反対側は地上部分でゴムホースに接
続され、更にバルブを介して送液ポンプに接続されてい
る。タンク内の微生物分解材料はこの送液ポンプにより
注入口へ圧送できるよう各配管がされている。各地層へ
の微生物分解材料の供給は細砂層に対して、最も下の注
入口より加圧注入した後、噴出口をローム層の2.0m
の注入口近辺へ移動させ加圧注入し、同様に最も上の注
入口の鹿沼土に対しては供給した。
The opposite side of the inner pipe is connected to a rubber hose at the ground portion, and is further connected to a liquid feed pump via a valve. Each pipe is arranged so that the microbial decomposition material in the tank can be pressure-fed to the inlet by this liquid-feeding pump. The microbial degrading material is supplied to each layer from the bottom injection port under pressure to the fine sand layer, and then the injection port is 2.0 m in the loam layer.
It was moved to the vicinity of the injection port and pressure-injected, and similarly, it was supplied to Kanuma soil at the uppermost injection port.

【0065】微生物分解材料液は、菌株KK01(通商
産業省工業技術院微生物工業研究所に寄託平成4年3月
11日、寄託番号FERM P−12869)をM9培
地で培養し、菌濃度が108 個/mlとなるよう分解液
を作成し、これに注入を確認するための指標物質として
食用赤色106号を1g/lの割合で添加した。
The microbial decomposition material solution was prepared by culturing strain KK01 (deposited with the Institute of Microbial Industry, Institute of Industrial Science and Technology, Ministry of International Trade and Industry on March 11, 1992, deposit number FERM P-12869) in M9 medium to obtain a bacterial concentration of 10 A decomposition solution was prepared so as to have 8 pieces / ml, and edible red No. 106 was added thereto at a rate of 1 g / l as an indicator substance for confirming injection.

【0066】3回の注入サイクルを完了した後2日間放
置し、注入を行った対角線上の土壌を半分除去し、指標
物質の分布と微生物の分布を観測した結果、鹿沼土と細
砂では深さ方向に最大20〜50cm、半径方向に約4
0〜70cmの分布が認められ、一方関東ローム層では
深さ方向15cmと半径方向に60cmの範囲で分布し
ていた。これら各地層で、微生物分解材料の非分布領域
に対する分布領域でのTCEの含有量比を調べたしたと
ころ、分布領域では1/3〜1/7に減衰しているのが
確認された。
After the completion of the three injection cycles, the mixture was left for 2 days, half of the injected soil on the diagonal line was removed, and the distribution of the indicator substance and the distribution of microorganisms were observed. 20 to 50 cm maximum in the radial direction and approximately 4 in the radial direction
A distribution of 0 to 70 cm was observed, while in the Kanto loam layer, the distribution was 15 cm in the depth direction and 60 cm in the radial direction. When the TCE content ratio in the distribution region to the non-distribution region of the microbial degrading material was examined in each of these layers, it was confirmed that the TCE content ratio was attenuated to 1/3 to 1/7 in the distribution region.

【0067】実施例2 実施例1と同様の注入を行った後、各注入口より圧縮空
気を供給して微生物分解物の分布とTCEの分解を調べ
たところ、分布距離は深さ方向と半径方向とも液体状の
微生物分解材料のみと比較して同等から最大50%の増
加が確認され、分解は1/4〜1/10に減衰している
ことが確認された。
Example 2 After the same injection as in Example 1, compressed air was supplied from each inlet to examine the distribution of microbial degradants and the decomposition of TCE. The distribution distances were depth direction and radius. It was confirmed that the increase was up to 50% from the same level in comparison with only the liquid microbial decomposing material in both directions, and that the decomposition was attenuated to 1/4 to 1/10.

【0068】実施例3 実施例1と同様の注入を行った後、2日放置後指標物質
を食用赤色106号から青色1号へ置き換えて再注入を
実施例1と同じ条件で注入し、更に2日放置後分布とT
CEの分解を調べたところ、分布は一回目の注入と同様
であるが、一回目の注入分布がやや大きく重力方向へ拡
散する傾向が見られた。二回微生物分解液が供給された
箇所でのTCE減衰比は最大1/50で大部分で1/2
0以下であった。
Example 3 The same injection as in Example 1 was performed, and after standing for 2 days, the indicator substance was replaced with edible red No. 106 from blue No. 1 and reinjection was performed under the same conditions as in Example 1, and Distribution after 2 days and T
When the decomposition of CE was examined, the distribution was similar to that of the first injection, but the first injection distribution showed a slightly large tendency to diffuse in the direction of gravity. The TCE attenuation ratio at the place where the microbial decomposition liquid was supplied twice was 1/50 at the maximum and 1/2 at most.
It was 0 or less.

【0069】[0069]

【発明の効果】本発明の方法を用いることにより、均一
で大量かつ迅速な微生物分解材料の供給が可能となっ
た。また一つの注入管により異なる物性の注入材料を容
易に注入でき、経済的にかつ短時間での供給が可能とな
り、さらに、適宜な時間を置いて再注入を可能とするた
め、修復土壌の工学的管理が容易となり、目的とする汚
染土壌の修復を迅速で確実にする効果が得られた。
EFFECTS OF THE INVENTION By using the method of the present invention, it becomes possible to supply a uniform, large amount and rapid microbial degrading material. In addition, one injection pipe can easily inject injection materials with different physical properties, it can be supplied economically and in a short time, and reinjection can be performed at an appropriate time. It became possible to easily manage the soil and to quickly and surely repair the target contaminated soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】地層における汚染物質の広がりを説明するため
の図である。
FIG. 1 is a diagram for explaining the spread of pollutants in a stratum.

【図2】本発明の方法を説明するための図である。FIG. 2 is a diagram for explaining the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 和実 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazumi Tanaka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン化炭化水素で汚染された土壌・
地下水領域の地表の少なくとも一か所以上に、液体状材
料を加圧注入できる注入管を設け、この注入管より該炭
化水素を分解できる液体状微生物材料を加圧注入し、該
炭化水素分解材料により汚染土壌・汚染地下水を原位置
にて浄化する方法であって、排出側へだけ通過しやすい
弁を持つ多段の注入口を有する外管を土壌に挿入し、そ
の周囲に管外壁挿入方向へ注入物が移動するのを防ぐ充
填剤を充填し、該管内には、噴出口を持つ内管を上下の
注入口をパッカーにてシールし、内管噴出口を介して目
的とする注入口より液体微生物材料を地層内に加圧注入
し、一段の注入が完了した後、深さ方向へ内管を移動
し、順次加圧注入工程を繰り返すことにより、液体状微
生物材料を汚染地層へ供給することを特徴とする汚染土
壌・汚染地下水の浄化方法。
1. Soil contaminated with halogenated hydrocarbons
An injection pipe capable of injecting a liquid material under pressure is provided in at least one or more locations on the ground surface of the groundwater region, and a liquid microbial material capable of decomposing the hydrocarbon is injected under pressure from the injection pipe to obtain a hydrocarbon decomposing material. This is a method to purify contaminated soil and contaminated groundwater in-situ by inserting an outer pipe with a multi-stage inlet with a valve that can easily pass only to the discharge side into the soil, and in the surrounding direction in the direction of inserting the pipe outer wall. Filling a filler to prevent the injected material from moving, and inside the pipe, an inner pipe having an ejection port is sealed with a packer at the upper and lower injection ports, and the target injection port is inserted through the inner pipe ejection port. Liquid microbial material is injected into the formation under pressure, and after one-stage injection is completed, the inner tube is moved in the depth direction and the pressure injection process is repeated sequentially to supply the liquid microbial material to the contaminated formation. Purification of contaminated soil and contaminated groundwater characterized by Method.
【請求項2】 分解菌液、栄養素、微生物担体を同時ま
たは個別に注入する請求項1に記載の浄化方法。
2. The purification method according to claim 1, wherein the decomposing bacteria solution, the nutrient, and the microbial carrier are injected simultaneously or individually.
【請求項3】 液体状微生物分解材料と気体(空気また
はガス)材料を同一の注入管を利用して注入する請求項
1に記載の浄化方法。
3. The purification method according to claim 1, wherein the liquid microbial decomposition material and the gas (air or gas) material are injected using the same injection pipe.
【請求項4】 所定時間経過後、液体状微生物分解材料
や気体の再注入を任意の注入口より行う請求項1に記載
の浄化方法。
4. The purification method according to claim 1, wherein after a lapse of a predetermined time, reinjection of the liquid microbial decomposition material or gas is performed from an arbitrary inlet.
JP21728394A 1994-09-12 1994-09-12 Contaminated soil and groundwater purification methods Expired - Fee Related JP3332600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21728394A JP3332600B2 (en) 1994-09-12 1994-09-12 Contaminated soil and groundwater purification methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21728394A JP3332600B2 (en) 1994-09-12 1994-09-12 Contaminated soil and groundwater purification methods

Publications (2)

Publication Number Publication Date
JPH0880484A true JPH0880484A (en) 1996-03-26
JP3332600B2 JP3332600B2 (en) 2002-10-07

Family

ID=16701715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21728394A Expired - Fee Related JP3332600B2 (en) 1994-09-12 1994-09-12 Contaminated soil and groundwater purification methods

Country Status (1)

Country Link
JP (1) JP3332600B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260507A (en) * 2006-03-27 2007-10-11 Nippon Oil Corp Method of cleaning contaminated soil
JP2010063978A (en) * 2008-09-09 2010-03-25 Maezawa Ind Inc Injection outer tube and method of cleaning soil and groundwater
KR101431379B1 (en) * 2013-04-15 2014-08-18 주식회사 지오그린이십일 System for purifying a contaminant plume of underground water
CN105170625A (en) * 2015-10-16 2015-12-23 北京德瑞科森环保科技有限公司 Sealing device used for multiple-stage soil in-situ air sparging restoration technique
KR101972713B1 (en) * 2018-10-31 2019-04-25 주식회사 지엔에스엔지니어링 ICT-based soil cleaning automation system
KR101988181B1 (en) * 2018-10-31 2019-06-11 주식회사 지엔에스엔지니어링 Depth variable type packer unit for soil cleaning
KR102010212B1 (en) * 2019-04-12 2019-08-12 주식회사 지엔에스엔지니어링 Depth variable type packer unit for wide range soil cleaning
CN114433612A (en) * 2022-01-19 2022-05-06 合肥工业大学 VOCs pollutes soil body reinforcing aeration prosthetic devices
CN115026124A (en) * 2022-06-22 2022-09-09 上海城建市政工程(集团)有限公司 Multi-depth in-situ infiltration injection method for soil and underground water remediation
CN115193898A (en) * 2022-06-22 2022-10-18 江苏大地益源环境修复有限公司 Underground water in-situ reagent packing and injecting device and underground water repairing method
CN115228916A (en) * 2022-07-27 2022-10-25 江苏维诗环境科技有限公司 Integrated repair system for strengthening soil vapor extraction and groundwater remediation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018082B1 (en) * 2008-03-31 2011-03-02 디. 플레바니 코넬 Method and apparatus using pneumatic fracturing and multicomponent injection of a liquid or dry media for the treatment non-naturally occurring subsurface soil and groundwater contamination
KR101065269B1 (en) 2010-11-01 2011-09-19 디. 플레바니 코넬 Method and apparatus using pneumatic fracturing and multicomponent injection of a liquid or dry media for the treatment non-naturally occurring subsurface soil and groundwater contamination

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260507A (en) * 2006-03-27 2007-10-11 Nippon Oil Corp Method of cleaning contaminated soil
JP2010063978A (en) * 2008-09-09 2010-03-25 Maezawa Ind Inc Injection outer tube and method of cleaning soil and groundwater
KR101431379B1 (en) * 2013-04-15 2014-08-18 주식회사 지오그린이십일 System for purifying a contaminant plume of underground water
CN105170625A (en) * 2015-10-16 2015-12-23 北京德瑞科森环保科技有限公司 Sealing device used for multiple-stage soil in-situ air sparging restoration technique
KR101972713B1 (en) * 2018-10-31 2019-04-25 주식회사 지엔에스엔지니어링 ICT-based soil cleaning automation system
KR101988181B1 (en) * 2018-10-31 2019-06-11 주식회사 지엔에스엔지니어링 Depth variable type packer unit for soil cleaning
KR102010212B1 (en) * 2019-04-12 2019-08-12 주식회사 지엔에스엔지니어링 Depth variable type packer unit for wide range soil cleaning
CN114433612A (en) * 2022-01-19 2022-05-06 合肥工业大学 VOCs pollutes soil body reinforcing aeration prosthetic devices
CN115026124A (en) * 2022-06-22 2022-09-09 上海城建市政工程(集团)有限公司 Multi-depth in-situ infiltration injection method for soil and underground water remediation
CN115193898A (en) * 2022-06-22 2022-10-18 江苏大地益源环境修复有限公司 Underground water in-situ reagent packing and injecting device and underground water repairing method
CN115026124B (en) * 2022-06-22 2023-10-20 上海城建市政工程(集团)有限公司 Multi-depth in-situ infiltration injection method for soil and groundwater remediation
CN115228916A (en) * 2022-07-27 2022-10-25 江苏维诗环境科技有限公司 Integrated repair system for strengthening soil vapor extraction and groundwater remediation

Also Published As

Publication number Publication date
JP3332600B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3086182B2 (en) Soil purification method
CA2071357C (en) Vapor-phase nutrient delivery system for in-situ bioremediation of soil
JP3420949B2 (en) Soil purification device and method for repairing contaminated soil
JP3332600B2 (en) Contaminated soil and groundwater purification methods
US5888021A (en) Method and apparatus for remediation of contaminated soil
JP3420460B2 (en) Pollutant decomposition apparatus, method for purifying contaminated medium, and method for decomposing pollutants
CN102774965A (en) In-situ repair system for treating pollution of underground water
JP3491929B2 (en) Purification method of groundwater contaminated by soil contamination
JP3530588B2 (en) Method of forming in-situ microbial degradation region
JPH09276841A (en) Method and apparatus for purifying contaminated soil
CN1245452A (en) In situ remediation of contaminated soils
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
CA2233034C (en) Method for soil remediation
JP3491949B2 (en) Contaminated groundwater purification methods, contaminated groundwater purification structures, hazardous waste disposal sites and hazardous waste storage sites
JP2000229279A (en) Method for pouring microorganism into soil
US7252986B2 (en) Process for the biodegradation of hydrocarbons and ethers in subsurface soil by introduction of a solid oxygen source by hydraulic fracturing
JPH11333493A (en) Method and apparatus for cleaning contaminated underground water
JP3402699B2 (en) Soil remediation method using microorganisms
US5658093A (en) Process for remedying an environment using microorganism and a process for treating soil
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
JPH1080676A (en) Method for purification of polluted soil
JP3491963B2 (en) Suppression of diffusion of underground pollutants and purification method thereof
JP3428840B2 (en) Environmental restoration method, contaminated soil restoration method, environmental restoration apparatus, liquid injection and diffusion method to environment, and liquid injection apparatus to environment
JPH11207315A (en) Microbial purifying method for contaminated soil and purifying device therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees