JPH08797Y2 - Refrigerant flow path adjustment structure for electronic devices - Google Patents

Refrigerant flow path adjustment structure for electronic devices

Info

Publication number
JPH08797Y2
JPH08797Y2 JP1987038831U JP3883187U JPH08797Y2 JP H08797 Y2 JPH08797 Y2 JP H08797Y2 JP 1987038831 U JP1987038831 U JP 1987038831U JP 3883187 U JP3883187 U JP 3883187U JP H08797 Y2 JPH08797 Y2 JP H08797Y2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
module
path resistance
discharge side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987038831U
Other languages
Japanese (ja)
Other versions
JPS63145395U (en
Inventor
明彦 藤崎
日出夫 勝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1987038831U priority Critical patent/JPH08797Y2/en
Publication of JPS63145395U publication Critical patent/JPS63145395U/ja
Application granted granted Critical
Publication of JPH08797Y2 publication Critical patent/JPH08797Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【考案の詳細な説明】 〔概要〕 電子機器内に配置された複数のモジュールを冷却する
冷媒の流路を調整する電子機器の冷媒流路調整構造であ
って、冷却を要するモジュールの冷媒流路の供給側と排
出側にそれぞれ流路抵抗調整器を設けて、モジュールに
最適な冷媒圧力と流量に調整する。すなわち冷媒の圧力
を増加する場合は、供給側流路抵抗調整器のバルブを若
干開放し、排出側流路抵抗調整器のバルブを逆に若干絞
り、流量を増加する場合には排出側流路抵抗調整器のバ
ルブと供給側流路抵抗調整器のバルブを共に若干大きく
開放することによって、冷媒の圧力および流量の調整が
簡易に行なえる。
DETAILED DESCRIPTION OF THE INVENTION [Outline] A refrigerant flow path adjusting structure of an electronic device for adjusting a flow path of a refrigerant for cooling a plurality of modules arranged in an electronic device, the refrigerant flow path of a module requiring cooling. A flow path resistance adjuster is provided on each of the supply side and the discharge side to adjust the refrigerant pressure and flow rate to be optimum for the module. That is, when the pressure of the refrigerant is increased, the valve of the supply side flow path resistance adjuster is slightly opened, and the valve of the discharge side flow path resistance adjuster is slightly narrowed in the opposite direction, and when the flow rate is increased, the discharge side flow path is adjusted. By opening both the valve of the resistance adjuster and the valve of the supply-side flow path resistance adjuster to a slightly large extent, the pressure and flow rate of the refrigerant can be easily adjusted.

〔産業上の利用分野〕 本考案は、電子機器に搭載するモジュールの冷媒圧力
および流量を最適値に調整できるようにした電子機器の
冷媒流路調整構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant flow path adjusting structure for an electronic device, which can adjust the refrigerant pressure and flow rate of a module mounted on the electronic device to optimal values.

近年、電子機器は一般に小形,軽量化の要望が強く、
これに伴なって電子機器を構成するモジュールに実装す
る電子部品も高密度集積化された例えばIC等が高密度実
装されている。従って消費電力が増大し発熱量が大きく
なるので、この発生する熱を効果的に放熱する伝導液冷
(冷媒流通路上に設けられたベローズ等の熱伝導部材を
発熱体に圧接させて冷却を行う冷却方法)が多用されて
いる。ところが、電子機器を構成する複数のモジュール
は実装する部品によって発熱量が異なるので、発熱量に
対応する冷媒圧力,流量の調整が簡易に行なえる電子機
器の冷媒流路調整構造の開発が強く要望されている。
In recent years, there has been a strong demand for smaller and lighter electronic devices in general,
Along with this, electronic parts to be mounted on modules constituting electronic devices are also mounted with high density, for example, ICs, which are highly integrated. Therefore, since the power consumption increases and the amount of heat generation increases, the conductive liquid cooling that effectively dissipates the generated heat (cooling is performed by pressing a heat conduction member such as a bellows provided on the refrigerant flow passage against the heating element). Cooling method) is often used. However, since a plurality of modules that make up an electronic device generate different amounts of heat depending on the mounted components, there is a strong demand for the development of a refrigerant flow path adjusting structure for electronic devices that can easily adjust the refrigerant pressure and flow rate according to the amount of heat generated. Has been done.

〔従来の技術〕[Conventional technology]

第2図は、従来の電子機器の冷媒流路調整構造を説明
する系統図である。
FIG. 2 is a system diagram illustrating a refrigerant flow path adjusting structure of a conventional electronic device.

図において、液冷を要する電子機器に複数のモジュー
ル2(21,22・・2n)と冷媒供給装置1を搭載し、該冷
媒供給装置1から流路3を介してそれぞれのモジュール
2(21,22・・2n)に冷媒を供給循環している。
In the figure, a plurality of modules 2 (21, 22 ... 2n) and a refrigerant supply device 1 are mounted on an electronic device that requires liquid cooling, and each module 2 (21, 21, Refrigerant is being circulated to the 22 ... 2n).

ところが、それぞれのモジュール2(21,22・・2n)
の発熱量に対応して冷媒圧力,流量を調整するために、
例えばモジュール21には冷媒供給側にバルブ等の供給側
流路抵抗調整器4を設け、モジュール22には冷媒排出側
にバルブ等の排出側流路抵抗調整器5を設け、モジュー
ル2nには供給,排出側とも流路抵抗調整器4,5を設けて
ない。
However, each module 2 (21,22 ... 2n)
In order to adjust the refrigerant pressure and flow rate according to the calorific value of
For example, the module 21 is provided with a supply side flow path resistance adjuster 4 such as a valve on the refrigerant supply side, the module 22 is provided with a discharge side flow path resistance adjuster 5 such as a valve on the refrigerant discharge side, and is supplied to the module 2n. , No flow path resistance regulators 4 and 5 are provided on the discharge side.

従って、モジュール21は冷媒の流量の調整は供給側流
路抵抗調整器4を操作することによって容易であるが、
冷媒圧力は冷媒供給装置1に依存している。またモジュ
ール22は冷媒圧力の調整は排出側流路抵抗調整器5によ
って比較的簡易に行なえるが、冷媒流量は冷媒供給装置
1に依存しており、さらにモジュール2nは冷媒の圧力,
流量とも無調整ですべて冷媒供給装置1に依存してい
る。
Therefore, although the module 21 can easily adjust the flow rate of the refrigerant by operating the supply-side flow path resistance adjuster 4,
The refrigerant pressure depends on the refrigerant supply device 1. Further, the module 22 can relatively easily adjust the refrigerant pressure by the discharge side flow path resistance adjuster 5, but the refrigerant flow rate depends on the refrigerant supply device 1, and the module 2n further adjusts the refrigerant pressure,
The flow rate is unadjusted and depends entirely on the refrigerant supply device 1.

なお、モジュール2は、冷媒流通路上に設けられたベ
ローズ等の熱伝導部材をLSI等の発熱体に圧接させて冷
却する伝導液冷機構(図示せず)を介して搭載部品を冷
却するようになっている。このため、前記冷媒流通路内
を流通する冷媒の圧力設定を誤ると各種の障害が発生す
る(冷媒の圧力が小さ過ぎるとベローズと発熱体間の熱
の伝導性が悪くなり、冷媒の圧力が大き過ぎるとLSI等
のように脆弱な発熱体を損傷する危険性がある)。ま
た、冷媒の流量の設定を誤った場合はモジュール2の冷
却効率が低下する。
In addition, the module 2 cools the mounted components through a conductive liquid cooling mechanism (not shown) that cools a heat conductive member such as a bellows provided on the refrigerant flow passage by pressing it against a heating element such as an LSI. Has become. Therefore, if the pressure of the refrigerant flowing in the refrigerant flow passage is erroneously set, various troubles will occur (if the pressure of the refrigerant is too small, the conductivity of heat between the bellows and the heating element becomes poor, and the pressure of the refrigerant is If it is too large, there is a risk of damaging fragile heating elements such as LSI). In addition, if the flow rate of the refrigerant is set incorrectly, the cooling efficiency of the module 2 will decrease.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

上記電子機器の冷媒流路調整構造にあっては、モジュ
ールの流路の冷媒圧力,流量の調整を供給側或いは排出
側のいずれか一方に設けるか、またはどちらにも設けず
無調整であるので、モジュールの冷却性能の最適値が得
られず、実装部品の信頼度が低下するという問題点があ
った。
In the refrigerant flow path adjusting structure of the electronic device described above, adjustment of the refrigerant pressure and flow rate of the module flow path is provided on either the supply side or the discharge side, or is not provided on either side and is unadjusted. However, there is a problem in that the optimum value of the cooling performance of the module cannot be obtained and the reliability of the mounted components is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、上記の問題点を解決してモジュールの冷却
性能の最適値の調整を容易に行なえるようにした電子機
器の冷媒流路調整構造を提供するものである。
The present invention provides a refrigerant flow path adjusting structure for an electronic device that solves the above-mentioned problems and facilitates the adjustment of the optimum value of the cooling performance of the module.

本考案は、冷媒流通路上に設けられた熱伝導部材を冷
媒圧力により発熱体に圧接した各モジュール単位に冷媒
供給側に供給側流路抵抗調整器を、冷媒排出側に排出側
流路抵抗調整器をそれぞれ配置し、前記各モジュールの
冷媒供給側に配置された前記供給側流路抵抗調整器と前
記各モジュールの冷媒排出側に配置された前記排出側流
路抵抗調整器を該各モジュールの単位にそれぞれ独立に
調整することによって前記各モジュールに供給される冷
媒の圧力と流量の制御を行う電子機器の冷媒流路調整構
造を提供することによって前記問題点を解決している。
The present invention provides a supply side flow path resistance adjuster at the refrigerant supply side and a discharge side flow path resistance adjustment at the refrigerant discharge side for each module unit in which a heat conduction member provided on a refrigerant flow passage is pressed against a heating element by refrigerant pressure. Respectively, the supply side flow path resistance adjuster arranged on the refrigerant supply side of each module and the discharge side flow path resistance adjuster arranged on the refrigerant discharge side of each module of the respective modules. The problem is solved by providing a refrigerant flow path adjusting structure of an electronic device that controls the pressure and flow rate of the refrigerant supplied to each module by adjusting each unit independently.

〔作用〕[Action]

このような電子機器の冷媒流路調整構造は、モジュー
ルへの冷媒供給側と排出側にバルブ等の流路抵抗調整器
を設けたことで、各モジュールの冷媒圧力及び流量の調
整が自在に行なえ、モジュールの冷却性能の最適値が容
易に得られるので実装部品の信頼度が向上する。
In such a refrigerant flow path adjusting structure of an electronic device, by providing a flow path resistance adjuster such as a valve on the refrigerant supply side and the discharge side of the module, the refrigerant pressure and flow rate of each module can be freely adjusted. Since the optimum value of the cooling performance of the module can be easily obtained, the reliability of the mounted parts is improved.

〔実施例〕〔Example〕

第1図は、本考案の一実施例を説明する系統図で、第
2図と同等の部分については同一符合を付している。
FIG. 1 is a system diagram for explaining an embodiment of the present invention, and the same parts as those in FIG. 2 are designated by the same reference numerals.

図において、液冷を要する電子機器に複数のモジュー
ル2(21,22・・2n)と冷媒供給装置1を搭載し、該冷
媒供給装置1から流路3を介してそれぞれのモジュール
2(21,22・・2n)に冷媒を供給循環している。
In the figure, a plurality of modules 2 (21, 22 ... 2n) and a refrigerant supply device 1 are mounted on an electronic device that requires liquid cooling, and each module 2 (21, 21, Refrigerant is being circulated to the 22 ... 2n).

ところが、それぞれのモジュール2(21,22・・2n)
の発熱量に対応して冷媒圧力,流量を調整するために、
モジュール21の冷媒供給側にバルブ等の供給側流路抵抗
調整器41を設け、冷媒排出側にバルブ等の排出側流路抵
抗調整器51を付設し、モジュール22の冷媒供給側にバル
ブ等の供給側流路抵抗調整器42を設け、冷媒排出側にバ
ルブ等の排出側流路抵抗調整器52を設け、モジュール2n
の冷媒供給側にバルブ等の供給側流路抵抗調整器4nを設
け、冷媒排出側にバルブ等の排出側流路抵抗調整器5nを
設けている。
However, each module 2 (21,22 ... 2n)
In order to adjust the refrigerant pressure and flow rate according to the calorific value of
A supply side flow path resistance adjuster 41 such as a valve is provided on the refrigerant supply side of the module 21, a discharge side flow path resistance adjuster 51 such as a valve is attached to the refrigerant discharge side, and a valve etc. is provided on the refrigerant supply side of the module 22. A supply side flow path resistance adjuster 42 is provided, a discharge side flow path resistance adjuster 52 such as a valve is provided on the refrigerant discharge side, and a module 2n is provided.
A supply side flow path resistance adjuster 4n such as a valve is provided on the refrigerant supply side, and a discharge side flow path resistance adjuster 5n such as a valve is provided on the refrigerant discharge side.

このように、モジュール2のそれぞれ冷媒供給側にバ
ルブ等の供給側流路抵抗調整器4を設け、冷媒排出側に
バルブ等の排出側流路抵抗調整器5を設けたことによっ
て、例えばモジュール21の冷媒圧力を上げる場合は、供
給側流路抵抗調整器41のバルブを開き、逆に排出側流路
抵抗調整器51のバルブを締めれば良く、またモジュール
22の流量を増加する場合には、供給側流路抵抗調整器42
のバルブ、及び排出側流路抵抗調整器52のバルブを大き
く開ければ良い、したがって、各モジュール2の冷媒圧
力,流量を一定に保つには、供給側流路抵抗調整器4の
バルブと、排出側流路抵抗調整器5のバルブを同じよう
に開けて、流体抵抗を一定にすれば良い。
Thus, by providing the supply-side flow path resistance adjusters 4 such as valves on the refrigerant supply side of the module 2 and the discharge-side flow path resistance adjusters 5 such as valves on the refrigerant discharge side, for example, the module 21 To increase the refrigerant pressure of, the valve of the supply-side flow path resistance adjuster 41 may be opened, and conversely, the valve of the discharge-side flow path resistance adjuster 51 may be closed.
When increasing the flow rate of 22, supply side flow path resistance adjuster 42
2 and the valve of the discharge side flow path resistance adjuster 52 should be opened widely. Therefore, in order to keep the refrigerant pressure and flow rate of each module 2 constant, the valve of the supply side flow path resistance adjuster 4 and The valve of the side flow path resistance adjuster 5 may be similarly opened to make the fluid resistance constant.

なお、本実施例では供給側流路抵抗調整器4と排出側
流路抵抗調整器5を、バルブについて説明したが、バル
ブに限らず交換可能なオリフィス等であっても良い。
In this embodiment, the supply-side flow path resistance adjuster 4 and the discharge-side flow path resistance adjuster 5 are described as valves, but not limited to valves, replaceable orifices or the like may be used.

〔考案の効果〕[Effect of device]

以上の説明から明らかなように、本考案によれば各モ
ジュールに対応する冷媒圧力,流量の調整が容易に行な
えるので、実装電子機器の信頼度が向上し、装置の特性
維持に極めて有効である。
As is clear from the above description, according to the present invention, it is possible to easily adjust the refrigerant pressure and flow rate corresponding to each module, so that the reliability of the mounted electronic device is improved and it is extremely effective in maintaining the characteristics of the device. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案の一実施例を説明する系統図、 第2図は、従来の電子機器の冷媒流路調整構造を説明す
る系統図である。 図において、1は冷媒供給装置、2,21,22・・・2nはモ
ジュール、3は流路、4,41,42・・・4nは供給側流路抵
抗調整器、5,51,52・・・5nは排出側流路抵抗調整器、
をそれぞれ示す。
FIG. 1 is a system diagram for explaining an embodiment of the present invention, and FIG. 2 is a system diagram for explaining a refrigerant flow path adjusting structure of a conventional electronic device. In the figure, 1 is a refrigerant supply device, 2, 21, 22 ... 2n are modules, 3 is a flow path, 4, 41, 42 ... 4n are supply side flow path resistance adjusters, 5, 51, 52 ... ..5n is the discharge side flow path resistance adjuster,
Are shown respectively.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】複数のモジュール(21〜2n)に搭載された
発熱体に対し冷媒流通路上に設けられた熱伝導部材を冷
媒の圧力により圧接して該複数のモジュール(21〜2n)
を冷却する際における該冷媒の圧力と流量を調整する電
子機器の冷媒流路調整構造であって、 前記各モジュール(21〜2n)単位に冷媒供給側に供給側
流路抵抗調整器(41〜4n)を、冷媒排出側に排出側流路
抵抗調整器(51〜5n)をそれぞれ配置し、前記各モジュ
ール(21〜2n)の冷媒供給側に配置された前記供給側流
路抵抗調整器(41〜4n)と前記各モジュール(21〜2n)
の冷媒排出側に配置された前記排出側流路抵抗調整器
(51〜5n)を該各モジュール(21〜2n)単位にそれぞれ
独立に調整することによって前記各モジュール(21〜2
n)に供給される冷媒の圧力と流量の制御を行うように
したことを特徴とする電子機器の冷媒流路調整構造。
1. A plurality of modules (21-2n) in which a heat-conducting member provided on a refrigerant flow passage is pressed against a heating element mounted in the plurality of modules (21-2n) by the pressure of the refrigerant.
A refrigerant flow path adjusting structure of an electronic device for adjusting a pressure and a flow rate of the refrigerant when cooling a refrigerant, comprising: a supply side flow path resistance adjuster (41 to 4n), a discharge side flow path resistance adjuster (51 to 5n) is arranged on the refrigerant discharge side, and the supply side flow path resistance adjuster (5n) is arranged on the refrigerant supply side of each module (21 to 2n). 41 ~ 4n) and each module (21 ~ 2n)
By independently adjusting the discharge side flow path resistance adjusters (51 to 5n) arranged on the refrigerant discharge side of each of the modules (21 to 2n).
A refrigerant flow path adjusting structure for an electronic device, characterized in that the pressure and the flow rate of the refrigerant supplied to (n) are controlled.
JP1987038831U 1987-03-16 1987-03-16 Refrigerant flow path adjustment structure for electronic devices Expired - Lifetime JPH08797Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987038831U JPH08797Y2 (en) 1987-03-16 1987-03-16 Refrigerant flow path adjustment structure for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987038831U JPH08797Y2 (en) 1987-03-16 1987-03-16 Refrigerant flow path adjustment structure for electronic devices

Publications (2)

Publication Number Publication Date
JPS63145395U JPS63145395U (en) 1988-09-26
JPH08797Y2 true JPH08797Y2 (en) 1996-01-10

Family

ID=30851446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987038831U Expired - Lifetime JPH08797Y2 (en) 1987-03-16 1987-03-16 Refrigerant flow path adjustment structure for electronic devices

Country Status (1)

Country Link
JP (1) JPH08797Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017653A (en) * 2013-07-10 2015-01-29 富士通株式会社 Pipe connection structure, cooling system, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011200B2 (en) * 2007-02-19 2011-09-06 Liebert Corporation Cooling fluid flow regulation distribution system and method
JP6119617B2 (en) * 2014-01-14 2017-04-26 トヨタ自動車株式会社 Stacked cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030595U (en) * 1983-08-09 1985-03-01 株式会社明電舎 Coolant circulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017653A (en) * 2013-07-10 2015-01-29 富士通株式会社 Pipe connection structure, cooling system, and electronic device

Also Published As

Publication number Publication date
JPS63145395U (en) 1988-09-26

Similar Documents

Publication Publication Date Title
JP2986381B2 (en) Electronic chip temperature control device and method
US6016250A (en) Self-balancing thermal control device for integrated circuits
US5491610A (en) Electronic package having active means to maintain its operating temperature constant
JP5114092B2 (en) Method for generating voltage and system for regulating the temperature of at least one thermoelectric module
US20060180300A1 (en) Pump and fan control concepts in a cooling system
JP3231749B2 (en) Electronic system and electronic module cooling method
JPH08148189A (en) Battery temperature adjustment device for electric vehicle
CA2406331A1 (en) Thermal management system
WO2023160498A1 (en) Head-mounted display device and heat dissipation method therefor
JP2003022135A (en) Temperature controller, temperature control method and device
JPH08797Y2 (en) Refrigerant flow path adjustment structure for electronic devices
CN111263566A (en) Temperature control system, temperature control method, electronic device, and computer-readable medium
JPS6366781U (en)
US11920869B2 (en) Balanced heat transfer mechanism and control for automotive vehicles communication systems
JP2006501612A (en) Thermal management system
US20080302117A1 (en) Air conditioning system
JPH0735940B2 (en) Cooling system
JPH07234036A (en) Heat absorbing/generating amount varying apparatus for thermoelectric converter
JPH0794881A (en) Flow rate adjusting equipment for refrigerant
JP2705657B2 (en) Satellite thermal control system
CN219014773U (en) Semiconductor temperature-regulating garment
CN219523669U (en) Cooling control system of hybrid electric vehicle
CN212205132U (en) Temperature difference semiconductor minimum system
JP2002164288A (en) Temperature control system
CN213017960U (en) Expansion valve assembly structure